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A METHOD TO PROVE INEQUALITIES AND ITS APPLICATIONS

CHAO-PING CHEN ∗ AND BRANKO MALEŠEVIĆ

(Communicated by T. Burić)

Abstract. In this paper, we provide a method to prove an inequality. As applications of the
method developed here, we establish Wilker and Huygens type inequalities for Gauss lemniscate
functions, and present sharp inequalities between the inverse hyperbolic tangent and inverse sine
functions. We also present sharp inequalities for trigonometric functions.

1. A method to prove inequalities

Let the functions f and g be both strictly increasing on [a,b] , and let

F(x) = f (x)−g(x), x ∈ [a,b].

In this paper, we first provide a method to prove

F(x) > 0, x ∈ [a,b].

The details of this method are given below.
We divide the interval [a,b] into n subintervals

[a,b] = [x0,x1]∪ [x1,x2]∪·· ·∪ [xn−1,xn],

where x0 = a and xn = b . The choices of xi ( i = 0,1,2, . . . ,n ) are as follows:
Solving the equation f (x0) = g(x) yields

x1 = g−1( f (x0)
)
,

where g−1 is the inverse function of g . Since the functions f and g are both strictly
increasing on [x0,x1] , we have

min
x∈[x0,x1]

f (x) = f (x0) = g(x1) = max
x∈[x0,x1]

g(x),
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and then, we see that

f (x) > g(x), x ∈ [x0,x1].

Solving the equation f (x1) = g(x) yields

x2 = g−1( f (x1)
)
,

and we have

f (x) > g(x), x ∈ [x1,x2].

Continuing the above process, we get

xn−1 = g−1( f (xn−2)
)
,

and we have

f (x) > g(x), x ∈ [xn−2,xn−1].

Finally, we show by elementary calculation that

f (xn−1) � g(xn),

which implies

f (x) > g(x), x ∈ [xn−1,xn].

Our method shows f (x) > g(x) on every subinterval. This derives F(x) = f (x)−
g(x) > 0 for all x ∈ [a,b] .

REMARK 1.1. Let the functions f and g be both strictly increasing (decreasing)
on [a,b] . In order to show

F(x) = f (x)−g(x) > 0, x ∈ [a,b],

we frequently (for convenience) divide the interval [a,b] into n equal parts

[a,b] = [x0,x1]∪ [x1,x2]∪·· ·∪ [xn−1,xn],

where

xi = a+
b−a

n
i, i = 0,1,2, . . . ,n.

And then, we show by elementary calculation that

f (xi) > g(xi+1) ( f (xi+1) > g(xi)), i = 0,1,2, . . . ,n−1.

This means that f (x) > g(x) holds on every subinterval. We then obtain F(x) = f (x)−
g(x) > 0 for all x ∈ [a,b] .

As applications of the method developed here, we establish Wilker and Huygens
type inequalities for Gauss lemniscate functions (Section 2). We present sharp inequali-
ties between the inverse hyperbolic tangent and inverse sine functions (Section 3). Also,
we present sharp inequalities for trigonometric functions (Section 4).

The numerical values given have been calculated using the computer program
MAPLE 11.
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2. Wilker and Huygens type inequalities for Gauss lemniscate functions

Wilker [48] proposed, and then Sumner et al. [46] proved, for 0 < x < π/2,(
sinx
x

)2

+
tanx

x
> 2 (2.1)

and

2+
(

2
π

)4

x3 tanx <

(
sinx
x

)2

+
tanx

x
< 2+

8
45

x3 tanx, (2.2)

where the constants (2/π)4 and 8/45 are the best possible.
A related inequality that is of interest to us is Huygens’ inequality [20], which

asserts that

2

(
sinx
x

)
+

tanx
x

> 3, 0 < |x| < π
2

. (2.3)

Chen and Cheung [11] developed (2.3) to produce a double inequality

3+
3
20

x3 tanx < 2

(
sinx
x

)
+

tanx
x

< 3+
(

2
π

)4

x3 tanx (2.4)

for 0 < |x| < π
2 , where the constants 3

20 and
(

2
π
)4

are the best possible.
The Wilker and Huygens type inequalities (2.1), (2.2), (2.3) and (2.4) have at-

tracted much interest of many mathematicians and have motivated a large number of
research papers involving different proofs, various generalizations and improvements
(cf. [2, 7, 10, 11, 14, 15, 16, 19, 24, 27, 28, 29, 32, 33, 34, 35, 42, 44, 49, 50, 51, 52,
53, 58, 59, 60, 61, 63, 64, 62] and the references cited therein).

The hyperbolic versions of the Wilker and Huygens type inequalities were estab-
lished in [42, 51, 61]. The Wilker and Huygens type inequalities for inverse trigonomet-
ric functions were presented in [7, 24, 58]. The Wilker and Huygens type inequalities
have also been established for the lemniscate functions and Jacobian elliptic and theta
functions. For more details see [8, 9, 36] and [37], respectively.

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x,y)
in the plane satisfying the equation (x2 + y2)2 = x2 + y2 . In polar coordinates (r,θ ) ,
the equation becomes r2 = cos(2θ ) and its arc length is given by the function

arcslx =
∫ x

0

1√
1− t4

dt, |x| � 1, (2.5)

where arcsl is called the arc lemniscate sine function studied by Gauss in 1797-1798.
Another lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine
function, defined as

arcslhx =
∫ x

0

1√
1+ t4

dt, x ∈ R. (2.6)

The functions (2.5) and (2.6) can be found (see [45, Ch. 1], [5, p. 259] and [6, 8, 9, 18,
36, 38, 39, 40, 41]).
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Another pair of lemniscate functions, the arc lemniscate tangent arctl and the
hyperbolic arc lemniscate tangent arctlh, have been introduced in [38, (3.1)–(3.2)].
Therein it has been proven that

arctlx = arcsl

(
x

4
√

1+ x4

)
, x ∈ R (2.7)

and

arctlhx = arcslh

(
x

4
√

1− x4

)
, |x| < 1 (2.8)

(see [38, Prop. 3.1]).
Recently, numerous inequalities have been given for the lemniscate functions [8,

9, 18, 23, 40, 47]. For example, Neuman [40] proved the following inequalities:

(
5

3+2(1− x4)1/2

)1/2

<
arcslx

x
< (1− x4)−1/10 (2.9)

and (
5

3+2(1+ x4)1/2

)1/2

<
arcslhx

x
< (1+ x4)−1/10 (2.10)

for 0 < |x| < 1.
In analogy with (2.2) and (2.4), in this section we establish Wilker and Huygens

type inequalities for Gauss lemniscate functions.

2.1. Wilker type inequalities

For 0 � x � 1, let

W1(x) =

(
arcslx

x

)2
+ arctlx

x −2

x3 arctlx
.

The computer program MAPLE 11 suggests that the function W1(x) is strictly increas-
ing on [0,1] , and

W1(0) = lim
x→0

W1(x) =
1
20

and W1(1) = 0.6860098 . . ..

This fact motivated us to establish Theorem 2.1.

THEOREM 2.1. For 0 < x < 1 , we have

2+
1
20

x3 arctlx <

(
arcslx

x

)2

+
arctlx

x
< 2+

687
1000

x3 arctlx. (2.11)
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Proof. The left-hand side of (2.11) has been proved in [8]. Here, we only prove
the right-hand side of (2.11). It suffices to show that for 0 < x < 1,

g(x) < 0,

where

g(x) =
(

arcslx
x

)2

+
(

1
x
− 687

1000
x3
)

arctlx−2. (2.12)

We consider two cases to prove g(x) < 0 for 0 < x < 1.
Case 1. 0 < x < 0.9.
It follows from [9] that

x− 3
20

x5 < arctlx < x, 0 < x < 1. (2.13)

By the right-hand sides of (2.9) and (2.13), we have

g(x) <

(
1

1− x4

)1/5

+
(

1
x
− 687

1000
x3
)

x−2 = −
{(

1+
687
1000

x4
)
−
(

1
1− x4

)1/5
}

.

Elementary calculations show that, for 0 < x < 0.9,

(
1+

687
1000

x4
)5

− 1
1− x4 > 1+

687
200

x4 − 1
1− x4 =

x4(487−687x4)
200(1− x4)

> 0.

We then obtain g(x) < 0 for 0 < x < 0.9.
Case 2. 0.9 � x < 1.
Write (2.12) as

−x2g(x) = f1(x)−g1(x),

where

f1(x) = 2x2 +
687
1000

x5 arctlx and g1(x) = (arcslx)2 + xarctlx

are both strictly increasing. We divide the interval [0.9,1] into 1000 subintervals:

[0.9,1] =
999⋃
k=0

[
0.9+

k
10000

,0.9+
k+1
10000

]
for k = 0,1,2, . . . ,999.

By direct computation we get

f1

(
0.9+

0
10000

)
−g1

(
0.9+

0+1
10000

)
= 0.15181132183 . . . > 0,
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f1

(
0.9+

1
10000

)
−g1

(
0.9+

1+1
10000

)
= 0.15198131579 . . . > 0,

...

f1

(
0.9+

998
10000

)
−g1

(
0.9+

998+1
10000

)
= 0.02557091989 . . . > 0,

f1

(
0.9+

999
10000

)
−g1

(
0.9+

999+1
10000

)
= 0.00013841386 . . . > 0.

We then obtain

f1

(
0.9+

k
10000

)
−g1

(
0.9+

k+1
10000

)
> 0 for k = 0,1,2, . . . ,999.

Hence,

−x2g(x) > 0 for x ∈
[
0.9+

k
10000

,0.9+
k+1
10000

]
and k = 0,1,2, . . . ,999.

This implies that g(x) is negative for 0.9 � x < 1. Hence, g(x) < 0 holds for 0 < x < 1.
The proof of Theorem 2.1 is complete. �

For 0 � x � 1, let

W2(x) =
2− ( x

arcslx

)2 − x
arctlx

x3 arctlx
.

By using the computer program MAPLE 11, we find that the function W2(x) is strictly
increasing on [0,1] , and

W2(0) = lim
x→0

W2(x) =
1
20

and W2(1) = 0.3367687 . . ..

This fact motivated us to establish Theorem 2.2.

THEOREM 2.2. For 0 < x < 1 , we have

2− 337
1000

x3 arctlx <
( x

arcslx

)2
+

x
arctlx

< 2− 1
20

x3 arctlx. (2.14)

Proof. The left-hand side of (2.14) is obtained by considering the function f (x)
defined, for 0 < x < 1, by

f (x) =
( x

arcslx

)2
+

x
arctlx

−2+
337
1000

x3 arctlx. (2.15)
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We consider two cases to prove f (x) > 0 for 0 < x < 1.
Case 1. 0 < x < 0.9.
By the right-hand side of (2.9) and (2.13), we have

f (x) >
(
1− x4)1/5−1+

337
1000

x3
(

x− 3
20

x5
)

=
(
1− x4)1/5−

(
1− 337

1000
x4 +

1011
20000

x8
)

.

Elementary calculations show that, for 0 < x < 0.9,

(
1− x4)−(1− 337

1000
x4 +

1011
20000

x8
)5

= x4
{

137
200

− 34711
25000

x4 +
72343453
100000000

x8− 52454000461
200000000000

x12
}

+ x20
{

68874459843457
1000000000000000

− 53030994466071
4000000000000000

x4
}

+ x28
{

73943762523813
40000000000000000

− 35869109293341
200000000000000000

x4
}

+ x36
{

352074461122017
32000000000000000000

− 1056223383366051
3200000000000000000000

x4
}

> 0,

since each of the terms in the braces is positive for 0 < x < 0.9. We then obtain f (x) > 0
for 0 < x < 0.9.

Case 2. 0.9 � x < 1.
Write (2.15) as

f (x) = f2(x)−g2(x),

where

f2(x) =
x

arctlx
+

337
1000

x3 arctlx and g2(x) = 2−
( x

arcslx

)2

are both strictly increasing. The proofs of the monotonicity properties for f1(x) and
f2(x) are easy, we here omit the proofs.

We divide the interval [0.9,1] into 1000 subintervals:

[0.9,1] =
999⋃
k=0

[
0.9+

k
10000

,0.9+
k+1
10000

]
for k = 0,1,2, . . . ,999.

By direct computation we get

f2

(
0.9+

0
10000

)
−g2

(
0.9+

0+1
10000

)
= 0.11846213787 . . . > 0,
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f2

(
0.9+

1
10000

)
−g2

(
0.9+

1+1
10000

)
= 0.11847537183 . . . > 0,

...

f2

(
0.9+

998
10000

)
−g2

(
0.9+

998+1
10000

)
= 0.00877117141 . . . > 0,

f2

(
0.9+

999
10000

)
−g2

(
0.9+

999+1
10000

)
= 0.00005905035 . . . > 0.

Hence,

f (x) > 0 for x ∈
[
0.9+

k
10000

,0.9+
k+1
10000

]
and k = 0,1,2, . . . ,999.

This implies that f (x) is positive for 0.9 � x < 1. Hence, f (x) > 0 holds for 0 < x < 1.
The right-hand side of (2.14) is obtained by considering the function F(x) defined,

for 0 < x < 1, by

F(x) =
( x

arcslx

)2
+

x
arctlx

−2+
1
20

x3 arctlx.

By the left-hand side of (2.9) and (2.13), we have, for 0 < x < 1,

F(x) <
3+2(1− x4)1/2

5
+

x

x− 3
20x5

−2+
1
20

x4

= −160−104x4+3x8− (160−24x4)
√

1− x4

20(20−3x4)
.

Elementary calculations show that, for 0 < x < 1,(
160−104x4+3x8

)2−
(
(160−24x4)

√
1− x4

)2
= x8(3520−48x4+9x8) > 0.

We then obtain F(x) < 0 for 0 < x < 1. The proof of Theorem 2.2 is complete. �

2.2. Huygens type inequalities

For 0 � x � 1, let

H1(x) =
2arcslx

x + arctlx
x −3

x3 arctlx
.

By using the computer program MAPLE 11, we find that the function H1(x) is strictly
increasing on [0,1] , and

H1(0) = lim
x→0

H1(x) =
1
20

and H1(1) = 0.57799173 . . ..

This fact motivated us to establish Theorem 2.3.
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THEOREM 2.3. For 0 < x < 1 , we have

3+
1
20

x3 arctlx < 2

(
arcslx

x

)
+

arctlx
x

< 3+
578
1000

x3 arctlx. (2.16)

Proof. By the left-hand sides of (2.9) and (2.13), we have, for 0 < x < 1,

2

(
arcslx

x

)
+

arctlx
x

−3− 1
20

x3 arctlx

= 2

(
arcslx

x

)
+
(

1
x
− 1

20
x3
)

arctlx−3

> 2

(
5

3+2(1− x4)1/2

)1/2

+
(

1
x
− 1

20
x3
)(

x− 3
20

x5
)
−3

= 2

(
5

3+2(1− x4)1/2

)1/2

−
(

2+
1
5
x4
)

+
3

400
x8.

It is easy to prove that

2

(
5

3+2(1− x4)1/2

)1/2

> 2+
1
5
x4 for 0 < x < 1

(we here omit the proof). We then see that the left-hand side of (2.16) is valid for
0 < x < 1.

The right-hand side of (2.16) is obtained by considering the function G(x) defined,
for 0 < x < 1, by

G(x) = 3−2

(
arcslx

x

)
−
(

1
x
− 578

1000
x3
)

arctlx. (2.17)

We consider two cases to prove G(x) > 0 for 0 < x < 1.
Case 1. 0 < x < 0.9.
By the right-hand sides of (2.9) and (2.13), we have

G(x) > 3−2

(
1

(1− x4)1/10

)
−
(

1
x
− 578

1000
x3
)

x = 2

{
1+

289
1000

x4− 1

(1− x4)1/10

}
.

Elementary calculations show that, for 0 < x < 0.9,

(
1+

289
1000

x4
)10

− 1
1− x4 > 1+

289
100

x4 +
751689
200000

x8 − 1
1− x4

=
x4(378000+173689x4−751689x8)

200000(1− x4)
> 0.

We then obtain G(x) > 0 for 0 < x < 0.9.
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Case 2. 0.9 � x < 1.
Write (2.17) as

xG(x) = f3(x)−g3(x),

where

f3(x) = 3x+
578
1000

x4 arctlx. and g3(x) = 2arcslx+ arctlx

are both strictly increasing. We divide the interval [0.9,1] into 100000 subintervals:

[0.9,1] =
99999⋃
k=0

[
0.9+

k
1000000

,0.9+
k+1

1000000

]
for k = 0,1,2, . . . ,99999.

By direct computation we get

f3

(
0.9+

0
1000000

)
−g3

(
0.9+

0+1
1000000

)
= 0.210401355429 . . .> 0,

f3

(
0.9+

1
1000000

)
−g3

(
0.9+

1+1
1000000

)
= 0.210401920798 . . .> 0,

...

f3

(
0.9+

99998
1000000

)
−g3

(
0.9+

99998+1
1000000

)
= 0.001997169404 . . . > 0.

f3

(
0.9+

99999
1000000

)
−g3

(
0.9+

99999+1
1000000

)
= 0.000001989345 . . . > 0.

We then obtain

f3

(
0.9+

k
1000000

)
−g3

(
0.9+

k+1
1000000

)
> 0 for k = 0,1,2, . . . ,99999.

Hence,

xG(x) > 0 for x ∈
[
0.9+

k
1000000

,0.9+
k+1

1000000

]
and k = 0,1,2, . . . ,99999.

This implies that G(x) is positive for 0.9� x < 1. Hence, G(x) > 0 holds for 0< x < 1.
The proof of Theorem 2.3 is complete. �

For 0 � x � 1, let

H2(x) =
3−2

(
x

arcslx

)− x
arctlx

x3 arctlx
.
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By using the computer program MAPLE 11, we find that the function H2(x) is strictly
increasing on [0,1] , and

H2(0) = lim
x→0

H2(x) =
1
20

and H2(1) = 0.399613 . . . .

This fact motivated us to establish Theorem 2.4.

THEOREM 2.4. For 0 < x < 1 , we have

3− 2
5
x3 arctlx < 2

( x
arcslx

)
+

x
arctlx

< 3− 1
20

x3 arctlx. (2.18)

Proof. The left-hand side of (2.18) is obtained by considering the function J(x)
defined, for 0 < x < 1, by

J(x) = 2
( x

arcslx

)
+

x
arctlx

−3+
2
5
x3 arctlx. (2.19)

We consider two cases to prove J(x) > 0 for 0 < x < 1.
Case 1. 0 < x < 0.9.
By the right-hand side of (2.9) and (2.13), we have

J(x) > 2(1− x4)1/10−2+
2
5
x3
(

x− 3
20

x5
)

= 2

{
(1− x4)1/10−

(
1− 1

5
x4 +

3
100

x8
)}

.

Elementary calculations show that, for 0 < x < 0.9,

(1− x4)−
(

1− 1
5
x4 +

3
100

x8
)10

= x4
{

1− 21
10

x4 +
3
2
x8− 1617

2000
x12
}

+ x20
{

2169
6250

− 3063
25000

x4
}

+ x28
{

4539
125000

− 91557
10000000

x4
}

+ x36
{

49511
25000000

− 184607
500000000

x4
}

+ · · · + x76
{

19683
500000000000000000

− 59049
100000000000000000000

x4
}

> 0,

since each of the terms in the braces is positive for 0 < x < 0.9. We then obtain J(x)> 0
for 0 < x < 0.9.

Case 2. 0.9 � x < 1.
Write (2.19) as

J(x) = f4(x)−g4(x),
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where

f4(x) =
x

arctlx
+

2
5
x3 arctlx and g4(x) = 3− 2x

arcslx

are both strictly increasing. We divide the interval [0.9,1] into 1000 subintervals:

[0.9,1] =
999⋃
k=0

[
0.9+

k
10000

,0.9+
k+1
10000

]
for k = 0,1,2, . . . ,999.

By direct computation we get

f4

(
0.9+

0
10000

)
−g4

(
0.9+

0+1
10000

)
= 0.148928720936 . . .> 0,

f4

(
0.9+

1
10000

)
−g4

(
0.9+

1+1
10000

)
= 0.148947921862 . . .> 0,

...

f4

(
0.9+

998
10000

)
−g4

(
0.9+

998+1
10000

)
= 0.011580368463 . . .> 0,

f4

(
0.9+

999
10000

)
−g4

(
0.9+

999+1
10000

)
= 0.000177032765 . . .> 0.

Hence,

J(x) > 0 for x ∈
[
0.9+

k
10000

,0.9+
k+1
10000

]
and k = 0,1,2, . . . ,999.

This implies that J(x) is positive for 0.9 � x < 1. Hence, J(x) > 0 holds for 0 < x < 1.
By the left-hand side of (2.9) and (2.13), we have, for 0 < x < 1,

3− 1
20

x3 arctlx−2
( x

arcslx

)
− x

arctlx

> 3− 1
20

x4−2

(
3+2

√
1− x4

5

)1/2

− x

x− 3
20x5

=
800−200x4 +3x8

20(20−3x4)
−2

(
3+2

√
1− x4

5

)1/2

> 0.

The proof of the last inequality is easy, we here omit the proof. Hence, the right-hand
side of (2.18) is valid for 0 < x < 1. The proof of Theorem 2.4 is complete. �
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3. Inequalities between the inverse hyperbolic tangent and inverse sine functions

It is known in the literature that

(arctanx)2 � x ln(x+
√

1+ x2)√
1+ x2

(3.1)

for x ∈ R . Masjed-Jamei [25] first established the inequality (3.1) for |x|< 1, and then
Zhu and Malešević [65, Theorem 1.1] proved the inequality (3.1) for x ∈ R . Inequality
(3.1) gives the upper bound for the square of the inverse tangent function arctanx by
the inverse hyperbolic sine function arcsinhx = ln(x+

√
1+ x2) .

Zhu and Malešević [66] obtained a general result on the natural approximation of
the function (arctanx)2− (xarcsinhx)/

√
1+ x2 , and proved a conjecture raised by Zhu

and Malešević [65]. Recently, Chen and Malešević [13] developed (3.1) to produce a
double inequality and proved that for x > 0,

xarcsinhx√
1+ x2 + αx4

< (arctanx)2 <
xarcsinhx√
1+ x2 + βx4

, (3.2)

with the best possible constants

α =
2
45

and β = 0. (3.3)

For 0 < x < 1, the following inequality were proved in [13, 65]:

xarcsinx

1− 1
2x2

< (arctanhx)2 <
xarcsinx√

1− x2
, (3.4)

which is an analogue of (3.1). Inequality (3.4) gives the upper and lower bounds for
the square of inverse hyperbolic tangent function arctanhx = 1

2 ln 1+x
1−x by inverse sine

function arcsinx .
By using the computer program MAPLE 11, Chen and Malešević [13] conjectured

that for 0 < x < 1,

xarcsinx(
1− 41

45x2
) 45

82

< (arctanhx)2, (3.5)

and the authors pointed out that the lower bound in (3.5) is better than the lower bound
in (3.4).

In this section, we prove the conjecture (3.5).

THEOREM 3.1. For 0 < x < 1 , the inequality (3.5) holds, and the power number
45
82 in (3.5) is the best.

Proof. We consider two cases to prove the inequality (3.5).
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Case 1. 0 < x < 0.9.
Let

F(x) =
(

1− 41
45

x2
) 45

82 (arctanhx)2

x
− arcsinx.

Differentiation yields

F ′(x) =
(

1− 41
45

x2
) 45

82

G(x),

where

G(x) =
2arctanhx
x(1− x2)

− (4x2 +45)(arctanhx)2

x2(45−41x2)
− 1(

1− 41
45x2

) 45
82
√

1− x2
.

From the continued fraction [17, p. 216, Eq. (11.6.8)]

arctanhx =
x

1−x2

1+

1·2
1·3 x2

1−x2

1+

1·2
3·5 x2

1−x2

1+

3·4
5·7 x2

1−x2

1+

3·4
7·9 x2

1−x2

1+
. . .

,

we find, for 0 < x < 1,

x
1−x2

1+

1·2
1·3 x2

1−x2

1+

1·2
3·5 x2

1−x2

1+

3·4
5·7 x2

1−x2

1

< arctanhx <

x
1−x2

1+

1·2
1·3 x2

1−x2

1+

1·2
3·5 x2

1−x2

1+

3·4
5·7 x2

1−x2

1+

3·4
7·9 x2

1−x2

1

,

which can be written for 0 < x < 1 as

5x(21−11x2)
3(35−30x2 +3x4)

< arctanhx <
x(315−420x2 +113x4)

15(1− x2)(21−14x2 + x4)
. (3.6)
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Using (3.6), we obtain

G(x) >
2

x(1− x2)

(
5x(21−11x2)

3(35−30x2 +3x4)

)

− 4x2 +45
x2(45−41x2)

(
x(315−420x2+113x4)

15(1− x2)(21−14x2 + x4)

)2

− 1(
1− 41

45x2
) 45

82
√

1− x2
= I(x)− J(x),

where

I(x) =
I1(x)

225(35−30x2+3x4)(1− x2)2(45−41x2)(21−14x2 + x4)2 (3.7)

with

I1(x) = 156279375−640993500x2+1069480125x4−924767550x6

+434967225x8−106273040x10+11773755x12−491478x14,

and

J(x) =
1(

1− 41
45x2

) 45
82
√

1− x2
. (3.8)

We now prove that

I(x) > J(x) for 0 < x < 0.9. (3.9)

For 0 < x < 0.9, let

P(x) = ln I(x)− lnJ(x).

Differentiation yields

P′(x) =
4x5P20(x)

(45−41x2)(21−14x2 + x4)(1− x2)(35−30x2 +3x4)P14(x)
,

where

P20(x) = 273124254375−1473529286250x2+3396006880875x4

−4369916716200x6+3448278347150x8−1729511498540x10

+554979220590x12−112293885192x14+13783416459x16

−954301626x18+28751463x20

and

P14(x) = 156279375−640993500x2+1069480125x4−924767550x6

+434967225x8−106273040x10+11773755x12−491478x14.
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Noting that P20(x) > 0 and P14(x) > 0 hold for 0 < x < 0.9, we obtain P′(x) > 0 for
0 < x < 0.9. Hence, P(x) is strictly increasing on (0.0.9) , and we have

P(x) > lim
u→0

P(u) = 0 for 0 < x < 0.9.

This means that the inequality (3.9) is valid. We then obtain G(x) > 0 and F ′(x) > 0
for 0 < x < 0.9. Hence, F(x) is strictly increasing on (0.0.9) , and we have

F(x) > lim
u→0

F(u) = 0 for 0 < x < 0.9.

This means that the inequality (3.5) is valid for 0 < x < 0.9.
Case 2. 0.9 � x < 1.
Let

g(x) = g1(x)+g2(x),

where

g1(x) = − xarcsinx(
1− 41

45x2
) 45

82

and g2(x) = (arctanhx)2.

Let 0.9 � r < x < s � 1. Since g1(x) is strictly decreasing and g2(x) is strictly
increasing, we obtain

g(x) > g1(s)+g2(r) =: σ(r,s).

We divide the interval [0.9,1] into 100 subintervals:

[0.9,1] =
99⋃

k=0

[
0.9+

k
1000

,0.9+
k+1
1000

]
.

By direct computation we get

g2

(
0.9+

k
1000

)
> −g1

(
0.9+

k+1
1000

)
for k = 0,1,2, . . . ,99;

ie.

σ
(

0.9+
k

1000
,0.9+

k+1
1000

)
> 0 for k = 0,1,2, . . . ,99.

Hence,

g(x) > 0 for x ∈
[
0.9+

k
1000

,0.9+
k+1
1000

]
and k = 0,1,2, . . . ,99.

This implies that g(x) is positive for 0.9 � x < 1. Hence, the inequality (3.5) holds for
0.9 � x < 1.
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If we write (3.5) as

ln( xarcsinx
(arctanh x)2 )

ln(1− 41
45x2)

>
45
82

,

we find

lim
x→0+

ln( xarcsinx
(arctanh x)2 )

ln(1− 41
45x2)

=
45
82

.

Hence, the inequality (3.5) holds for 0 < x < 1, and the power number 45
82 in (3.5) is

the best. The proof of Theorem 3.1 is complete. �

4. Inequalities for trigonometric functions

It is known in the literature that

(cosx)1/3 <
sinx
x

<
2+ cosx

3
(4.1)

for 0 < |x| < π/2. The left-hand side inequality was obtained by Adamović and Mitri-
nović (see [26, p. 238]), while the right-hand side inequality was first mentioned by
the German philosopher and theologian Nicolaus de Cusa (1401-1464), by a geometri-
cal method. Huygens [20] gave a rigorous proof of the right-hand side inequality, and
then used it to estimate the number π . The right-hand side inequality is now known as
Cusa’s inequality (see [28, 42, 62]).

The inequalities (4.1) have attracted much interest of many mathematicians and
have motivated a large number of research papers; see, for example, [3, 4, 12, 16, 21,
28, 30, 31, 42, 43, 50, 54, 55, 56, 57, 62] and the references cited therein.

By using inequalities involving Schwab-Borchardt mean, Neuman [31] presented
the following inequality chain:

(cosx)1/3 <

(
cosx

sinx
x

)1/4

<

(
sinx

arctanh(sinx)

)1/2

<

(
cosx+(sinx)/x

2

)1/2

<

(
1+2cosx

3

)1/2

<

(
1+ cosx

2

)2/3

<
sinx
x

, 0 < x <
π
2

, (4.2)

which improves the first inequality in (4.1). Yang [55] proved that for 0 < x < π/2,

sinx
x

<

(
2
3

cos
x
2

+
1
3

)2

< cos3
x
3

<
2+ cosx

3
, (4.3)

which improves the second inequality in (4.1).
Motivated by (4.1), in this section we establish sharp inequalities for trigonometric

functions. By using the obtained results, we present inequality chain and improve the
double inequality (4.1).
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The following elementary power series expansions are useful in our investigation.

cotx =
1
x
−

∞

∑
n=1

22n|B2n|
(2n)!

x2n−1, 0 < |x| < π , (4.4)

where Bn (n = 0,1,2, . . .) are the Bernoulli numbers defined by

z
ez−1

=
∞

∑
n=0

Bn
zn

n!
, |z| < 2π .

The first inequality in (4.1) is equivalent to

x
tanx

<

(
sinx
x

)2

, 0 < x <
π
2

. (4.5)

By using power series expansions for cosx and cotx , we have

(
sinx
x

)2

− x
tanx

=
1− cos(2x)

2x2 − xcotx

=
∞

∑
n=2

(
(−1)n22n+1

(2n+2)!
+

22n|B2n|
(2n)!

)
x2n

=
1
15

x4− 1
945

x6 +
1

2835
x8 +

8
467775

x10 + · · · . (4.6)

This fact motivated us to establish Theorem 4.1.

THEOREM 4.1. (i) For 0 < x < π/2 ,

1
15

x3 sinx <

(
sinx
x

)2

− x
tanx

<

(
2
π

)5

x3 sinx, (4.7)

where the constants 1/15 and (2/π)5 are the best possible.
(ii) For 0 < x < π/2 ,

1
15

x4 − 1
945

x5 sinx <

(
sinx
x

)2

− x
tanx

<
1
15

x4 − 2π6−1920
15π7 x5 sinx, (4.8)

where the 1/945 and (2π6−1920)/(15π7) are the best possible.

Proof. We only prove the inequality (4.7). The proof of (4.8) is analogous. The
inequality (4.7) is obtained by considering the function f (x) defined by

f (x) =

( sinx
x

)2− x
tanx

x3 sinx
, 0 < x <

π
2

.
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Differentiating f (x) and applying power series expansions for sinx and cosx , we find

x6 sin3 x f ′(x) = (2x3 + x)sinxcosx− xsinxcos3 x+(x4 +10)cos2 x

−5cos4 x+ x4−5

=
(

x3 +
1
2
x

)
sin(2x)− x

(
sin(4x)+2sin(2x)

8

)
+(x4 +10)

(
1+ cos(2x)

2

)

−5

(
cos(4x)+4cos(2x)+3

8

)
+ x4−5

=
(

x3 +
1
4
x

)
sin(2x)− 1

8
xsin(4x)− 5

8
cos(4x)+

x4 +5
2

cos(2x)+
3
2
x4− 15

8

=
19
945

x10− 59
14175

x12 +
4

10395
x14− 4271

212837625
x16 +

151
273648375

x18

+
1

516891375
x20 − 1448

1443677610375
x22 +

∞

∑
n=12

(−1)nvn(x), (4.9)

where

vn(x) =
(40−2n−2n2−8n3 +8n4)4n +(n−10)16n

16 · (2n)!
x2n.

Elementary calculations show that for 0 < x < π/2 and n � 12,

vn+1(x)
vn(x)

=
x2
(
(144+8n+88n2+96n3 +32n4)4n +(16n−144)16n

)
2(2n+1)(n+1)

(
(40−2n−2n2−8n3 +8n4)4n +(n−10)16n

)
<

(
(π/2)2

n+1

)
(144+8n+88n2+96n3 +32n4)4n +(16n−144)16n

2(2n+1)
(
(40−2n−2n2−8n3 +8n4)4n +(n−10)16n

)
<

(144+8n+88n2+96n3 +32n4)4n +(16n−144)16n

2(2n+1)
(
(40−2n−2n2−8n3 +8n4)4n +(n−10)16n

)
and

2(2n+1)
(
(40−2n−2n2−8n3 +8n4)4n +(n−10)16n

)
−
(
(144+8n+88n2+96n3 +32n4)4n +(16n−144)16n

)
= (32n5−48n4−120n3−100n2 +148n−64)4n+(4n2−54n+124)16n > 0.

We then obtain that for 0 < x < π/2 and n � 12,

vn+1(x)
vn(x)

< 1.
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Hence, for every x ∈ (0,π/2) , the sequence n �−→ vn(x) is strictly decreasing for n �
12. Therefore, we obtain from (4.9) that for 0 < x < π/2,

x6 sin3 x f ′(x) > x10
(

19
945

− 59
14175

x2
)

+ x14
(

4
10395

− 4271
212837625

x2
)

+ x18
(

151
273648375

+
1

516891375
x2− 1448

1443677610375
x4
)

> 0,

which implies f ′(x) > 0 for 0 < x < π/2. So, the function f (x) is strictly increasing
for 0 < x < π/2, and we have

1
15

= lim
t→0+

f (t) < f (x) =

(
sinx
x

)2− x
tanx

x3 sinx

< lim
t→(π/2)−

f (t) =
(

2
π

)5

for all 0 < x < π/2, with the constants 1/15 and (2/π)5 being possible. The proof is
complete. �

REMARK 4.1. The inequalities (4.8) are sharper than the inequalities (4.7). Not-
ing that

1 >

(
1− 1

15
x5

sinx

)1/3

>

(
1− π5

480

)1/3

= 0.71299468 . . ., 0 < x <
π
2

,

from (4.1) and (4.7) we obtain the following inequality chain:

(
1−
(

2
π

)5 x5

sinx

)1/3
sinx
x

< (cosx)1/3 <

(
1− 1

15
x5

sinx

)1/3
sinx
x

<
sinx
x

<
2+ cosx

3
(4.10)

for 0 < x < π/2.
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