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MULTILINEAR COMMUTATORS RELATED TO MAXIMAL
FUNCTION ON MORREY-BANACH SPACE AND ITS APPLICATION

HUIHUI ZHANG, YAN LIN AND X1A0 YU*

(Communicated by M. Krni¢)

Abstract. The authors get the equivalent conditions for the boundedness of the commutators gen-
erated by the multilinear maximal functions and the BMO functions on Morrey-Banach space.
As applications, we obtain the equivalent conditions for the boundedness of such operators on
Morrey spaces with variable exponets and Morrey-Lorentz space which are all new results in the
multi-linear case. Moreover, as far as we know, the results of this paper seem to be new even for
the one-linear case.

1. Introduction

The Hardy-littlewood maximal function M(f)(x), which is defined as

M) =swp g [ 170)

plays important roles in harmonic analysis. In [24], Muckenhoupt introduced the A,
weight class and gave the characterization of A, by using the weighted boundedness of
M on LL) with 1 < p < o and Lf, denotes the weighted L” space.

In the past twenty years, the multilinear Calderén-Zygmund theory was developed
a lot and studied by many authors. Grafakos and Torres [10] introduced the multilinear
Calder6n-Zygmund operator and studied the bounedness of such operators. Later in
2009, Lerner et. al. [20] introduced a new kind of Ay weight class defined as follows.

DEFINITION 1.1. ([20]) Suppose that each ®; is a non-negative and locally
m
integrable function. Denote & = (@y,---,®,) and vg(x) = [T ©;(x)"/Pi with 1 <
o
P13 Pm < and l/p: 1/p1++1/pm

We say the vector-value function @ satisfies the Az condition with P= (P15 Pm)
if for any ball B C R”, there is

1 1/p m 1 L 1/p]
sup(B/ c7,(x)dx> <|B|/a), de) < oo,
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Pj
pj—1"

where p'; is defined by p/; =

In [20], Lerner et al. introduced the following multilinear maximal function .Z (f)(x)
defined as

() supl‘[@| /Q () ldy:

05x =1
with any ball Q C R".
Lerner at al. gave the characterization of Az weight class by the weighted bound-

o m
edness of .2 (f)(x) from LG (R") x --- x L (R") to Ly (R") with 1% = 5‘1% and

pi> 1.
For any ball B C R", the mean oscillation space BMO(IR") is defined as

1
BMO(R") = {b € Lioc(R") : [|b]lBmoO = SI;PE /B |b(y) — bpldy < °°}

with bp = |11=7 [gb(x)dx.
For Q" = O x ---x Q with any ball O C R", the commutator generated by the
—_——

m
-, -,

BMO function and the multilinear maximal funtions [b,.#](f)(x) and M (f)(x) are
defined as follows, respectively.

Here

[b.M(f) (x) = bj ()2 (F)(x) = A (frs=+ fj—1,b5 s fi1sm - fon) (%)

and

-,

A = 5 [ 1000~ T 1w

where ¥y = (y1,-++,Vm)-
For the case m = 1, we denote the following two kinds of commutators related to
Hardy-Littlewood maximal function.

[b,M](f)(x) = b(x)M(f)(x) —M(bf)(x)
and

dy.
M) = sup 7 [ 1609~ L£)

For the study of [b, M](f)(x), one may see [1, 3] et al. to find more details. More-
over, the commutators [b,.#](f)(x) and M f)(x) were studied in [33, 34] et al.

In [3], Bastero, Milman and Ruiz [3] got equivalent conditions for the boundedness
of [b,M](f)(x) on LP(R") as follows.
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THEOREM A. ([3]) Suppose that b is a real valued, locally integrable function
in R"™. Then, we have the following three equivalent assertions.

(i) The commutator [b,M] is bounded on L for 1 < p < co.

(ii) b belongs to BMO and b~ € L™ with b~ = —min{b(x),0}.

(iii) For p € (1,0), there is

1/p
sup —— (Qb(x)—MQ(b)(x)”dx) cw

ith M, - (i ).
with Mo(D)(x) = sup (g o, Ibolas

Theorem A was extended by many authors. For example, in [35], Zhang and
Wu studied the equivalent boundedness conditions of [b,M] on Lebesgue space with
variable exponents.

It is well known that the Morrey space plays important roles in harmonic analysis
and PDE. The classical Morrey space was usually attributed to C. B. Morrey. In fact, it
was introduced by Campanato, Peetre and Brudneii in the 1960s, independently. Here,
we would like to mention that in 1938, Morrey [23] studied some integral inequalities
which is very useful in the connection with the Holder regularity of solutions related to
nonlinear elliptic and parabolic operators and the definition of Morrey space Lr* (R™)
is given as follows.

1 1/p

xeR™ >0

where 0 < A <n, 1 < p <o and B(x,t) is the ball centered at x with its radius r.
Obviously, LP* becomes LP if we choose A = 0. Moreover, readers may see [27] to
find more details about the Morrey space.

For the study of commutators generated by the maximal function on Morrey type
spaces, Xie [29] proved the equivalent conditions for the boundedness of [b, M](f)(x)
on LV (R™). Recently, Yu, Zhang and Li [32] improve the results of [29, Theorem 7]
with [b,.#](f)(x) on the product Morrey spaces.

On the other hand, we find that the L” spaces, the L” space with variable expo-
nents and the Lorentz space are all the special case of the Banach function spaces (see
the definition of the Banach function space in Section 2). In this paper, we would like
to unify the above results in a general way. The main result of this paper can be stated
as follows.

THEOREM 1.2. Let b; be a real valued, locally integrable function in R" with
i=1,---,m. Suppose that X; and X are Banach function spaces. Moreover, we assume
that X; € M, X € M and u; satisfies the W}(i condition. If A4 (f)(x) and 4" (f)(x)

m
are bounded from X| x ---X,, to X with || xs||x ~ II || xsllx, for any ball B C R", the
i=1

following conditions are equivalent.
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(I) The commutator [b, # is bounded from My (R") x - My"(R") 10 My (R")
with u=uy- - Uy.
(1) b; is in BMO and b; belongsto L™.
(III) Define Mo(b;i)(x) =  sup IQI_IfQo |bi(2)|dt, forany i=1,2,...,m, there
003x,00c0 ~°
is
My (b;) — b;
sup Iit an i) —bixolx _
e Ixollx;

=

—

Here, the definitions of Banach function spaces, My (R"), W}(i condition and the set of
M and M will be introduced in the next section.

This paper is organized as follows. In Section 2, we will give the definitions of the
Banach function space and the Morrey-Banach function space. Moreover, some prop-
erties and definitions related to these function spaces will also be given. In Section 3,
we will give the boundedness of .2 (f)(x) and M, (f)(x) on product Morrey-Banach
spaces and prove Theorem 1.2. In Sections 4 and 5, we will give the applications of
Theorem 1.2 on Morrey spaces with variable exponents and Morrey-Lorentz space, re-
spectively. Moreover, we will point out that the main results in Sections 4 and 5 are
also new even in the linear case as far as we know.

2. Preliminaries

Denote that .2 (R") is the set which consists of all the spaces of Lebesgue mea-
surable functions in R”. Moroever, for any open ball B(z,r) = {x e R" : [x—z| <r}
with its center z € R” and radius r > 0, we denote B = {B(z,r) : z € R",r > 0}.

DEFINITION 2.1. ([4]) We say that a Banach space X C .# (R") belongs to a
Banach function space (B.f.s.) on R" if it satisfies

@ Iflx=0<f=0ae.

(i) [gl < [fl ae = [lgllx <[ flx-

(i) 0< fu T fae. = [Ifullx TIfllx.

(iv) yg € A (R") and |[E| <o = yp€X.

(V) xe € #(R") and |E| <o = [ |f(x)|dx <Cg| fl|lx, Vf € X for some Cg >

REMARK 2.2. [4, 9] tells us that the Lorentz space, the Orlicz space and the
Lebesgue space with variable exponent are the special case of Banach function space.
Moreover, for any B.f.s. X, there is X € L\ (R") from (v) of Definition 2.1.

The duality theory for B.f.s. can be stated as follows.

DEFINITION 2.3. ([4, Chapter 1, Definitions 2.1. and 2.3]) Suppose that X is a
B.f.s. Then, we denote

Il =swp | [ s0st0ar

:gEX,||g||X<1}<00. (2.1)
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Here, we say the X’ is the associate space of X and is the collection of all f € .Z (R")
satisfying (2.1).

From [4], we know that if X is a B.f.s, then X’ is also a B.f.s. Moreover, the
following Holder inequality for X holds.

THEOREM 2.4. ([4, Chapter 1, Theorem 2.4]) Let X be a B.f.s. Then for any
fE€X and g€ X', there is

L 1r@eldx < 7l gl

DEFINITION 2.5. ([18]) For any B.f.s. X, we denote X € M if M(f)(x) is
bounded on X . Similarly, we denote X € M if the M(f)(x) is bounded on X', which
is the dual space of X .

Next, we give the definition of Morrey-Banach spaces following from [15, 18, 19].

DEFINITION 2.6. For any B.f.s. X, the Morrey-Banach space is defined as

1
MM Rn = fGMM Rn . f u (pn)y — su —
G { HE) Ul = sup o

”XB(y,r)f”X < w} )

withall f € .#(R"), B=B(y,r) €B and u(y,r) : R" x (0,00) — (0,°0) be a Lebesgue
measurable function.

For the study of integral operator and its commutator on M} (R"), one may see the
paper [15, 18, 19] to find more details. Moreover, Ho [16] also got the boundedness for
commutators of singular integral operator on weak Morrey-Banach space.

For any weight function u(y,r), we introduce the W1 class following from [15,
18, 19] with some modifications.

DEFINITION 2.7. Let X be a B.f.s. We say that a Lebesgue measurable function,
u(x,r) : R" x (0,00) — (0,e0), belongs to u € W} if there exits a constant C > 0 such
that for any x1,x, € R" and ry,r», € R, u fulfills

By ) l1x - 1B, Ix
u(xy,ry) = u(xz,r)

it wu(xp,r) <ulx,r), (2.2)

and

2.0+ ) Wsenllx i) < cuge, ). (2.3)
=0 ||XB(x,2f+1r) [ x
From (2.2), for any fixed Qo = Q(x0,70) € B and any B=B(x,r) € B, if u(xo,r0) >
u(x,r), there is
%0, lx-

1 1
— < —— <
|00 x8l1x ) lxsllx

u(x,r) , u(xq,ro)
For the case u(xg,rp) < u(x,r), we have
1

u(x,r)

1
—— 20 x8llx < 200 llx-

1
<
M(X,V) ||XQ0HX ~ (

u(xo,r0)
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Thus, it is easy to see that o, € My (R") and we have
1

m\\lQonX: (2.4)

1200 [l () <

which implies M%(IR") is non-trivial with u € WY .

A
REMARK 2.8. If we choose X =L? with p > 1 and u(y,r) =rr with 0 <A <n,
then M%(R") becomes the classical Morrey space LP*(R"). Moreover, it is easy to

A
check u(y,r) = rr satisfies (2.2) and (2.3) with X = L”.

3. Proof of Theorem 1.2

Before proving the main results of this section, we give some lemmas.
LEMMA 3.1. ([18]) Let X be a B.f.s. If X € MUM/, there exists a positive
constant C > 1, such that
|B| < |l xsllxlxsllx < C|B|

forany B € B.
For any B = B(x,t) € B, we have ||xs|x < || x28llx’ with 2B = B(x,2t). If X €
MUM, then using Lemma 3.1, we have
2B B
c 2B _ . 1B
sl [lxallx

lx28lx < <Cllxslx- (3.1)

LEMMA 3.2. ([12]) Let X € M. Then, the norms

1oy = sup 122 = fB)lx
e llxslx

and || - ||pmo are mutually equivalent.

Next, we will give the boundedness of .2 (f)(x) and M £)(x) on the product
Morrey-Banach spaces under different conditions and we will prove the following two
lemmas respectively for the sake of completeness.

LEMMA 3.3. Suppose that for any i : 1 <i<m, X,X; are B.f.s. with ||xs|x <
C‘]n'q[ |xallx. for any ball B € R" and X; € MUM'. If .4 (f)(x) is bounded from
X117><1 e X Xy 10 X, then A (f)(x) is bounded from M}"(i (R") x - - My" (R") to My (R")
with u = ﬁl u; and u; € W}(i.

i

-, .

Proof. From [33], we know that for any z € R”", there is #.(f)(z) ~ 4 (f)(z)
with

-,

l m .
AP =sup o [ TGS

r>0
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Thus, we may only consider .2 (f)(z) throughout this lemma.

For any ball B = B(x,1) centered at x with radius 7 > 0, we denote 2B = B(x,21).
Spliteach f; = £ + f7° with f? = fixap and f;* = fix(ap)c - Then, for any z € B(x,1),
we obtain

| F)xsllx < |Ae(F)amllx + 2 A f 5 fom) sl =T+ 11

where @y, -, 04, € {0,} and each term in the sum Y’ contains at least one ¢ = oo.

From [18], we know that for any x € R” and ¢ > 0, there is u;(x,2¢) < Cu;(x,1)

if u;(x,1) satisfies (2.3). Thus, by the assumption that . (f)(z) is bounded from X x
-+ X, to X, we have

1= (PO 1men lIx < i a2 I 1 fon s e 1%,

m

<CHIIﬁHManH i(x,2t)) <CH||f,||Mu, Ry (%)
i=

i=1

For 11, without loss of generality, it suffices to prove the following two inequalities.

e (F0 15 15 o) Xy I x < CHHﬁHMu, Ry t(x,1) (3.2)
and
e f 157 15 o) (e x < CTT il oy 0)- (3.3)
i=1 !

To give the proofs of (3.2) and (3.3), we should show the following two estimates
which will be very useful in the proof of this lemma and the next lemma.

0/ Nl ae o u;i(x,1)t"
o 100l < €Il 2 (3.4)
and
wp o [ O < g S )
b 10G A Jon WIS EW ) ™ Ty |

for any k,i € N.
Using the Holder inequality on Banach function space (Theorem 2.4), the fact
ui(x,2t) < Cu;(x,t) and ||x28lx, = ||x8llx;, (3.4) is obviously true since

/Rn 112 i)l < |l fixanllx o2 g < ClLFill g oy i e, 20) 28

u;(x,21)1" w;(x,0)1"

S Clillg e gl < Ml o T

Next, we give the proof of (3.5).
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For any k,i € N, as z € B(x,t) and y; € (2B)°(Q(z,r), we have

1 / 1
up o [ v =swp o £00)ldy;
WP O Joen i 07 PO o O

r>0
<can | A0,
r>t J oz N2B) yi — 2]

c / |fi(yi)]l dy,
@B) |yi — x[*

Decompose

|fl yl / |fl Vi |
2 dy;.
/ ) Ty — e S Z 21g\ip [y — X

2+l .
Then, it is easy to see &' < |x—y;| < ;ﬁ . Thus, we conclude that there exists
a constant C depending on the dlmensmn n, such that

1 C
x— yi|f" ~ P (3.6)

Then, using (2.3), (3.6), Lemma 3.1 and the Holder inequality on Banach function
space, there is

ldl\ _iikniidi
SUP|Q(Z r)|k/ |fl Y | y 2//+13\2_/3|x y‘ ‘f(y)‘ 'y

r>0

1
<Cy ——— i(vi)|dy;
g g / g OO

- 1
sC 21 WHfi%zjﬂBHXiH%2J+IBHx;
J=

<CF gy 2041 2L
~ \21+1B\k My (R") ||ij+lB||Xi
oo i+1¢
CHﬁHM (R?) Z 21+1;l(’f 12])(21)“3)(
<l oo 2 ﬁ
< Clfllgs gyt~ " Z ﬁ

(k- ui(x,1)
< C fill g gyt~ R
MX" (R") HXB(x,t)”Xi

which implies (3.5) is true.
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Now, we will show the proofs of (3.2) and (3.3). Here, we would like to point out
that the multi-version of the Holder inequality on Banach function space is unknown.
Thus, we decompose (), £5, fvs <5 o) (2) as

MRS S I < [0 \dylsup|Q( P / 15 0)ldy2

r>0

(vi)|dys.
z3r>O‘QZr|/Zr l‘

Then, using (3.4)—(3.5), there is

H*///C(flovf;vf;v“'7f;zo)XB(x,t)HX
2 u;(x, t)) T ( u;(x, t))
H(ﬁM o D) o T (g T2 ) e

i=1 i=3

<C

X

<Coy—"— HHﬁHM )
H HXBIIX i=

< CH Hﬁ||M;{(Rn)M(XJ)~
i=1 i

Similarly, there is

||j/c(ffo7f§ovf§°’7 m )xB(x,t)”X

" 1
<C supi/ 1 i d.Vi) x
g(wo |0(z,7)| Q(zar)| 0 Hoie) X
ﬁ ui(xat)
CHIIfzIIMM - (e l1x
l:I x5 x;

= CH Hﬁ||M;{(Rn)M(XJ)~
i=1 i

Consequently, we finish the proof of Lemma 3.3 according to the definition of
MyR™). O

Next, we would like to show the bounedness of .2 ( £)(x) on the product Morrey-
Banach spaces. In this case, we need the condition X; € Ml and X € M’. Moreover, we
have the following lemma.

LEMMA 3.4. Suppose that for any i:1 < i <m, X,X; are B.f.s. with X; €
M and X € M. If .#"(f)(x) is bounded from X; x ---X,, to X with b; € BMO
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and ||xgllx <C H llxsllx;, for any ball B € R". Then, ///B(f)(x) is bounded from

Mg (R™) x -+ M (R") to M (R") with u = 1‘[l ui, uj € W, and b; € BMO.
1=

Proof. From [33], we know that for any z € R", we have .4 (f)(z) ~ 4" (f)(2)
where

o 1 m
/%{7'- = —_— b; —b;(y; He dy.
=) 20 [0 N[ /(Q(z.,r))’”| & (y)‘g‘f(y)‘ ’

By the definition of ./ ( £)(z), without loss of generality, we may only consider

ALV (f)(z) throughout this lemma as the other cases can be treated in a similar way.
Use the same notations as in the proof of Lemma 3.3, for any ball B = B(x,?), we
may split each f; = fl-o -+ f7°. Then, we obtain

122 (F)esllx < |22 () asllx + 2 140 (17 fm sl == HT+ V.

where @y, -, 04, € {0,} and each term in the sum Y.’ contains at least one ¢ = oo.
For 111, from the assumption that . (f)(x) is bounded from X x ---X,, to X
and the fact u(x,2t) < Cu(x,t), we have

122 (PO 2 x < 122" () 1x < ClLfi (e I -+ I fons(ean lIx,
< CTT Ay oy 20) CHHﬁIIMM () #(,1).
i=1 !

For IV, without loss of generality, it suffices to show the following four inequali-
ties.

a2 (11315 o) X llx < Cllbi | IBMOHIIfzIIM“ (R (%:1), (3-7)

||'%c{)1(f107f2007f§077f;:)x3( 1)

m
x<Cloilswol Tllganusn,  G3)

[ (f7 13 15 ) X llx < C||b1||BMoH||ﬁ||Mu,Rn u(x,t) (3.9)

i=

and
A (5 5 L) X llx < C||b1||BM0HIIﬁHM;g(Rn)u(x,t). (3.10)
i=1 i
First, we would like to give the following two estimates which will be very useful

in the proof of the above four inequalities. That is, for any z € B = B(x,t), there is

uy (x,0)t"

VTl (1210 = @0l + [1ba]lewo)

(3.11)

L 1@ =560l 00l <l o
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and
[(11(-) = (B1)] + 1b1llBMO) XB(x) |y < Cllo1IIBMO XA - (3.12)

To prove (3.11), we decompose [ |b1(z) — b1 (y1)|| L (v1)|dy1 as
L, 1e1@ =il )iy

</ \bl(Z)—(bl)BHflo(yl”d)H+/ b1 (1) — (b1)sI 1A (1) |dy1.-
Y Y

For [ |b1(z) — (b1)8][f2(v1)|dy1, we have the following estimates from (3.4).

L, 161 = @all 00l = 151 = (u)al [ G)lan
uy (x,0)t"

HXB”Xl .
For [gn |b1(y1) — (b1)8||f2(v1)|dy1, [18] tells us that if X; € M, there is

1(b1(-) = (b1)B) x8llx; < Cllb1[BMOl 2B X[ -
Then, we obtain
/Rn [b1(y1) = (B0)sl [/ () ldyr < Cl[(01(-) = (b1)s) sl || fiesllx,
< Clbllmmoll sl 171l agys gonyea (5:1)

< Clor(@) = (o)l o)

uy (x,0)1"
sl
Thus, we deduce that (3.11) is true.

To prove (3.12), we can easily get the following estimates from Lemma 3.2 with
the condition X € M.

[(161(-) = (B1)] + b1 llBMO) XB(ra) ||
<C([[(b1(-) = (b1)B) XB(es) lIx + b1 IBMON XB(x1) )
< Clb1Bmoll X llx
and we finish the proof of (3.12).
Now, we give the proof of (3.7). Using (3.4)—(3.5) and (3.11), there is

ML T < [ @) =i () Hf“yl an [ 17802 ldy

< Clbrllemoll il (g
X

><sup|Q( )|3/ 1f5" (3 |d}’3HS b \Q(Z, A Jo |fz (vi)ldyi

r>0 i=4 r>
</ nlbl(Z)—bl(yl)lf?(yl)ldylt‘”HOIlelM T "‘ ))

=2
ui(x,
M xsllx;

C(bl(z)_(bl)B+||b1||BMO)H<||fl||M RY)

i=1
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Then, we have

”'% fO fg7f37 "7 Xth ”X

<C|| (11 (-) = (b1)5] + [1B1]lBMO) Xp(er) HXH<||fz||M (&) Hx(x”t))

Using (3.12), we get

1(061() = (015 + 151 ]1sm0) xB“HXH 1l e ”’)

||% |
u;i(x,1)
< Cl[b1]lBmollXB(x) HXH illags ey Tl

< C“bl”BMOHHﬁHM;{(R;z)u(x7t)~ (3.13)
i=1 i

Thus, we obtain

A 1 12 155 ) < Clibillevo [Tl g ey e, )

i=

and we finish the proof of (3.7).
Next, we show the proof of (3.8). Using (3.5) and (3.11), there is

ML ST L)@ [ @) =0l )y
P oenr >|2/ 02 [T o e 7001

<cH(||ﬁ||M . ”;”) (1b1(2) = (51)a] + Ib1 lvio)

Then, we have the following estimates according to (3.13).

H%hl fO f; foo, ! afm)%B HX

i(x,1)
<cH(ﬁM ) ”;"” )H (1b1() = (b1)s] + 1B1llB70) Zsen) |

< b om0 LTIl o),
i=1 ¢

which finishes the proof of (3.8).
For the proofs of (3.9)—(3.10), we would like to show the following estimates.

l o)
P (5T oy 1)~ 1OV G0l

r>0
uy (x, 1)~ k=Dn

([61(z) = (b1)B| + [|61][BMO) (3.14)
HXB”Xl

g CHfl HM;{ (Rn)
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with k € NT .
Since

sup st i@ =i AT ()

<su 7/ bi(z)—b d
p\Q(z,r)|’< Q(z.,r)ﬂ(ZB)‘" 1(z) = br ()11 (1) ldy

r>0
<C |bl(Z)—bl(y1)|\fl(y1)|dy1
= Jiem)e [ — yy [
<Clon@)— sl [ L

(@B)c |x =y &

[b1(y1) — (bl)B\|f1(yl)|dy1

_|_
(2B)¢ bx =y [fn

For f 2B)¢ Ix yy 1|,)CL dyy , by the Holder inequality on Banach function space and (2.3),
we have

/ \fl(yl)k| dy,
2B)¢ |x —y[*

|f1(y1)]
<
Z //+IB\2/B Tey [r !

bx — yy [k

1
< C; ‘2j+1B‘k /2/’+IB |f1(v1)]dy1

< CE ‘21+1B‘k Hf1x21+lBHXl HXQJHB”XI

up (x,27%11) 2741 B

H?QJ'“B HXI

<CZ ‘21+1B‘ka1HM1 (R")

e Dy (x, 20
<CHf1HMu1 R”) z 2(j+1)n(k—1) ||X2/,+13||X
: 1

& 1 uy (x,2971%)
<C|fi HM;"(} @&y =S (1) SO
=1

) | xai+18lx,

uy(x,1)
<Cl il ™ n(k—1) 4 .
11l ey 181,

For f %dﬁ, Ho [18] also proved that if X; € M, there is

[(B1(-) = (b1)B) xai+18llx; < C(j+ D|b1lB™mol| 2254151 x;

for any j € N.
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Thus, using (2.3) again, we have

/ |bl(y1)—(171)B\|f1(y1)|dy1

( x — yy [k

()
S
—
=

< 2/ | ‘bl(yl)_(bl)iL‘fl(yl)‘dyi
S/ @ B)\(2iB) lx =1
- 1
<C 3 GG Joygy 100 = 08RGl
i 1
QCE ‘ZJHB‘,{Hf17(2j+lBHX1||(b1(') - (bl)B)x2j+1B||X1’
“ . .
<C2 \2/+1B\ka1HMul Rn)ul(x72]+lf)(1+ Dllb1lsmollx2i+15llx;
_ - (j+1) u1(x,2j+lt)
< b1 lemoll 1]y eyt " *Y
T T T T P
B > uy(x,2971%)
< Cllb [lemolllfill gt oyt ™ Y (4 1) o
My, (R?) Z’l 122541811,
ui (x,1)
< Clb1llmoll il gt "D .
My (B) Il x8llx,

Thus, we prove that (3.14) is true.
By (3.4)—(3.5) and (3.14), there is

'%bl(frvfg7f§v"'7f;)(z)
m 1 .
<HSHPW/ 0ter) |fi” (vi)|dyi

i=3r>0

x bi(z) b Ny [ 18021
swp s [ @) =BT ks [ 180l

r>0

C(b1(2) = (51)s| + [ lsio) ﬁ(nﬁM Tz )

Mxsllx;
and
AT f°° o))
<SUP|Q |/ |b1(z) = bi(y) |17 (1)|dy1

r>0

X | |su (vi)|dy
ll_gr>O‘QZr|/Zr l‘l

C(lb1(2) — (B)s] + [b1][mro) f[(ﬁM - ”,fx[f))
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Then, we have the following two estimates according to (3.13).
H%fl(ffo7fg7fm7af;zc)%l? x,t) HX

< C[(Ib1() = (B1)s] + |51 ]BMO) XB(xr) HxH(”ﬁHM (R) |L|L;((“))

<CblBMoH(||flMu, o <x,t>)

i=1

and
H%cbl(fimdcOQ f;ov"'7fm>x3xt ||X

<C||(Ib1() = (b1)a] + [1b1|[3m0) Xz HXH<IIﬁIIM (&) ﬁ‘;c(xt))

< CHblHBMOHHﬁIIM;z;(Rn)M(XJ),
i=1 i
which imply (3.9) and (3.10) are true.

Combing the estimates of /1] and IV, we finish the proof of Lemma 3.4 according
to the definition of M¥(R"). O

LEMMA 3.5. ([33]) Let b= (b1, by) and f= (fi,:++, fm) be two collections
of locally integrable function, then

B, ) (F) ()] < A5 (%) +2 (ﬁib?(@) M () ().

3.1. Proof of Theorem 1.2

Now, we are ready to give the proof of Theorem 1.2.

First, using Lemmas 3.3-3.5, we know that (IT) implies (I).
Next, we show (I)= (III).

That is, we need to prove for any ball Q = Q(z,r), there is

sup | (Mab) ~bixollx
¢ Ilixell

Here My (b;)(x) =  sup 001 f |bi(t)|dr .
0p>x,00C0
From [3], we know that My (b;) > b; with x € Q. Then, using (ii) of Definition
2.1, we have

|(Mo(51) — bi)zollx < | iil(MQ(bz-) b zollx.
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From [33], we have .Z (xg,-..,biX0. - Xo)(x) = Mg(b;)(x) for x € Q(z,r) and
any 1 <i<<m.
Then, choosing f;(x) = xo € X; forany Q = Q(z,r) C R", we have

m
.

> (Mo(bi)(x) = bi(x)) = [B, ) () (x)-

i=1

Using (2.4), we obtain

. . m m HXQ”X 'I:Il ”%Q”Xi
)7 o) < CE Ty < T (1222 ) — et

Thus, by the definition of the Morrey-Banach space, we get

1M (b:) = bi)xo lx < NIB, AV F)x0llx < B, )(F)llasg (zryu(zr) < C[Tllxelx.
i=1

which implies
My (b;
sup ||( Q( ) )XQHX

e H Ixollx:
and we finish the proof of (I)= (III).
Finally, we give the proof of (III) — (I).
Let

E={xe€Q:bi(x) < (bi)g} and F={xe€Q:bi(x)> (bi)o}.

Then, we have
/| Jo— bilx |dx—/\b b)oldx.

Thus, using the condition in (IIT) and the fact b;(x) < (bi)o < Mp(b;)(x) with
x € E CQ, there is

o / 1(x) ~ ()olax = 7 / 1bi(x) — (bi)oldx

\QI/ o= bilx

(Mo (bi)(x) = bi(x)) xo(x)dx

\QI R"
2
< WH(MQ(bi) —bi)xolxllxollx

H llxollx:lxollx:

<cEL <,
Q|
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which tells us that b; € BMO.
From [3], we know that

Moreover, we have

1
1] o Me®) =i ‘Q|H<MQ<> b) ol 2ol

4

<C,
1 xollx

‘Q| H xollx 7

which implies (b; )p < C.
Consequently, we get b;” € L™ from the Lebesgue differential theorem and finish
the proof of Theorem 1.2. [

4. Applications to Morrey space with variable exponents

Suppose that & is the set of Lebesgue measurable functions with p(-) : R* —
[1,0]. For any p(-) € &, we denote

p+=supp(x) and p_= inf p(x).
XER? xeR?
Thus, itiseasy tosee 1 < p_ < p4 Koo,

Now, we introduce the definition of Lebesgue space with variable exponent as
follows.

DEFINITION 4.1. ([7, 9]) Let

Pr() = [y MOt ess sup 1(2)

xeRL

with
RL = {xeR": p(x) = o}

Then, the Lebesgue space with variable exponent LP(") (R") is defined as

PR = {f € AR") 1) ey :inf{)L >0: p”(%) s 1} - oo}

with any Lebesgue measurable functions f.

Obviously, if we replace X by LP()(R"), M%(R") becomes the Morrey space
with variable exponent M, (R").

For the studies of integral operators on sz(_) (R™) with u satisfies (2.3) or certain
doubling conditions, one may see [11, 13, 14, 17, 28] et al. to find more details.

Next, we introduce the definitions of some classes which can be used in the study
of function spaces with variable exponents.
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DEFINITION 4.2. ([7,9]) Let p(-) : R" — R. If there exists a constant C > 0 and
P € R, such that

C

X)— <—————— Vx,yeR"
Ip(x) = p(y)| Togle T 1/Iv—y]) y
and
() — pu| < — S WxeR
PRITP=IS Jogler )’

and we say that p(-) belongs to the globally log-Hélder continuous.
Moreover, for ﬁ is globally log-Holder continuous, we denote

ylog:{p(')ef@}'

It is easy to see that p(-) € P, is equivalent to p'(-) € Pg (see [7, 9]).
From [9], we have

LEMMA 4.3. ([9, Remark 4.1.5]) If py < eo, then p(-) € Py, is equivalent to
p(+) is globally log-Holder continuous.

LEMMA 4.4. ([9, Theorem 4.3.8, Corollary 4.4.12]) Let p(-) : R" — [1,e0]. If
P € Pog and p_ > 1, then LP0) € M.

The boundedness of M} on Lp(')(R”) can be found in [30].

LEMMA 4.5. ([30]) Let p(-) : R" — [1,00|. If p(-) € Piog and p_ > 1, then M,
is bounded from LPU)(R") to itself with b € BMO.

Thus, we obtain

LEMMA 4.6. Suppose that p(-),pi(-) : R" — [1,e0] with pi(-),p(-) € Piog, and
(pi)—,p— > 1. Then 4" (f)(x) is bounded from LP1C)(R") x --- x LPn()(R™) 1o

O(RM) with - — $ _L_
LPY)(R™) with 0= El FYOE

1

Proof. Without loss of generality, it suffices to consider with .# br(f)(x).
As AP (f)(x) <My, (f1)(x)M(f2)(x) - M(fm)(x), then using the Holder inequal-
ity on LP() (R™) space(see [7, 9]) and Lemma 4.5, we have

[P (f)HLp<«>(Rn) < ClMp, (FO 10 oy M P2 a0 ey - 1M (Fon) | o) ey
< CHHfi”Lm(-)(Rn)
i=1

with pi(-),p(-) € Piog and (pi)-,p- > 1.

Next, we give the norm of yz on LP()(R").

Suppose that p(-) € P, with p_ > 1. For any ball B C R", we define the
exponents pg and pj; by

1 1 1 1 1 1

I - [ — ax 4.1
s Blp@™ Bl “D

X,
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From [6, Proposition 4.66], we have

S
=

€L
8l = |BI75 - and  [xsll 0 ~ |B| (4.2)

Thus, for p;(-) € Plog and (p;)— > 1, there is
1281l 20 (ny ~ HH%BHM(-)(RU (4.3)

i=1

PO B
with m—igl POk

As it is easy to see p_ > 1 implies p’ >1. O

Now, using Theorem 1.2, Lemmas 4.3-4.6 and the fact p(-) € P, is equivalent
to p'(+) € Prog, We obtain

THEOREM 4.7. Let b; be a real valued, locally integrable function in R" with i =
m
1,---,m and u; satisfies the W}( condition. Denote p(-) pointwise by ﬁ = p_#(,)
' i=1"
with pi(-),p(-) € Plog and (p;)—,p— > 1. Then, the following conditions are equiva-
lent.

(I) The commutator [b,.#) is bounded from Mz,l,l ¢
Mo (RY) with w=uy - up.
(1) b; is in BMO and b; belongsto L.
(III) Define Mo (b;)(x) =  sup @IQO |bi(2)|dt, for any i =1,2,...,m, there
co

Q0>x,0Q0

JRY) x M (R) 1o

is
[(Mg(bi) = bi)xoll po) ()

sup p < oo,
e H ||%QHLP:‘(‘)(]RH)
=1

REMARK 4.8. Obviously, Theorem 4.7 improves the results of [35, Theorem 1.2].
Moreover, as far as we know, Theorem 4.7 seems to be a new result even in the one-
linear case.

5. Multilinear maximal function and its commutator on Morrey-Lorentz spaces

The Lorentz space .£7, which is defined as

_— dr\ V4
$p7q:{fegp7q¢f||$p.q = (/0 [tpf*(l‘)}q%> <oo}

with 0 < p,g < e and f is a measurable function on R”. Moreover, f* is the rear-
rangement function of f, that is

fr@) :=inf{y>0:m(f,y) <t}
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with
m(f,y) :=[{xeR":[f(x)] >y,y >0}

Obviously, for the case p = g, PP becomes the classical L? spaces. Moreover,
£P1 is the Banach function space with 1 < p < oo and 1 < g < 0.

The space £P9 was first introduced by Lorentz [21] and was studied by many
authors. One may see [5, 8, 22] et. al. to find more details.

In [26], Ragusa introduced the Morrey-Lorentz space Z”9* on R" as follows.

1
RPH = {f € R | fllppas = sup _&fXBHf/M}

xXER >0 g

with 0 < p<eo, 0<g< o0, 0< A <n and B=B(x,r). Obviously, P9 becomes
LP* if we choose pP=q.

For the studies of integral operators on Z79* one may see the paper [2, 26, 31]
et. al. to find more details.

Next, we will give an application of Theorem 1.2 under the Morrey-Lorentz set-
ting. To see this, we give the following arguments and estimates.

Suppose that ¢ € C(R") is a non-negtive, smooth and rapidly decreasing func-
tion. Moreover, we assume that ¢ satisfies the following condition.

o'@l<c,  xoa) <o) < xpoy)-

For any € > 0, we denote

0 =sw o [0 -s0le (521 ey

e>0 € ' €

and

From [33, Lemma 3.2], we know that
My ~T, and M~T". (5.1)

Moreover, for b € BMO, by the similar estimates of [33, Lemma 3.3] and [25, Lemma
3.1], we can easily obtain

M5(T; (1)) (x) < Cllbllmyo (My(M(£)) (x) + M (f)(x)) (5:2)

for all bounded f with compact support and 0 < § < y. Here M*(f)(x) denotes the
1
usual sharp maximal function, My (f)(x) = M(|f|")(x)? and M> =MoM.
Then, we assume there exist a series of numbers ¢;, p; satisfying 1 < g; < p; < oo.

m m
Moreover, denote Ll]: Y % and ;;: Y % with 1 < g < p <eo.
i=1" i=1""



MULTILINEAR COMMUTATORS RELATED TO MAXIMAL FUNCTION ON M-B SPACE 887

From [4, Chapter 3, Theorem 5.7 and Chapter 4, Theorem 4.6], we know that the
Hardy-Littlewood maximal function is bounded on Z7i% with 1 < g; < p; < oo. If we
choose vy < g; with i =1,2--- m, there is

1

1My (M (f)]] riai = HM(M(f)Y)H;%

; SClM(f )YIIV

£
Y

piap S C”foPi“h’.
vy
Thus, using the Fefferman-Stein inequality on Lorentz space (see [5, Lemma 2.6]

for the unweighted case with u =1 and o(¢) = 1i— 1) (5.2) and the assumption f is
bounded with compact support, we obtain

1Ty ()l v < [Ms(Ty ()| mias < |1ME (T3 (f))] zmian
< Clbllemo (IMy(M(f) | riai + M ()| zriai) < ClIblmmoll £1| ric

for all bounded f with compact support.

Then, by the similar density arguments and estimates as in [5, p. 8989], we know
that 7," is bounded on .£P"% withall f € £Pi4 . Thus, we get that M, is also bounded
on ZPi4i from (5.1).

Using the Holder inequality on the Lorentz spaces (see [8, Proposition 2.11]) and
[4, Chapter 3, Theorem 5.7 and Chapter 4, Theorem 4.6] again, we know that there
exists a positive constant C depending on p, py,---, pm, such that

" ()] zra < | M, (f1)M(f2) - M(fin) || v

m m
<|IMp, (1)l zovan [TIIM ()] griar < CllbrllBmo [ [ I fill zpiai -
=2 i=1

Similarly, there is

H%( prq CH”ﬁ”jpt‘h

i=1
with zlandl zl
lll’ q th’

Moreover, it is easy to see that for any ball B = B(x,7), there is ||xp|.gra =17 .
Thus, it is easy to see

m
x8ll.20 ~ T lx8] 2rsa (5:3)
i=1

W1th L
121 pi’

From now on, we assume that % < % For any x € R" and ¢ > 0, we denote

2
ui(x,r) =t% with ¢; > 1. Then, we obtain u;(x1,f1) < ui(xp,5;) for 11 <t and
Vxi,xy € R,

Thus, we have

H%Bxl,zl Hfl’iﬂz Z‘Fliq% <1 pl q%_ ||XB(x2J2)||fl’i>‘ii
A - -

A
qi qi
) I
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with u;(xy,11) <ui(x,12) and Vxp,x; € R", which implies u;(x,?) satisfies (2.2).
Moreover, there is

n

- X ivdi . > 1Pi . A
20+ I Hoeollens o oy 3+ 1) —— (27H1)a
) 12825+ 10) || piai ) (2011 i

~ S+ 12U 4

Consequently, we obtain u;(x,7) = t‘iii IS Wﬁl(ﬂ,‘qi .

Finally, from [4, Corollary 4.8], we know that the dual space of .£7 is wr'd
with the condition 1 < g < p < eo. Thus, using [4, Chapter 3, Theorem 5.7 and Chapter
4, Theorem 4.6] again, we obtain that the Hardy-Littlewood maximal function is also
bounded on .£P'4 , which implies .#P9 € M.

Combing the above arguments and estimates, we have the following conclusions.

REMARK 5.1. Suppose that there exists a series of numbers g;, p; satisfying 1 <

m m
q; < pi < e». Moreover, denote éz Zi and %: Y 1% with | <g<p <eo. If
i=1" i=1""

O</l<nand%<%,thenweget

A
(i) LPraeM, LPr9 ¢ M, ui(xJ) =t € Wigpi‘qi

m
(i) || xsll.2ra ~ H1 |28l zviai -
P

-,

(iii) Both .2 (f)(x) and .#" (f)(x) are bounded from £P1491 x ... x LPmin to
ZP4 with b; € BMO.
Thus, we have the following results according to Theorem 1.2.

THEOREM 5.2. Let b; be a real valued, locally integrable function in R" with

i=1,---,m. Suppose that there exists a series of numbers q;, p; satisfying 1 < q; <
m m

pi < oo. Moreover, denote Lllz > % andll—yz > % with 1 <g<p<e. IfO<A<n
i=1" i=1""

and % < % , then the following three statements are equivalent.
1

(I) The commutator [Z,///} is bounded from PV x ... x FPmidmt 1o gppak
(1) b; is in BMO and b; belongs to L.
(II) Define Mo(b;i)(x) =  sup @IQO |bi(2)|dt, forany i=1,2,...,m, there
) Q0>x,00C0
is
Mo(b;) — b; }
wop LMol ~ b ors _

m
e 'H1 1 x0ll 2
=

REMARK 5.3. As far as we know, Theorem 5.2 also seems to be a new result even
in the one-linear case.
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