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MULTILINEAR COMMUTATORS RELATED TO MAXIMAL

FUNCTION ON MORREY–BANACH SPACE AND ITS APPLICATION

HUIHUI ZHANG, YAN LIN AND XIAO YU ∗

(Communicated by M. Krnić)

Abstract. The authors get the equivalent conditions for the boundedness of the commutators gen-
erated by the multilinear maximal functions and the BMO functions on Morrey-Banach space.
As applications, we obtain the equivalent conditions for the boundedness of such operators on
Morrey spaces with variable exponets and Morrey-Lorentz space which are all new results in the
multi-linear case. Moreover, as far as we know, the results of this paper seem to be new even for
the one-linear case.

1. Introduction

The Hardy-littlewood maximal function M( f )(x) , which is defined as

M( f )(x) = sup
Q�x

1
|Q|

∫
Q
| f (y)|dy

plays important roles in harmonic analysis. In [24], Muckenhoupt introduced the Ap

weight class and gave the characterization of Ap by using the weighted boundedness of
M on Lp

ω with 1 < p < ∞ and Lp
ω denotes the weighted Lp space.

In the past twenty years, the multilinear Calderón-Zygmund theory was developed
a lot and studied by many authors. Grafakos and Torres [10] introduced the multilinear
Calderón-Zygmund operator and studied the bounedness of such operators. Later in
2009, Lerner et. al. [20] introduced a new kind of A�P weight class defined as follows.

DEFINITION 1.1. ([20]) Suppose that each ω j is a non-negative and locally

integrable function. Denote �ω = (ω1, · · · ,ωm) and ν�ω (x) =
m
∏
j=1

ω j(x)p/p j with 1 <

p1, · · · , pm < ∞ and 1/p = 1/p1 + · · ·+1/pm .
We say the vector-value function �ω satisfies the A�P conditionwith �P = (p1, · · · , pm)

if for any ball B ⊂ R
n , there is

sup
B

(
1
|B|
∫

B
ν�ω (x)dx

)1/p m

∏
j=1

(
1
|B|
∫

B
ω j(x)

1−p′j dx

)1/p′j
< ∞,
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where p′j is defined by p′j = p j
p j−1 .

In [20], Lerner et al. introduced the following multilinear maximal function M (�f )(x)
defined as

M (�f )(x) = sup
Q�x

m

∏
i=1

1
|Q|

∫
Q
| fi(yi)|dyi

with any ball Q ⊂ R
n .

Lerner at al. gave the characterization of A�P weight class by the weighted bound-

edness of M (�f )(x) from Lp1
ω1(R

n)× ·· · × Lpm
ωm(Rn) to Lp

ν�ω (Rn) with 1
p =

m
∑
i=1

1
pi

and

pi > 1.
For any ball B ⊂ R

n , the mean oscillation space BMO(Rn ) is defined as

BMO(Rn) =
{

b ∈ Lloc(Rn) : ‖b‖BMO := sup
B

1
|B|
∫

B
|b(y)−bB|dy < ∞

}

with bB = 1
|B|
∫
B b(x)dx .

For Qm = Q×·· ·×Q︸ ︷︷ ︸
m

with any ball Q ⊂ R
n , the commutator generated by the

BMO function and the multilinear maximal funtions [�b,M ](�f )(x) and M�b(�f )(x) are
defined as follows, respectively.

[�b,M ](�f )(x) =
m

∑
j=1

[�b,M] j(�f )(x), M�b(�f )(x) =
m

∑
j=1

M b j(�f )(x).

Here

[�b,M] j(�f )(x) = b j(x)M (�f )(x)−M ( f1, · · · , f j−1,b j f j, f j+1, · · · , fm)(x)

and

M b j(�f )(x) = sup
Q�x

1
|Q|m

∫
Qm

|b j(x)−b j(y j)|
m

∏
i=1

| fi(yi)|d�y,

where �y = (y1, · · · ,ym) .
For the case m = 1, we denote the following two kinds of commutators related to

Hardy-Littlewood maximal function.

[b,M]( f )(x) = b(x)M( f )(x)−M(b f )(x)

and

Mb( f )(x) = sup
Q�x

1
|Q|

∫
Q
|b(x)−b(y)|| f (y)|dy.

For the study of [b,M]( f )(x) , one may see [1, 3] et al. to find more details. More-
over, the commutators [�b,M ](�f )(x) and M�b(�f )(x) were studied in [33, 34] et al.

In [3], Bastero, Milman and Ruiz [3] got equivalent conditions for the boundedness
of [b,M]( f )(x) on Lp(Rn) as follows.
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THEOREM A. ([3]) Suppose that b is a real valued, locally integrable function
in R

n . Then, we have the following three equivalent assertions.
(i) The commutator [b,M] is bounded on Lp for 1 < p < ∞ .
(ii) b belongs to BMO and b− ∈ L∞ with b− = −min{b(x),0} .
(iii) For p ∈ (1,∞) , there is

sup
Q

1

|Q| 1
p

(∫
Q
|b(x)−MQ(b)(x)|pdx

)1/p

< ∞

with MQ(b)(x) = sup
Q0�x,Q0⊂Q

(
1

|Q0|
∫
Q0

|b(t)|dt
)

.

Theorem A was extended by many authors. For example, in [35], Zhang and
Wu studied the equivalent boundedness conditions of [b,M] on Lebesgue space with
variable exponents.

It is well known that the Morrey space plays important roles in harmonic analysis
and PDE. The classical Morrey space was usually attributed to C. B. Morrey. In fact, it
was introduced by Campanato, Peetre and Brudneii in the 1960s, independently. Here,
we would like to mention that in 1938, Morrey [23] studied some integral inequalities
which is very useful in the connection with the Hölder regularity of solutions related to
nonlinear elliptic and parabolic operators and the definition of Morrey space Lp,λ (Rn)
is given as follows.

Lp,λ (Rn) =

{
f ∈ Lp

loc(R
n) : ‖ f‖Lp,λ (Rn) = sup

x∈Rn,t>0

(
1

tλ

∫
B(x,t)

| f (y)|pdy

)1/p

< ∞

}
,

where 0 � λ < n , 1 � p < ∞ and B(x,t) is the ball centered at x with its radius r .
Obviously, Lp,λ becomes Lp if we choose λ = 0. Moreover, readers may see [27] to
find more details about the Morrey space.

For the study of commutators generated by the maximal function on Morrey type
spaces, Xie [29] proved the equivalent conditions for the boundedness of [b,M]( f )(x)
on Lp,λ (Rn) . Recently, Yu, Zhang and Li [32] improve the results of [29, Theorem 7]
with [�b,M ](�f )(x) on the product Morrey spaces.

On the other hand, we find that the Lp spaces, the Lp space with variable expo-
nents and the Lorentz space are all the special case of the Banach function spaces (see
the definition of the Banach function space in Section 2). In this paper, we would like
to unify the above results in a general way. The main result of this paper can be stated
as follows.

THEOREM 1.2. Let bi be a real valued, locally integrable function in R
n with

i = 1, · · · ,m. Suppose that Xi and X are Banach function spaces. Moreover, we assume
that Xi ∈ M , X ∈ M

′ and ui satisfies the W
1
Xi

condition. If M (�f )(x) and M bi(�f )(x)

are bounded from X1×·· ·Xm to X with ‖χB‖X ∼
m
∏
i=1

‖χB‖Xi for any ball B ⊂ R
n , the

following conditions are equivalent.
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(I) The commutator [�b,M ] is bounded from Mu1
X1

(Rn)× ·· ·Mum
Xm

(Rn) to Mu
X (Rn)

with u = u1 · · ·um .
(II) bi is in BMO and b−i belongs to L∞ .
(III) Define MQ(bi)(x) = sup

Q0�x,Q0⊂Q

1
|Q0|

∫
Q0

|bi(t)|dt , for any i = 1,2, . . . ,m, there

is

sup
Q

‖(MQ(bi)−bi)χQ‖X
m
∏
i=1

‖χQ‖Xi

< ∞.

Here, the definitions of Banach function spaces, Mu
X (Rn) , W

1
Xi

condition and the set of
M and M

′ will be introduced in the next section.

This paper is organized as follows. In Section 2, we will give the definitions of the
Banach function space and the Morrey-Banach function space. Moreover, some prop-
erties and definitions related to these function spaces will also be given. In Section 3,
we will give the boundedness of M (�f )(x) and M�b(�f )(x) on product Morrey-Banach
spaces and prove Theorem 1.2. In Sections 4 and 5, we will give the applications of
Theorem 1.2 on Morrey spaces with variable exponents and Morrey-Lorentz space, re-
spectively. Moreover, we will point out that the main results in Sections 4 and 5 are
also new even in the linear case as far as we know.

2. Preliminaries

Denote that M (Rn) is the set which consists of all the spaces of Lebesgue mea-
surable functions in R

n . Moroever, for any open ball B(z,r) = {x ∈ R
n : |x− z|< r}

with its center z ∈ R
n and radius r > 0, we denote B = {B(z,r) : z ∈ R

n,r > 0} .

DEFINITION 2.1. ([4]) We say that a Banach space X ⊂ M (Rn) belongs to a
Banach function space (B.f.s.) on R

n if it satisfies
(i) ‖ f‖X = 0 ⇔ f = 0 a.e.
(ii) |g| � | f | a.e. ⇒ ‖g‖X � ‖ f‖X .
(iii) 0 � fn ↑ f a.e. ⇒ ‖ fn‖X ↑ ‖ f‖X .
(iv) χE ∈ M (Rn) and |E| < ∞ ⇒ χE ∈ X .
(v) χE ∈M (Rn) and |E|< ∞ ⇒ ∫

E | f (x)|dx <CE‖ f‖X , ∀ f ∈ X for some CE >
0.

REMARK 2.2. [4, 9] tells us that the Lorentz space, the Orlicz space and the
Lebesgue space with variable exponent are the special case of Banach function space.
Moreover, for any B.f.s. X , there is X ∈ L1

loc(R
n) from (v) of Definition 2.1.

The duality theory for B.f.s. can be stated as follows.

DEFINITION 2.3. ([4, Chapter 1, Definitions 2.1. and 2.3]) Suppose that X is a
B.f.s. Then, we denote

‖ f‖X ′ = sup

{∣∣∣∣∫
Rn

f (t)g(t)dt

∣∣∣∣ : g ∈ X ,‖g‖X � 1

}
< ∞. (2.1)
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Here, we say the X ′ is the associate space of X and is the collection of all f ∈ M (Rn)
satisfying (2.1).

From [4], we know that if X is a B.f.s, then X ′ is also a B.f.s. Moreover, the
following Hölder inequality for X holds.

THEOREM 2.4. ([4, Chapter 1, Theorem 2.4]) Let X be a B.f.s. Then for any
f ∈ X and g ∈ X ′ , there is ∫

Rn
| f (x)g(x)|dx � ‖ f‖X‖g‖X ′ .

DEFINITION 2.5. ([18]) For any B.f.s. X , we denote X ∈ M if M( f )(x) is
bounded on X . Similarly, we denote X ∈ M

′ if the M( f )(x) is bounded on X ′ , which
is the dual space of X .

Next, we give the definition of Morrey-Banach spaces following from [15, 18, 19].

DEFINITION 2.6. For any B.f.s. X, the Morrey-Banach space is defined as

Mu
X (Rn) =

{
f ∈ Mu

X (Rn) : ‖ f‖Mu
X (Rn) = sup

y∈Rn,r>0

1
u(y,r)

‖χB(y,r) f‖X < ∞

}
,

with all f ∈ M (Rn) , B = B(y,r) ∈ B and u(y,r) : R
n× (0,∞)→ (0,∞) be a Lebesgue

measurable function.
For the study of integral operator and its commutator on Mu

X(Rn) , one may see the
paper [15, 18, 19] to find more details. Moreover, Ho [16] also got the boundedness for
commutators of singular integral operator on weak Morrey-Banach space.

For any weight function u(y,r) , we introduce the W
1
X class following from [15,

18, 19] with some modifications.

DEFINITION 2.7. Let X be a B.f.s. We say that a Lebesgue measurable function,
u(x,r) : R

n × (0,∞) → (0,∞) , belongs to u ∈ W
1
X if there exits a constant C > 0 such

that for any x1,x2 ∈ R
n and r1,r2 ∈ R

+ , u fulfills

‖χB(x1,r1)‖X

u(x1,r1)
�

‖χB(x2,r2)‖X

u(x2,r2)
if u(x1,r1) � u(x2,r2), (2.2)

and
∞

∑
j=0

( j +1)
‖χB(x,r)‖X

‖χB(x,2 j+1r)‖X
u(x,2 j+1r) � Cu(x,r). (2.3)

From (2.2), for any fixed Q0 = Q(x0,r0)∈B and any B = B(x,r)∈B , if u(x0,r0)�
u(x,r) , there is

1
u(x,r)

‖χQ0 χB‖X � 1
u(x,r)

‖χB‖X � 1
u(x0,r0)

‖χQ0‖X .

For the case u(x0,r0) < u(x,r) , we have

1
u(x,r)

‖χQ0 χB‖X � 1
u(x,r)

‖χQ0‖X � 1
u(x0,r0)

‖χQ0‖X .
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Thus, it is easy to see that χQ0 ∈ Mu
X(Rn) and we have

‖χQ0‖Mu
X (Rn) � 1

u(x0,r0)
‖χQ0‖X , (2.4)

which implies Mu
X (Rn) is non-trivial with u ∈ W

1
X .

REMARK 2.8. If we choose X = Lp with p > 1 and u(y,r) = r
λ
p with 0 < λ < n ,

then Mu
X (Rn) becomes the classical Morrey space Lp,λ (Rn) . Moreover, it is easy to

check u(y,r) = r
λ
p satisfies (2.2) and (2.3) with X = Lp .

3. Proof of Theorem 1.2

Before proving the main results of this section, we give some lemmas.

LEMMA 3.1. ([18]) Let X be a B.f.s. If X ∈ M
⋃

M
′ , there exists a positive

constant C > 1 , such that

|B| � ‖χB‖X‖χB‖X ′ � C|B|
for any B ∈ B .

For any B = B(x,t) ∈ B , we have ‖χB‖X ′ � ‖χ2B‖X ′ with 2B = B(x,2t) . If X ∈
M
⋃

M
′ , then using Lemma 3.1, we have

‖χ2B‖X � C
|2B|

‖χ2B‖X ′
� C

|B|
‖χB‖X ′

� C‖χB‖X . (3.1)

LEMMA 3.2. ([12]) Let X ∈ M
′ . Then, the norms

‖ f‖BMOX := sup
B∈B

‖χB( f − fB)‖X

‖χB‖X

and ‖ · ‖BMO are mutually equivalent.

Next, we will give the boundedness of M (�f )(x) and M�b(�f )(x) on the product
Morrey-Banach spaces under different conditions and we will prove the following two
lemmas respectively for the sake of completeness.

LEMMA 3.3. Suppose that for any i : 1 � i � m, X ,Xi are B.f.s. with ‖χB‖X �
C

m
∏
i=1

‖χB‖Xi for any ball B ∈ R
n and Xi ∈ M

⋃
M

′ . If M (�f )(x) is bounded from

X1×·· ·×Xm to X , then M (�f )(x) is bounded from Mu1
X1

(Rn)×·· ·Mum
Xm

(Rn) to Mu
X (Rn)

with u =
m
∏
i=1

ui and ui ∈ W
1
Xi

.

Proof. From [33], we know that for any z ∈ R
n , there is Mc(�f )(z) ∼ M (�f )(z)

with

Mc(�f )(z) = sup
r>0

1
|Q(z,r)|m

∫
(Q(z,r))m

m

∏
i=1

| fi(yi)|d�y.
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Thus, we may only consider Mc(�f )(z) throughout this lemma.
For any ball B = B(x,t) centered at x with radius t > 0, we denote 2B = B(x,2t) .

Split each fi = f 0
i + f ∞

i with f 0
i = fiχ2B and f ∞

i = fiχ(2B)c . Then, for any z ∈ B(x, t) ,
we obtain

‖Mc(�f )χB‖X � ‖Mc(�f 0)χB‖X +∑ ′‖Mc( f α1
1 , · · · , f αm

m )χB‖X := I + II.

where α1, · · · ,αm ∈ {0,∞} and each term in the sum ∑ ′ contains at least one αi = ∞ .
From [18], we know that for any x ∈ R

n and t > 0, there is ui(x,2t) � Cui(x,t)
if ui(x, t) satisfies (2.3). Thus, by the assumption that M (�f )(z) is bounded from X1×
·· ·Xm to X , we have

I = ‖Mc(�f 0)χB(x,t)‖X � ‖ f1χB(x,2t)‖X1 · · · ‖ fmχB(x,2t)‖Xm

� C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)

m

∏
i=1

(ui(x,2t)) � C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x, t).

For II , without loss of generality, it suffices to prove the following two inequalities.

‖Mc( f 0
1 , f ∞

2 , f ∞
3 , · · · , f ∞

m )χB(x,t)‖X � C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x, t) (3.2)

and

‖Mc( f ∞
1 , f ∞

2 , f ∞
3 , · · · , f ∞

m )χB(x,t)‖X � C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t). (3.3)

To give the proofs of (3.2) and (3.3), we should show the following two estimates
which will be very useful in the proof of this lemma and the next lemma.

∫
Rn

| f 0
i (yi)|dyi � C‖ fi‖M

ui
Xi

(Rn)
ui(x,t)tn

‖χB‖Xi

(3.4)

and

sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

| f ∞
i (yi)|dyi � C‖ fi‖M

ui
Xi

(Rn)
ui(x,t)t−(k−1)n

‖χB‖Xi

(3.5)

for any k, i ∈ N .
Using the Hölder inequality on Banach function space (Theorem 2.4), the fact

ui(x,2t) � Cui(x, t) and ‖χ2B‖Xi � ‖χB‖Xi , (3.4) is obviously true since

∫
Rn

| f 0
i (yi)|dyi � ‖ fiχ2B‖Xi‖χ2B‖X ′

i
� C‖ fi‖M

ui
Xi

(Rn)ui(x,2t)‖χ2B‖X ′
i

� C‖ fi‖M
ui
Xi

(Rn)
ui(x,2t)tn

‖χ2B‖Xi

� C‖ fi‖M
ui
Xi

(Rn)
ui(x, t)tn

‖χB‖Xi

.

Next, we give the proof of (3.5).
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For any k, i ∈ N , as z ∈ B(x,t) and yi ∈ (2B)c⋂Q(z,r) , we have

sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

| f ∞
i (yi)|dyi = sup

r>0

1
|Q(z,r)|k

∫
Q(z,r)∩(2B)c

| fi(yi)|dyi

� C sup
r>t

∫
Q(z,r)

⋂
(2B)c

| fi(yi)|
|yi − z|kn dyi

� C
∫

(2B)c

| fi(yi)|
|yi− x|kn dyi.

Decompose

∫
(2B)c

| fi(yi)|
|yi − x|kn dyi �

∞

∑
j=1

∫
2 j+1B\2 jB

| fi(yi)|
|yi − x|kn dyi.

Then, it is easy to see 2 jt
2 � |x−yi|� 2 j+1t

√
n

2 . Thus, we conclude that there exists
a constant C depending on the dimension n , such that

1
|x− yi|kn ∼ C

|2 j+1B|k . (3.6)

Then, using (2.3), (3.6), Lemma 3.1 and the Hölder inequality on Banach function
space, there is

sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

| f ∞
i (yi)|dyi �

∞

∑
j=1

∫
2 j+1B\2 jB

|x− yi|−kn| fi(yi)|dyi

� C
∞

∑
j=1

1
|2 j+1B|k

∫
2 j+1B\2 jB

| fi(yi)|dyi

� C
∞

∑
j=1

1
|2 j+1B|k ‖ fiχ2 j+1B‖Xi‖χ2 j+1B‖X ′

i

� C
∞

∑
j=1

1
|2 j+1B|k ‖ fi‖M

ui
Xi

(Rn)ui(x,2 j+1t)
|2 j+1B|

‖χ2 j+1B‖Xi

� C‖ fi‖M
ui
Xi

(Rn)

∞

∑
j=1

ui(x,2 j+1t)
|2 j+1B|(k−1)‖χ2 j+1B‖Xi

� C‖ fi‖M
ui
Xi

(Rn)t
−(k−1)n

∞

∑
j=1

2−n( j+1) ui(x,2 j+1t)
‖χ2 j+1B‖Xi

� C‖ fi‖M
ui
Xi

(Rn)t
−(k−1)n

∞

∑
j=1

( j +1)
ui(x,2 j+1t)
‖χ2 j+1B‖Xi

� C‖ fi‖M
ui
Xi

(Rn)t
−(k−1)n ui(x,t)

‖χB(x,t)‖Xi

,

which implies (3.5) is true.
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Now, we will show the proofs of (3.2) and (3.3). Here, we would like to point out
that the multi-version of the Hölder inequality on Banach function space is unknown.
Thus, we decompose Mc( f 0

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )(z) as

Mc( f 0
1 , f ∞

2 , f ∞
3 , · · · , f ∞

m )(z) �
∫

Rn
| f 0

1 (y1)|dy1 sup
r>0

1
|Q(z,r)|2

∫
Q(z,r)

| f ∞
2 (y2)|dy2

×
m

∏
i=3

sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dy3.

Then, using (3.4)–(3.5), there is∥∥Mc( f 0
1 , f ∞

2 , f ∞
3 , · · · , f ∞

m )χB(x,t)
∥∥

X

� C

∥∥∥∥∥
2

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)
tnt−n

m

∏
i=3

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)
χB(x,t)

∥∥∥∥∥
X

� C
u(x, t)

m
∏
i=1

‖χB‖Xi

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)‖χB(x,t)‖X

� C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t).

Similarly, there is

‖Mc( f ∞
1 , f ∞

2 , f ∞
3 , · · · , f ∞

m )χB(x,t)‖X

� C

∥∥∥∥∥
m

∏
i=1

(
sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dyi

)
χB(x,t)

∥∥∥∥∥
X

� C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)

m
∏
i=1

ui(x,t)

m
∏
i=1

‖χB‖Xi

‖χB(x,t)‖X

= C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t).

Consequently, we finish the proof of Lemma 3.3 according to the definition of
Mu

X(Rn) . �

Next, we would like to show the bounedness of M�b(�f )(x) on the product Morrey-
Banach spaces. In this case, we need the condition Xi ∈ M and X ∈ M

′ . Moreover, we
have the following lemma.

LEMMA 3.4. Suppose that for any i : 1 � i � m, X ,Xi are B.f.s. with Xi ∈
M and X ∈ M

′ . If M bi(�f )(x) is bounded from X1 × ·· ·Xm to X with bi ∈ BMO
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and ‖χB‖X � C
m
∏
i=1

‖χB‖Xi for any ball B ∈ R
n . Then, M�b(�f )(x) is bounded from

Mu1
X1

(Rn)×·· ·Mum
Xm

(Rn) to Mu
X (Rn) with u =

m
∏
i=1

ui , ui ∈ W
1
Xi

and bi ∈ BMO.

Proof. From [33], we know that for any z∈R
n , we have M bi

c (�f )(z)∼M bi(�f )(z)
where

M bi
c (�f )(z) = sup

r>0

1
|Q(z,r)|m

∫
(Q(z,r))m

|bi(z)−bi(yi)|
m

∏
i=1

| fi(yi)|d�y.

By the definition of M�b(�f )(z) , without loss of generality, we may only consider

M b1
c (�f )(z) throughout this lemma as the other cases can be treated in a similar way.

Use the same notations as in the proof of Lemma 3.3, for any ball B = B(x,t) , we
may split each fi = f 0

i + f ∞
i . Then, we obtain

‖M b1
c (�f )χB‖X � ‖M b1

c (�f 0)χB‖X +∑ ′‖M b1
c ( f α1

1 , · · · , f αm
m )χB‖X := III + IV.

where α1, · · · ,αm ∈ {0,∞} and each term in the sum ∑ ′ contains at least one αi = ∞ .
For III , from the assumption that M b1(�f )(x) is bounded from X1 × ·· ·Xm to X

and the fact u(x,2t) � Cu(x,t) , we have

‖M b1
c (�f 0)χB(x,t)‖X � ‖M b1(�f 0)‖X � C‖ f1χB(x,2t)‖X1 · · · ‖ fmχB(x,2t)‖Xm

� C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,2t) � C
m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t).

For IV , without loss of generality, it suffices to show the following four inequali-
ties.

‖M b1
c ( f 0

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X � C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x, t), (3.7)

‖M b1
c ( f 0

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X � C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t), (3.8)

‖M b1
c ( f ∞

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X � C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t) (3.9)

and

‖M b1
c ( f ∞

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X � C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x, t). (3.10)

First, we would like to give the following two estimates which will be very useful
in the proof of the above four inequalities. That is, for any z ∈ B = B(x, t) , there is∫

Rn
|b1(z)−b1(y1)|| f 0

1 (y1)|dy1 � C‖ f1‖M
u1
X1

(Rn)
u1(x, t)tn

‖χB‖X1

(|b1(z)− (b1)B|+‖b1‖BMO)

(3.11)
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and ∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)
∥∥

X
� C‖b1‖BMO‖χB(x,t)‖X . (3.12)

To prove (3.11), we decompose
∫
Rn |b1(z)−b1(y1)|| f 0

1 (y1)|dy1 as∫
Rn

|b1(z)−b1(y1)|| f 0
1 (y1)|dy1

�
∫

Rn
|b1(z)− (b1)B|| f 0

1 (y1)|dy1 +
∫

Rn
|b1(y1)− (b1)B|| f 0

1 (y1)|dy1.

For
∫
Rn |b1(z)− (b1)B|| f 0

1 (y1)|dy1 , we have the following estimates from (3.4).∫
Rn

|b1(z)− (b1)B|| f 0
1 (y1)|dy1 = |b1(z)− (b1)B|

∫
Rn

| f 0
1 (y1)|dy1

� C|b1(z)− (b1)B|‖ f1‖M
u1
X1

(Rn)
u1(x,t)tn

‖χB‖X1

.

For
∫
Rn |b1(y1)− (b1)B|| f 0

1 (y1)|dy1 , [18] tells us that if X1 ∈ M , there is

‖(b1(·)− (b1)B)χB‖X ′
1
� C‖b1‖BMO‖χB‖X ′

1
.

Then, we obtain∫
Rn

|b1(y1)− (b1)B|| f 0
1 (y1)|dy1 � C‖(b1(·)− (b1)B)χB‖X

′
1
‖ f1χB‖X1

� C‖b1‖BMO‖χB‖X
′
1
‖ f1‖M

u1
X1

(Rn)u1(x,t)

� C‖b1‖BMO‖ f1‖M
u1
X1

(Rn)
u1(x,t)tn

‖χB‖X1

.

Thus, we deduce that (3.11) is true.
To prove (3.12), we can easily get the following estimates from Lemma 3.2 with

the condition X ∈ M
′ .∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)

∥∥
X

� C
(‖(b1(·)− (b1)B)χB(x,t)‖X +‖b1‖BMO‖χB(x,t)‖X

)
� C‖b1‖BMO‖χB(x,t)‖X

and we finish the proof of (3.12).
Now, we give the proof of (3.7). Using (3.4)–(3.5) and (3.11), there is

M b1
c ( f 0

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )(z) �

∫
Rn

|b1(z)−b1(y1)|| f 0
1 (y1)|dy1

∫
Rn

| f 0
2 (y2)|dy2

× sup
r>0

1
|Q(z,r)|3

∫
Q(z,r)

| f ∞
3 (y3)|dy3

m

∏
i=4

sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dyi

�
∫

Rn
|b1(z)−b1(y1)|| f 0

1 (y1)|dy1t
−n

m

∏
i=2

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)

� C (|b1(z)− (b1)B|+‖b1‖BMO)
m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x, t)
‖χB‖Xi

)
.
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Then, we have

‖M b1
c ( f 0

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X

� C
∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)

∥∥
X

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x, t)
‖χB‖Xi

)
.

Using (3.12), we get

∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)
∥∥

X

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x, t)
‖χB‖Xi

)

� C‖b1‖BMO‖χB(x,t)‖X

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)

� C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t). (3.13)

Thus, we obtain

‖M b1
c ( f 0

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X � C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t)

and we finish the proof of (3.7).
Next, we show the proof of (3.8). Using (3.5) and (3.11), there is

M b1
c ( f 0

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )(z) �

∫
Rn

|b1(z)−b1(y1)|| f 0
1 (y1)|dy1

× sup
r>0

1
|Q(z,r)|2

∫
Q(z,r)

| f ∞
2 (y2)|dy2

m

∏
i=3

sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dyi

� C
m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)
(|b1(z)− (b1)B|+‖b1‖BMO) .

Then, we have the following estimates according to (3.13).

‖M b1
c ( f 0

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X

� C
m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)
∥∥

X

� C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t),

which finishes the proof of (3.8).
For the proofs of (3.9)–(3.10), we would like to show the following estimates.

sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

|b1(z)−b1(y1)|| f ∞
1 (y1)|dy1

� C‖ f1‖M
u1
X1

(Rn)
u1(x,t)t−(k−1)n

‖χB‖X1

(|b1(z)− (b1)B|+‖b1‖BMO) (3.14)
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with k ∈ N
+ .

Since

sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

|b1(z)−b1(y1)|| f ∞
1 (y1)|dy1

� sup
r>0

1
|Q(z,r)|k

∫
Q(z,r)

⋂
(2B)c

|b1(z)−b1(y1)|| f1(y1)|dy1

� C
∫

(2B)c

|b1(z)−b1(y1)|| f1(y1)|
|x− y1|kn dy1

� C|b1(z)− (b1)B|
∫

(2B)c

| f1(y1)|
|x− y1|kn dy1

+
∫
(2B)c

|b1(y1)− (b1)B|| f1(y1)|
|x− y1|kn dy1.

For
∫
(2B)c

| f1(y1)|
|x−y1|kn dy1 , by the Hölder inequality on Banach function space and (2.3),

we have ∫
(2B)c

| f1(y1)|
|x− y1|kn dy1

�
∞

∑
j=1

∫
2 j+1B\2 jB

| f1(y1)|
|x− y1|kn dy1

� C
∞

∑
j=1

1
|2 j+1B|k

∫
2 j+1B

| f1(y1)|dy1

� C
∞

∑
j=1

1
|2 j+1B|k ‖ f1χ2 j+1B‖X1‖χ2 j+1B‖X ′

1

� C
∞

∑
j=1

1
|2 j+1B|k ‖ f1‖M

u1
X1

(Rn)
u1(x,2 j+1t)|2 j+1B|

‖χ2 j+1B‖X1

� C‖ f1‖M
u1
X1

(Rn)

∞

∑
j=1

t−n(k−1)

2( j+1)n(k−1)
u1(x,2 j+1t)
‖χ2 j+1B‖X1

� C‖ f1‖M
u1
X1

(Rn)t
−n(k−1)

∞

∑
j=1

( j +1)
1

2( j+1)n(k−1)
u1(x,2 j+1t)
‖χ2 j+1B‖X1

� C‖ f1‖M
u1
X1

(Rn)t
−n(k−1) u1(x,t)

‖χB‖X1

.

For
∫
(2B)c

|b1(y1)−(b1)B|| f1(y1)|
|x−y1|kn dyi , Ho [18] also proved that if X1 ∈ M , there is

‖(b1(·)− (b1)B)χ2 j+1B‖X ′
1
� C( j +1)‖b1‖BMO‖χ2 j+1B‖X ′

1

for any j ∈ N .
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Thus, using (2.3) again, we have∫
(2B)c

|b1(y1)− (b1)B|| f1(y1)|
|x− y1|kn dy1

�
∞

∑
j=1

∫
(2 j+1B)\(2 jB)

|b1(y1)− (b1)B|| f1(y1)|
|x− y1|kn dyi

� C
∞

∑
j=1

1
|2 j+1B|k

∫
(2 j+1B)

|b1(y1)− (b1)B|| f1(y1)|dy1

� C
∞

∑
j=1

1
|2 j+1B|k ‖ f1χ2 j+1B‖X1‖(b1(·)− (b1)B)χ2 j+1B‖X ′

1

� C
∞

∑
j=1

1
|2 j+1B|k ‖ f1‖M

u1
X1

(Rn)u1(x,2 j+1t)( j +1)‖b1‖BMO‖χ2 j+1B‖X ′
1

� C‖b1‖BMO‖‖ f1‖M
u1
X1

(Rn)t
−n(k−1)

∞

∑
j=1

( j +1)
2( j+1)n(k−1)

u1(x,2 j+1t)
‖χ2 j+1B‖X1

� C‖b1‖BMO‖‖ f1‖M
u1
X1

(Rn)t
−n(k−1)

∞

∑
j=1

( j +1)
u1(x,2 j+1t)
‖χ2 j+1B‖X1

� C‖b1‖BMO‖‖ f1‖M
u1
X1

(Rn)t
−n(k−1) u1(x,t)

‖χB‖X1

.

Thus, we prove that (3.14) is true.
By (3.4)–(3.5) and (3.14), there is

M b1
c ( f ∞

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )(z)

�
m

∏
i=3

sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dyi

× sup
r>0

1
|Q(z,r)|2

∫
Q(z,r)

|b1(z)−b1(y1)|| f ∞
1 (y1)|dy1

∫
Rn

| f 0
2 (y2)|dy2

� C (|b1(z)− (b1)B|+‖b1‖BMO)
m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)

and

M b1
c ( f ∞

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )(z)

� sup
r>0

1
|Q(z,r)|

∫
Rn

|b1(z)−b1(y1)|| f ∞
1 (y1)|dy1

×
m

∏
i=2

sup
r>0

1
|Q(z,r)|

∫
Q(z,r)

| f ∞
i (yi)|dyi

� C (|b1(z)− (b1)B|+‖b1‖BMO)
m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x,t)
‖χB‖Xi

)
.
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Then, we have the following two estimates according to (3.13).

‖M b1
c ( f ∞

1 , f 0
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X

� C
∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)

∥∥
X

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x, t)
‖χB‖Xi

)

� C‖b1‖BMO

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)u(x,t)
)

and

‖M b1
c ( f ∞

1 , f ∞
2 , f ∞

3 , · · · , f ∞
m )χB(x,t)‖X

� C
∥∥(|b1(·)− (b1)B|+‖b1‖BMO)χB(x,t)

∥∥
X

m

∏
i=1

(
‖ fi‖M

ui
Xi

(Rn)
ui(x, t)
‖χB‖Xi

)

� C‖b1‖BMO

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn)u(x,t),

which imply (3.9) and (3.10) are true.
Combing the estimates of III and IV , we finish the proof of Lemma 3.4 according

to the definition of Mu
X(Rn) . �

LEMMA 3.5. ([33]) Let �b = (b1, · · · ,bm) and �f = ( f1, · · · , fm) be two collections
of locally integrable function, then

|[�b,M ](�f )(x)| � M�b(�f )(x)+2

(
m

∑
i=1

b−i (x)

)
M (�f )(x).

3.1. Proof of Theorem 1.2

Now, we are ready to give the proof of Theorem 1.2.
First, using Lemmas 3.3-3.5, we know that (II) implies (I).
Next, we show (I)⇒ (III).
That is, we need to prove for any ball Q = Q(z,r) , there is

sup
Q

‖(MQ(bi)−bi)χQ‖X
m
∏
i=1

‖χQ‖Xi

< ∞.

Here MQ(bi)(x) = sup
Q0�x,Q0⊂Q

1
|Q0|

∫
Q0

|bi(t)|dt .

From [3], we know that MQ(bi) � bi with x ∈ Q . Then, using (ii) of Definition
2.1, we have

‖(MQ(bi)−bi)χQ‖X � ‖
m

∑
i=1

(MQ(bi)−bi(·))χQ‖X .
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From [33], we have M (χQ, . . . ,biχQ, · · · ,χQ)(x) = MQ(bi)(x) for x ∈Q(z,r) and
any 1 � i � m .

Then, choosing fi(x) = χQ ∈ Xi for any Q = Q(z,r) ⊂ R
n , we have

m

∑
i=1

(MQ(bi)(x)−bi(x)) = [�b,M ](�f )(x).

Using (2.4), we obtain

‖[�b,M ](�f )‖Mu
X (Rn) � C

m

∏
i=1

‖ fi‖M
ui
Xi

(Rn) � C
m

∏
i=1

(‖χQ‖Xi

ui(z,r)

)
= C

m
∏
i=1

‖χQ‖Xi

u(z,r)
.

Thus, by the definition of the Morrey-Banach space, we get

‖(MQ(bi)−bi)χQ‖X � ‖[�b,M ](�f )χQ‖X � ‖[�b,M ](�f )‖Mu
X (Rn)u(z,r) � C

m

∏
i=1

‖χQ‖Xi ,

which implies

sup
Q

‖(MQ(bi)−bi)χQ‖X
m
∏
i=1

‖χQ‖Xi

< ∞

and we finish the proof of (I)⇒ (III).
Finally, we give the proof of (III) → (II).
Let

E = {x ∈ Q : bi(x) � (bi)Q} and F = {x ∈ Q : bi(x) > (bi)Q} .

Then, we have ∫
E
|(bi)Q −bi(x)|dx =

∫
F
|bi(x)− (bi)Q|dx.

Thus, using the condition in (III) and the fact bi(x) � (bi)Q � MQ(bi)(x) with
x ∈ E ⊂ Q , there is

1
|Q|

∫
Q
|bi(x)− (bi)Q|dx =

2
|Q|

∫
E
|bi(x)− (bi)Q|dx

=
2
|Q|

∫
E
((bi)Q −bi(x))dx

� 2
|Q|

∫
Rn

(MQ(bi)(x)−bi(x))χQ(x)dx

� 2
|Q| ‖(MQ(bi)−bi)χQ‖X‖χQ‖X ′

� C

m
∏
i=1

‖χQ‖Xi‖χQ‖X ′

|Q| � C,
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which tells us that bi ∈ BMO.
From [3], we know that

0 � b−i � MQ(bi)−bi.

Moreover, we have

1
|Q|

∫
Q
(MQ(bi)(x)−bi(x))dx � 1

|Q|‖(MQ(bi)−bi)χQ‖X‖χQ‖X ′

� 1
|Q|

m

∏
i=1

‖χQ‖Xi

|Q|
‖χQ‖X

� C,

which implies (b−i )Q � C .
Consequently, we get b−i ∈ L∞ from the Lebesgue differential theorem and finish

the proof of Theorem 1.2. �

4. Applications to Morrey space with variable exponents

Suppose that P is the set of Lebesgue measurable functions with p(·) : R
n →

[1,∞] . For any p(·) ∈ P , we denote

p+ = sup
x∈Rn

p(x) and p− = inf
x∈Rn

p(x).

Thus, it is easy to see 1 � p− � p+ � ∞ .
Now, we introduce the definition of Lebesgue space with variable exponent as

follows.

DEFINITION 4.1. ([7, 9]) Let

ρp( f ) =
∫

Rn\Rn
∞
| f (x)|p(x)dx+ ess sup

x∈Rn
∞

| f (x)|

with
R

n
∞ = {x ∈ R

n : p(x) = ∞}.
Then, the Lebesgue space with variable exponent Lp(·)(Rn) is defined as

Lp(·)(Rn) =
{

f ∈ M (Rn) : ‖ f‖Lp(·)(Rn) = inf

{
λ > 0 : ρp

( f
λ

)
� 1

}
< ∞

}

with any Lebesgue measurable functions f .
Obviously, if we replace X by Lp(·)(Rn) , Mu

X (Rn) becomes the Morrey space
with variable exponent Mu

Lp(·) (R
n) .

For the studies of integral operators on Mu
Lp(·) (R

n) with u satisfies (2.3) or certain
doubling conditions, one may see [11, 13, 14, 17, 28] et al. to find more details.

Next, we introduce the definitions of some classes which can be used in the study
of function spaces with variable exponents.
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DEFINITION 4.2. ([7, 9]) Let p(·) : R
n → R . If there exists a constant C > 0 and

p∞ ∈ R , such that

|p(x)− p(y)|� C
log(e+1/|x− y|), ∀x,y ∈ R

n

and

|p(x)− p∞| � C
log(e+ |x|) , ∀x ∈ R

n

and we say that p(·) belongs to the globally log-Hölder continuous.
Moreover, for 1

p(·) is globally log-Hölder continuous, we denote

Plog = {p(·) ∈ P} .

It is easy to see that p(·) ∈ Plog is equivalent to p′(·) ∈ Plog (see [7, 9]).
From [9], we have

LEMMA 4.3. ([9, Remark 4.1.5]) If p+ < ∞ , then p(·) ∈ Plog is equivalent to
p(·) is globally log-Hölder continuous.

LEMMA 4.4. ([9, Theorem 4.3.8, Corollary 4.4.12]) Let p(·) : R
n → [1,∞] . If

p ∈ Plog and p− > 1 , then Lp(·) ∈ M .

The boundedness of Mb on Lp(·)(Rn) can be found in [30].

LEMMA 4.5. ([30]) Let p(·) : R
n → [1,∞] . If p(·) ∈ Plog and p− > 1 , then Mb

is bounded from Lp(·)(Rn) to itself with b ∈ BMO.

Thus, we obtain

LEMMA 4.6. Suppose that p(·), pi(·) : R
n → [1,∞] with pi(·), p(·) ∈ Plog , and

(pi)−, p− > 1 . Then M bi(�f )(x) is bounded from Lp1(·)(Rn)× ·· · × Lpm(·)(Rn) to

Lp(·)(Rn) with 1
p(·) =

m
∑
i=1

1
pi(·) .

Proof. Without loss of generality, it suffices to consider with M b1(�f )(x) .
As M b1(�f )(x)� Mb1( f1)(x)M( f2)(x) · · ·M( fm)(x) , then using the Hölder inequal-

ity on Lp(·)(Rn) space(see [7, 9]) and Lemma 4.5, we have

‖M b1(�f )‖Lp(·)(Rn) � C‖Mb1( f1)‖Lp1(·)(Rn)‖M( f2)‖Lp2(·)(Rn) · · · ‖M( fm)‖Lpm(·)(Rn)

� C
m

∏
i=1

‖ fi‖Lpi(·)(Rn)

with pi(·), p(·) ∈ Plog and (pi)−, p− > 1.
Next, we give the norm of χB on Lp(·)(Rn) .
Suppose that p(·) ∈ Plog with p− > 1. For any ball B ⊂ R

n , we define the
exponents pB and p′B by

1
pB

=
1
|B|
∫

B

1
p(x)

dx,
1
p′B

=
1
|B|
∫

B

1
p′(x)

dx. (4.1)
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From [6, Proposition 4.66], we have

‖χB‖Lp(·) ≈ |B| 1
pB and ‖χB‖Lp′(·) ≈ |B|

1
p′B . (4.2)

Thus, for pi(·) ∈ Plog and (pi)− > 1, there is

‖χB‖Lp(·)(Rn) ∼
m

∏
i=1

‖χB‖Lpi(·)(Rn) (4.3)

with 1
p(·) =

m
∑
i=1

1
pi(·) .

As it is easy to see p− > 1 implies p′− > 1. �

Now, using Theorem 1.2, Lemmas 4.3–4.6 and the fact p(·) ∈ Plog is equivalent
to p′(·) ∈ Plog , we obtain

THEOREM 4.7. Let bi be a real valued, locally integrable function in R
n with i =

1, · · · ,m and ui satisfies the W
1
Xi

condition. Denote p(·) pointwise by 1
p(·) =

m
∑
i=1

1
pi(·)

with pi(·), p(·) ∈ Plog and (pi)−, p− > 1 . Then, the following conditions are equiva-
lent.

(I) The commutator [�b,M ] is bounded from Mu1

Lp1(·) (R
n) × ·· ·Mum

Lpm(·) (R
n) to

Mu
Lpm(·) (R

n) with u = u1 · · ·um .

(II) bi is in BMO and b−i belongs to L∞ .
(III) Define MQ(bi)(x) = sup

Q0�x,Q0⊂Q

1
|Q0|

∫
Q0

|bi(t)|dt , for any i = 1,2, . . . ,m, there

is

sup
Q

‖(MQ(bi)−bi)χQ‖Lp(·)(Rn)
m
∏
i=1

‖χQ‖Lpi(·)(Rn)

< ∞.

REMARK 4.8. Obviously, Theorem 4.7 improves the results of [35, Theorem 1.2].
Moreover, as far as we know, Theorem 4.7 seems to be a new result even in the one-
linear case.

5. Multilinear maximal function and its commutator on Morrey-Lorentz spaces

The Lorentz space L p,q , which is defined as

L p,q =

{
f ∈ L p,q : ‖ f‖L p,q :=

(∫ ∞

0

[
t

1
p f ∗(t)

]q dt
t

)1/q

< ∞

}

with 0 < p,q < ∞ and f is a measurable function on R
n . Moreover, f ∗ is the rear-

rangement function of f , that is

f ∗(t) := inf{y � 0 : m( f ,y) � t}



886 H. ZHANG, Y. LIN AND X. YU

with
m( f ,y) := |{x ∈ R

n : | f (x)| > y,y � 0}| .
Obviously, for the case p = q , L p,p becomes the classical Lp spaces. Moreover,

L p,q is the Banach function space with 1 < p < ∞ and 1 � q < ∞ .
The space L p,q was first introduced by Lorentz [21] and was studied by many

authors. One may see [5, 8, 22] et. al. to find more details.
In [26], Ragusa introduced the Morrey-Lorentz space R p,q,λ on R

n as follows.

R p,q,λ =

{
f ∈ R p,q,λ : ‖ f‖R p,q,λ := sup

x∈Rn,t>0

1

t
λ
q

‖ f χB‖L p,q

}

with 0 < p � ∞ , 0 < q � ∞ , 0 � λ < n and B = B(x, t) . Obviously, R p,q,λ becomes
Lp,λ if we choose p = q .

For the studies of integral operators on R p,q,λ , one may see the paper [2, 26, 31]
et. al. to find more details.

Next, we will give an application of Theorem 1.2 under the Morrey-Lorentz set-
ting. To see this, we give the following arguments and estimates.

Suppose that φ ∈ C∞(Rn) is a non-negtive, smooth and rapidly decreasing func-
tion. Moreover, we assume that φ satisfies the following condition.

|φ ′(t)| � Ct−1, χ[0,1](t) � φ(t) � χ[0,2](t).

For any ε > 0, we denote

T ∗
b ( f )(x) = sup

ε>0

1
εn

∫
Rn

|b(x)−b(y)|φ
( |x− y|

ε

)
f (y)dy

and

T ∗( f )(x) = sup
ε>0

1
εn

∫
Rn

φ
( |x− y|

ε

)
f (y)dy

From [33, Lemma 3.2], we know that

Mb ∼ T ∗
b and M ∼ T ∗. (5.1)

Moreover, for b ∈ BMO, by the similar estimates of [33, Lemma 3.3] and [25, Lemma
3.1], we can easily obtain

M�
δ (T ∗

b ( f ))(x) � C‖b‖BMO
(
Mγ (M( f ))(x)+M2( f )(x)

)
(5.2)

for all bounded f with compact support and 0 < δ < γ . Here M�( f )(x) denotes the

usual sharp maximal function, Mγ ( f )(x) = M(| f |γ )(x) 1
γ and M2 = M ◦M .

Then, we assume there exist a series of numbers qi, pi satisfying 1 � qi < pi < ∞ .

Moreover, denote 1
q =

m
∑
i=1

1
qi

and 1
p =

m
∑
i=1

1
pi

with 1 � q < p < ∞ .
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From [4, Chapter 3, Theorem 5.7 and Chapter 4, Theorem 4.6], we know that the
Hardy-Littlewood maximal function is bounded on L pi,qi with 1 � qi < pi < ∞ . If we
choose γ < qi with i = 1,2 · · · ,m , there is

‖Mγ(M( f ))‖L pi,qi = ‖M(M( f )γ )‖
1
γ

L
pi
γ ,

qi
γ

� C‖M( f )γ‖
1
γ

L
pi
γ ,

qi
γ

� C‖ f‖L pi,qi .

Thus, using the Fefferman-Stein inequality on Lorentz space (see [5, Lemma 2.6]

for the unweighted case with u = 1 and ω(t) = t
p
q −1) (5.2) and the assumption f is

bounded with compact support, we obtain

‖T ∗
b ( f )‖L pi,qi � ‖Mδ (T ∗

b ( f ))‖L pi,qi � ‖M�
δ (T ∗

b ( f ))‖L pi,qi

� C‖b‖BMO
(‖Mγ(M( f ))‖L pi,qi +‖M2( f )‖L pi,qi

)
� C‖b‖BMO‖ f‖L pi,qi

for all bounded f with compact support.
Then, by the similar density arguments and estimates as in [5, p. 8989], we know

that T ∗
b is bounded on L pi,qi with all f ∈L pi,qi . Thus, we get that Mb is also bounded

on L pi,qi from (5.1).
Using the Hölder inequality on the Lorentz spaces (see [8, Proposition 2.11]) and

[4, Chapter 3, Theorem 5.7 and Chapter 4, Theorem 4.6] again, we know that there
exists a positive constant C depending on p, p1, · · · , pm , such that

‖M b1( f )‖L p,q � ‖Mb1( f1)M( f2) · · ·M( fm)‖L p,q

� ‖Mb1( f1)‖L p1,q1

m

∏
i=2

‖M( fi)‖L pi,qi � C‖b1‖BMO

m

∏
i=1

‖ fi‖L pi,qi .

Similarly, there is

‖M ( f )‖L p,q � C
m

∏
i=1

‖ fi‖L pi,qi

with 1
p =

m
∑
i=1

1
pi

and 1
q =

m
∑
i=1

1
qi

.

Moreover, it is easy to see that for any ball B = B(x, t) , there is ‖χB‖L p,q = t
n
p .

Thus, it is easy to see

‖χB‖L p,q ∼
m

∏
i=1

‖χB‖L pi,qi (5.3)

with 1
p =

m
∑
i=1

1
pi

.

From now on, we assume that λ
n < qi

pi
. For any x ∈ R

n and t > 0, we denote

ui(x,t) = t
λ
qi with qi � 1. Then, we obtain ui(x1, t1) � ui(x2,t2) for t1 � t2 and

∀x1,x2 ∈ R
n .

Thus, we have

‖χB(x1,t1)‖L pi,qi

t
λ
qi
1

= t
n
pi
− λ

qi
1 � t

n
pi
− λ

qi
2 =

‖χB(x2,t2)‖L pi,qi

t
λ
qi
2
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with ui(x1, t1) � ui(x2,t2) and ∀x1,x2 ∈ R
n , which implies ui(x,t) satisfies (2.2).

Moreover, there is

∞

∑
j=0

( j +1)
‖χB(x,t)‖L pi,qi

‖χB(x,2 j+1t)‖L pi,qi
ui(x,2 j+1t) =

∞

∑
j=0

( j +1)
t

n
pi

(2 j+1t)
n
pi

(2 j+1t)
λ
qi

=
∞

∑
j=0

( j +1)2( j+1)( λ
qi
− n

pi
)
t

λ
qi

� Ct
λ
qi = Cui(x,t).

Consequently, we obtain ui(x,t) = t
λ
qi ∈ W

1
L pi,qi .

Finally, from [4, Corollary 4.8], we know that the dual space of L p,q is L p′,q′

with the condition 1 � q < p < ∞ . Thus, using [4, Chapter 3, Theorem 5.7 and Chapter
4, Theorem 4.6] again, we obtain that the Hardy-Littlewood maximal function is also
bounded on L p′,q′ , which implies L p,q ∈ M

′ .
Combing the above arguments and estimates, we have the following conclusions.

REMARK 5.1. Suppose that there exists a series of numbers qi, pi satisfying 1 �
qi < pi < ∞ . Moreover, denote 1

q =
m
∑
i=1

1
qi

and 1
p =

m
∑
i=1

1
pi

with 1 � q < p < ∞ . If

0 � λ < n and λ
n < qi

pi
, then we get

(i) L p,q ∈ M
′ , L pi,qi ∈ M , ui(x,t) = t

λ
qi ∈ W

1
L pi,qi

(ii) ‖χB‖L p,q ∼
m
∏
i=1

‖χB‖L pi,qi .

(iii) Both M (�f )(x) and M bi(�f )(x) are bounded from L p1,q1 ×·· ·×L pm,qm to
L p,q with bi ∈ BMO.

Thus, we have the following results according to Theorem 1.2.

THEOREM 5.2. Let bi be a real valued, locally integrable function in R
n with

i = 1, · · · ,m. Suppose that there exists a series of numbers qi, pi satisfying 1 � qi <

pi < ∞ . Moreover, denote 1
q =

m
∑
i=1

1
qi

and 1
p =

m
∑
i=1

1
pi

with 1 � q < p < ∞ . If 0 � λ < n

and λ
n < qi

pi
, then the following three statements are equivalent.

(I) The commutator [�b,M ] is bounded from R p1,q1,λ ×·· ·×R pm,qm,λ to R p,q,λ

(II) bi is in BMO and b−i belongs to L∞ .
(III) Define MQ(bi)(x) = sup

Q0�x,Q0⊂Q

1
|Q0|

∫
Q0

|bi(t)|dt , for any i = 1,2, . . . ,m, there

is

sup
Q

‖(MQ(bi)−bi)χQ‖L p,q

m
∏
i=1

‖χQ‖L pi,qi

< ∞.

REMARK 5.3. As far as we know, Theorem 5.2 also seems to be a new result even
in the one-linear case.
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