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ALTERNATIVE PROOFS OF SHAFER’S INEQUALITY

FOR INVERSE HYPERBOLIC TANGENT

YOGESH J. BAGUL ∗ AND RAMKRISHNA M. DHAIGUDE

(Communicated by L. Mihoković)

Abstract. We point out that a concise proof of Theorem 2 in the article, ’On a quadratic estimate
of Shafer’ by L. Zhu contains a small mistake. Correcting this mistake and giving alternative
proofs of Theorem 2 is the main aim of this note.

1. Introduction and correction

In 2008, L. Zhu [6] published a new proof of the following theorem:

THEOREM 1. Let 0 < x <
√

15/4. Then

tanh-1 x
x

<
8

3+
√

25− 80
3 x2

. (1)

The inequality (1) was originally established by R. E. Shafer [3, 4, 5] and its alter-
native proof is given in [6] in a concise way. Though the proof of Theorem 1 is given
in a simple way in [6], it contains a small mistake which can be explained as follows:

While giving the proof of Theorem 1, it is shown in [6] that the function

H(x) =
25−

(
8x

tanh-1 x
−3

)2

x2

is decreasing on (0,
√

15/4). This is accomplished by showing

I(t) =
−4sinh2 t +3t sinht cosh t + t2 cosh2 t

t4 cosh2 t
=

A(t)
B(t)

to be decreasing on (0, tanh-1
√

15/4) due to the transformation H(x) = 16I(t), where
tanh-1 x = t. A careful observation shows that the denominator B(t) of I(t) is mistaken
as t4 cosh2 t instead of t2 sinh2 t. Fortunately, the function I(t) remains decreasing for
either expression for B(t) and the final conclusion is unaffected. For final conclusion,
the following lemma is used.
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LEMMA 1. ([2]) Let A(x) = ∑∞
n=0 anxn and B(x) = ∑∞

n=0 bnxn be convergent for
|x| < R, where an and bn are real numbers for n = 0,1,2, · · · such that bn > 0. If the
sequence an/bn is strictly increasing (or decreasing), then the function A(x)/B(x) is
also strictly increasing (or decreasing) on (0,R).

However, it is necessary to show that how I(t) is decreasing on (0, tanh-1
√

15/4)
with B(t) = t2 sinh2 t. In fact, with this B(t) the proof becomes more clear and con-
vincing. Here we present the proof.

Corrected proof of Theorem 1. As in the concise proof of Theorem 2 in [6], we
have

A(t) =
∞

∑
n=1

ant
2n+2,

where an = −4·22n+2+3(2n+2)·22n+1+(2n+1)(2n+2)·22n

2(2n+2)! . Now

B(t) = t2 sinh2 t

=
t2

2
(cosh2t−1)

= −1
2
t2 +

1
2
t2

∞

∑
n=0

22n

(2n)!
t2n

=
∞

∑
n=1

22n−1

(2n)!
t2n+2 =

∞

∑
n=1

bnt
2n+2

where bn = 22n−1

(2n)! = (n+1)(2n+1)·22n

(2n+2)! . Then we write

an

bn
=

(n+1)(2n+1)+6(n+1)−8
(n+1)(2n+1)

=
2n2 +9n−1
2n2 +3n+1

= 1+
2(3n−1)

2n2 +3n+1
:= 1+2cn

where cn = 3n−1
2n2+3n+1

and cn+1 = 3n+2
2n2+7n+6

, n = 1,2,3, · · · . We claim that cn � cn+1 ,
n � 1. Equivalently,

3n−1
2n2 +3n+1

� 3n+2
2n2 +7n+6

, n � 1

or
19n2 +11n−6 � 13n2 +9n+2.

i.e., 6n2 +2n � 8 which is true for n � 1. Therefore a sequence
{

an
bn

}
is decreasing for

n = 1,2,3, · · · . Hence by Lemma 1, I(t) is also decreasing on (0, tanh-1
√

15/4). �
Next, it is interesting to see other simple proofs of Theorem 1.
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2. Alternative simple proofs

We give two alternative simple proofs of Theorem 1. The first proof, is very ele-
mentary and uses basic calculus only.

First simple proof of Theorem 1. If we let tanh-1 x = t, then it suffices to prove that

t
tanht

<
8

3+
√

25− 80
3 tanh2 t

,

for t ∈ (0, tanh-1
√

15/4). Equivalently we want

(
8
sinht

t
−3cosht

)2

> 25cosh2 t− 80
3

sinh2 t.

i.e.

64sinh2 t−48t sinh t cosht > 16t2 cosh2 t− 80
3

t2 sinh2 t.

Or
192sinh2 t−144t sinht cosh t > 48t2 cosh2 t−80t2 sinh2 t.

i.e.
12sinh2 t −9t sinh t cosht > 3t2−2t2 sinh2 t.

Now suppose,

f (t) = 12sinh2 t +2t2 sinh2 t −9t sinh t cosht−3t2.

Successive differentiations with respect to t give

f ′(t) = 15sinht cosh t−5t sinh2 t +4t2 sinh t cosht−9t cosh2 t−6t,

f ′′(t) = 10sinh2 t +15cosh2 t−20t sinh t cosht +4t2 sinh2 t +4t2 cosh2 t

−9cosh2 t−6,

f ′′′(t) = 12sinht cosh t−12t sinh2 t−12t cosh2 t +16t2 sinht cosht,

f iv(t) = 16t2 sinh2 t +16t2 cosh2 t−16t sinh t cosht

= 16t2 sinh2 t +16t cosht(t cosht − sinht) > 0

due to well-known inequality sinht
t < cosht, t > 0. This implies that f ′′′(t) is strictly

increasing for t > 0 and hence f ′′′(t) > f ′′′(0). Since, f ′′′(0) = f ′′(0) = f ′(0) = f (0),
we continue the argument and conclude that f (t) > f (0) = 0. This completes the
proof. �

Second simple proof of Theorem 1. Since

I(t) =
t2 cosh2 t +3t sinh t cosh t−4sinh2 t

t2 sinh2 t
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we have

I′(t) = − 1

4t3 sinh3 t
i(t),

where

i(t) =
(
24sinht−8sinh3t−3t cosh t +3t cosh3t +8t3 cosht +12t2 sinh t

)
.

Substituting the two formulas

coshkt =
∞

∑
n=0

k2n

(2n)!
t2n and sinhkt =

∞

∑
n=0

k2n+1

(2n+1)!
t2n+1

into the previous formula to get

i(t) = 24
∞

∑
n=0

1
(2n+1)!

t2n+1−8
∞

∑
n=0

32n+1

(2n+1)!
t2n+1−3t

∞

∑
n=0

1
(2n)!

t2n

+3t
∞

∑
n=0

32n

(2n)!
t2n +8t3

∞

∑
n=0

1
(2n)!

t2n +12t2
∞

∑
n=0

1
(2n+1)!

t2n+1

= 24
∞

∑
n=0

1
(2n+1)!

t2n+1−8
∞

∑
n=0

32n+1

(2n+1)!
t2n+1−3

∞

∑
n=0

1
(2n)!

t2n+1

+
∞

∑
n=0

32n+1

(2n)!
t2n+1 +8

∞

∑
n=0

1
(2n)!

t2n+3 +12
∞

∑
n=0

1
(2n+1)!

t2n+3

=
∞

∑
n=1

24
(2n+1)!

t2n+1−
∞

∑
n=1

8×32n+1

(2n+1)!
t2n+1−

∞

∑
n=1

3
(2n)!

t2n+1

+
∞

∑
n=1

32n+1

(2n)!
t2n+1 +

∞

∑
n=1

8
(2n−2)!

t2n+1 +
∞

∑
n=1

12
(2n−1)!

t2n+1

=
∞

∑
n=4

dn

(2n+1)!
t2n+1

where

dn = 24−8×32n+1−3(2n+1)+32n+1(2n+1)+8(2n−1)(2n)(2n+1)
+12(2n)(2n+1)

= 24−8×32n+1−6n−3+32n+1 ·2n+32n+1 +16n(4n2−1)
+24n(2n+1)

= 32n+1 · (2n−7)+64n3+48n2 +2n+21 > 0.

So i(t) > 0 holds for all t > 0 giving us I′(t) < 0. Thus I(t) is decreasing on
(0, tanh-1

√
15/4) and so is H(x) on (0,

√
15/4). Consequently, H(0+) > H(x) and

with H(0+) = 80/3 we get the inequality (1). �
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