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Abstract. This article is devoted to study the existence of a.e. monotonic solutions of functional
quadratic Urysohn integral equations in Orlicz spaces Lϕ . Due to various continuity proper-
ties of the operators in Orlicz spaces, there are many different cases to discuss the considered
problem. We focus on assumptions permitting us to consider strongly nonlinear operators and
to combine the results of both standard and quadratic integral equations. We discuss the studied
problem in three general and different cases when the function ϕ satisfies Δ′, Δ2 , and Δ3 -
conditions separately under a general set of assumptions.

1. Introduction

Quadratic functional integral equations have been applied in various branches such
as, in neutron transport theory, radioactive transfer theory, the traffic theory, plasma
physics, kinetic theory of gases, and in mathematical physics (cf. [2, 9, 10, 21]).

We dedicate to study the following quadratic-Urysohn integral equation

x(t) = g(t)+ f

(
t,x(η(t)), λ ·G(x)(t) ·

∫ b

a
u(t,s,x(s)) ds

)
, t ∈ [a,b] (1)

in Orlicz spaces Lϕ , where G is a general operator acting on some Orlicz spaces.
We discuss equation (1) in three different cases when the function ϕ satisfies

Δ′, Δ2 , and Δ3 -conditions separately.
These are very large and interesting classes that permit us to get more general

growth conditions (of exponential growth, for instance) basically more rapid than a
polynomial growth on the considered operators (cf. [11, 20, 29]). Let me mention, the
thermodynamical problem leads to the integral equation

x(t)+
∫
I
k(t,s) · ex(s) ds = 0,

which has exponential nonlinearities (cf. [32]). Also, the Chandrasekhar equation rep-
resents an important prototype of the quadratic integral equation which was discussed
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in the space of continuous solutions (cf. [9, 19]). This equation describes scattering
through a homogeneous semi-infinite plane atmosphere. The discontinuous solutions
are useful estimation of non-homogeneous atmosphere for such equation (cf. [8]), then
we focus on solutions in Orlicz spaces (see also [14]).

Recall that, the discontinuous solutions of particular cases of equation (1) have
been studied in Orlicz spaces with G(x) = 1 and f (t,x,y) = y (cf. [26, 27, 28, 30] for
non-quadratic equations). Some additionally properties of solutions of such equations
were also examined in Orlicz spaces like constant-sign solutions (see [1], for instance)
and the results in generalized Orlicz spaces (Musielak-Orlicz spaces) can be found in
[7, 28].

In [4], the existence of monotonic integrable solutions had checked, where G(x) =
1, f (t,x,y) = f (t,y) , (see also [8, 17]) and in [25], this was done for equations with
a perturbation term, where f (t,x,y) = f1(t,y), G(x) = f2(t,x) , using the measure of
noncompactness (see also [23]). The quadratic Hammerstein integral equations were
discussed in [15] with f (t,x,y) = y in Orlicz spaces Lϕ when ϕ satisfies Δ′ and Δ3 -
conditions separately, and in [14] with G(x) = x .

In [13, 16] the authors studied the quadratic Hammerstein integral equation in
Orlicz spaces with G(x) = u(t,x), f (t,x,y) = y and in [24] with linear perturbation of
second kind while L∞ is one of the intermediate spaces. The case when the function ϕ
satisfies Δ2 -condition was checked in [12].

Another motivation of this work is to examine the monotonicity property of solu-
tions which is studied in various previous articles (cf. [5, 6, 23], for instance).

This article extends the results presented in the previous studies by studying the
solvability of functional quadratic-Urysohn integral equations in Orlicz spaces under
a general set of assumptions with aid of Darbo fixed point theorem. We skip several
restrictions like in [8, 14, 16, 24] by using the strategy discussed in [13] and assuming a
triple of different Orlicz spaces (need not be Banach algebras). This allows us to unify
the proof for quadratic and non-quadratic cases.

2. Notation and auxiliary facts

Let R be the field of real numbers and I = [a,b] ⊂ R . Assume that M and N
be complementary N -functions i.e. N(x) = supy�0(xy−M(x)) , where N : [0,+∞) →
[0,+∞) is continuous, convex and even with limx→0

N(x)
x = 0, limx→∞

N(x)
x = ∞ and

N(x) > 0 if x > 0 (N(u) = 0 ⇐⇒ u = 0).
Denote by LM(I) the Orlicz space of all measurable functions x : I →R for which

‖x‖M = inf
ε>0

{∫
I
M

(
x(s)

ε

)
ds � 1

}
.

Let EM(I) be the closure in LM(I) of the set of all bounded functions. Further, EM -
spaces be a class of functions from LM having absolutely continuous norms.

Moreover, we have EM = LM if M satisfies the Δ2 -condition, i.e.

(Δ2) there exist ω , t0 � 0 such that M(2t) � ωM(t), t � t0.
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The N -function M is said to satisfy Δ′ -condition if there exist K, t0 � 0 such that for
t,s � t0, we have M(ts) � KM(t)M(s) .

Moreover, the N -function M is said to satisfy Δ3 -condition if there exist K, t0 � 0
such that for t � t0, we have tM(t) � M(Kt) .

DEFINITION 1. [20] Assume that a function f : I×R→R satisfies Carathéodory
conditions i.e. it is measurable in t for any x ∈ R and continuous in x for almost all
t ∈ I . Then to every function x(t) being measurable on I we may assign the function

Ff (x)(t) = f (t,x(t)), t ∈ I.

The operator Ff in such a way is called the superposition operator generated by the
function f .

LEMMA 1. ([20, Theorem 17.5]) Assume that a function f : I×R → R satisfies
Carathéodory conditions. Then

M2( f (s,x)) � a(s)+b ·M1(x),

where b � 0 and a ∈ L1(I) , if and only if the superposition operator Ff acts from
LM1(I) to LM2(I) .

LEMMA 2. [24] Assume that a function f : I ×R → R satisfies Carathéodory
conditions. The superposition operator Ff maps Eφ (I) → Eφ (I) is continuous and
bounded if and only if

| f (s,x)| � m(s)+b · |x|,
where b � 0 and m ∈ Lφ (I) in which the N -function φ satisfies the Δ2 -condition.

For the product of operators in Orlicz spaces, we have the following lemma:

LEMMA 3. [22, Theorem 10.2] Let ϕ1,ϕ2 and ϕ are arbitrary N -functions.
The following conditions are equivalent:

1. For every functions u ∈ Lϕ1(I) and w ∈ Lϕ2 , u ·w ∈ Lϕ(I) .

2. There exists a constant k > 0 such that for all measurable u,w on I we have
‖uw‖ϕ � k‖u‖ϕ1‖w‖ϕ2 .

3. There exists numbers C > 0 , u0 � 0 such that for all s,t � u0, ϕ
(

st
C

)
� ϕ1(s)+

ϕ2(t) .

4. limsupt→∞
ϕ−1

1 (t)ϕ−1
2 (t)

ϕ(t) < ∞ .

Let S = S(I) denotes the set of Lebesgue measurable functions on I and let “meas”
refers to the Lebesgue measure in R . The set S associated with the metric

d(x,y) = inf
a>0

[a+meas{s : |x(s)− y(s)| � a}]
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be a complete space. The convergence in measure on I is equivalent to convergence
with respect to d (cf. Proposition 2.14 in [31]). The compactness in such spaces is
called a “compactness in measure”.

LEMMA 4. [14] Let X be a bounded subset of LM(I) . Assume that, there is
a family of subsets (Ωc)0�c�b−a of the interval I such that meas Ωc = c for every
c ∈ [0,b−a] , and for every x ∈ X ,

x(t1) � x(t2), (t1 ∈ Ωc, t2 	∈ Ωc).

Then X is compact in measure in LM(I) .

In what follows, assume that (E,‖ ·‖) be an arbitrary Banach space with zero ele-
ment θ . Denote by Br the closed ball centered at θ and with radius r and the symbol
Br(E) is to point out the space. If X ⊂ E , then X and convX indicate the closure and
convex closure of X , respectively. By ME denotes the family of all nonempty and
bounded subsets of E and by NE its subfamily consisting of all relatively compact
subsets.

DEFINITION 2. [3] A mapping μ : ME → [0,∞) is said to be a measure of non-
compactness in E if the following conditions hold:

(i) μ(X) = 0 ⇐⇒ X ∈ NE .
(ii) X ⊂ Y =⇒ μ(X) � μ(Y ).
(iii)μ(X) = μ(convX) = μ(X).
(iv) μ(λX) = |λ |μ(X) , for λ ∈ R.
(v) μ(X +Y) � μ(X)+ μ(Y) .
(vi) μ(X

⋃
Y ) = max{μ(X),μ(Y )} .

(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such that
Xn+1 ⊂Xn, n = 1,2,3, · · ·, and limn→∞ μ(Xn)= 0, then the set X∞ =

⋂∞
n=1 Xn is nonempty.

An example of such a mapping is the following:

DEFINITION 3. [3] Let X be a nonempty and bounded subset of E . The Haus-
dorff measure of noncompactness βH(X) is defined as

βH(X) = in f{r > 0 : there exists a finite subset Y of E such that x ⊂ Y +Br}.
For any ε > 0, let c be a measure of equiintegrability of the set X in LM(I) (cf.

Definition 3.9 in [31] or [18]):

c(X) = lim
ε→0

sup
mesD�ε

sup
x∈X

‖x · χD‖LM(I),

where χD denotes the characteristic function of a measurable subset D ⊂ I .

LEMMA 5. [18, 15] Let X be a nonempty, bounded and compact in measure
subset of EM(I) . Then

βH(X) = c(X).
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THEOREM 1. [3] Let Q be a nonempty, bounded, closed and convex subset of E
and let V : Q → Q be a continuous transformation which is a contraction with respect
to the measure of noncompactness μ , i.e. there exists k ∈ [0,1) such that

μ(V (X)) � kμ(X),

for any nonempty subset X of E . Then V has at least one fixed point in the set Q.

3. Main results

Denote by B the operator associated with the right-hand side of equation (1) i.e.

x = B(x) = g+Ff
(
x(η),U(x)

)
,

where
Ff (x(η),U(x)) = f

(
t,x(η),U(x)

)
, U(x) = λG(x) ·A(x),

A(x)(t) =
∫ b

a
u(t,s,x(s))ds.

We will characterize three different cases, which permits us to get more general growth
conditions on the considered functions. We shall stress on the assumptions of the con-
sidered functions to nominate the intermediate spaces, in which our results are in the
target space Lϕ(I) .

3.1. The case of Δ′ -condition

Assume, that ϕ ,ϕ1,ϕ2 are N -functions and that M and N are complementary N -
functions, where ϕ satisfies Δ2 -condition. Moreover, put the following assumptions:

(G1) There exists a constant k1 > 0 such that for every v ∈ Lϕ1(I) and w ∈ Lϕ2(I) we
have ‖vw‖ϕ � k1‖v‖ϕ1‖w‖ϕ2 ,

(G2) f (t,x,y) : I×R×R→R is measurable in t and continuous in x and y for almost
all t . There exist constants b1,b2 � 0 and a ∈ Lϕ (I) such that

| f (t,x,y)| � a(t)+b1‖x‖ϕ +b2‖y‖ϕ .

Moreover, assume that f (t,x,y) is nondecreasing with respect to each variable
t,s and x separately,

(G3) G : Lϕ (I) → Lϕ1(I) , takes continuously Eϕ(I) into Eϕ1(I) and there exists a
constant b0 > 0 such that |G(x)| � b0‖x‖ϕ and that G takes the set of all a.e.
nondecreasing functions into itself. Moreover, assume that for any x∈ Eϕ(I) , we
have G(x) ∈ Eϕ1(I) .

(C1) g ∈ Eϕ(I) is nondecreasing a.e. on I ,
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(C2) u(t,s,x) : I× I×R→R satisfies Carathéodory conditions (i.e. it is measurable in
(t,s) for any x∈R and continuous in x for almost all t,s∈ I . Further, u(t,s,x) is
assumed to be nondecreasing with respect to each variable t,s and x separately,

(C3) |u(t,s,x)|� K(t,s)(b(s)+R(|x|) for t,s∈ I and x∈R , where b∈EN(I) and R is
nonnegative, nondecreasing, continuous function defined on R

+ , and K(t,s) � 0
for t,s ∈ I .

(C4) Let N satisfies the Δ′ -condition and suppose that there exist ω , γ, u0 � 0 for
which

N(ω(R(u))) � γϕ(u) � γM(u) for u � u0,

(K1) s → K(t,s) ∈ LM(I) for a.e. t ∈ I ,

(K2) K ∈ EM(I2) and t → K(t,s) ∈ Eϕ2(I) for a.e. s ∈ I ,

(K3) η : I → I is an increasing absolutely continuous function and there is a positive
constant Z such that η ′ � Z a.e. on (a,b) .

PROPOSITION 1.

(a) Assumption (K3) leads to x(η(·)) : Eϕ(I) → Eϕ(I) and gives the estimation

∫ b

a
ϕ
(

x(η(s))
ε

)
ds �

∫ b

a
ϕ
(

x(η(s))
ε

)
η ′(s)

Z
ds

=
1
Z

∫ η(b)

η(a)
ϕ
(

x(v)
ε

)
dv

� 1
Z

∫ b

a
ϕ
(

x(v)
ε

)
dv,

which yields that

‖x(η)‖ϕ � 1
Z
‖x‖ϕ . (2)

(b) Let us recall, that x ∈ Eϕ(I) iff for arbitrary ε > 0 there exists δ > 0 such that
‖xχT‖ϕ < ε for every measurable subset T of I with the Lebesgue measure
smaller that δ (i.e. x has absolutely continuous norm).

THEOREM 2. Let the assumptions (G1)–(G3), (C1)–(C4) and (K1)–(K3), be sat-

isfied. If

(
b1
Z +2b0k1b2 · |λ | · ‖K‖M · (‖b‖N +R(1))

)
< 1 , then there exists a number

ρ > 0 such that for all λ ∈ R with |λ | < ρ there exists a solution x ∈ Eϕ(I) of (1)
which is a.e. nondecreasing on I .

Proof. The proof will be given in the next steps.
Step I. First of all observe that under assumption (G2) and Lemma 2 the operator

Ff acts from Eϕ(I) into itself. Next, we need to prove, that the operator U maps the
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unit ball in Eϕ(I) into the space Eϕ(I) continuously. It is sufficient to examine that
property for the operator A (see Lemma 3).

Since N is an N -function satisfying Δ′ -condition and by (C3), we are able to use
[20, Theorem 19.1]. From this there exists a constant C (not depending on the kernel)
such that for any measurable T ⊂ I and x ∈ Lϕ (I), ‖x‖ϕ � 1 we have

‖A(x)χT‖ϕ2 � C‖KχT×I‖M. (3)

Now, by the Hölder inequality and the assumption (C3), we get

|Ax(t)| � ‖K(t,s)‖ · |(b(s)+R(|x(s)|)) |
for t,s ∈ I . Put k(t) = 2‖K(t, ·)‖M for t ∈ I . As K ∈ EM(I2) this function is integrable
on I . By the assumptions (K1) and (K2) about the kernel K (cf. [30]) we obtain that

‖A(x)(t)‖ � k(t) · (‖b‖N +‖R(|x(·)|)‖N) for a.e. t ∈ I.

Whence for arbitrary measurable subset T of I and x ∈ Eϕ(I)

‖A(x)χT‖ϕ2 � ‖kχT‖ϕ2 · (‖b‖N +‖R(|x(·)|‖N) .

Finally if t is such that K(t, ·) ∈ EM(I) and x ∈ Eϕ (I) we have
∫

T
‖u(t,s,x(s))‖ ds � 2‖K(t, ·)χT‖M · (‖b‖N +‖R(|x(·)|)‖N) for a.e. t ∈ I.

From this it follows that A : B1(Eϕ(I)) → Eϕ2(I) .
Next, we will show that A : B1(Eϕ(I)) → Eϕ2(I) is continuous. Let xn,x0 ∈

B1(Eϕ (I)) be such that ‖xn − x0‖ϕ → 0 as n tends to ∞ . Suppose, contrary to our
claim, that A is not continuous and the ‖A(xn)−A(x0)‖ϕ2 does not converge to zero.
Then there exists ε > 0 and a subsequence (xn j ) such that

‖A(xn j)−A(x0)‖ϕ2 > ε for j = 1,2, . . . (4)

and the subsequence is a.e. convergent to x0 . Since (xn) is a subset of the ball the
sequence (

∫ b
a ϕ(|xn(t)|)dt) is bounded. As the space Eϕ(I) is regular the balls are

norm-closed in L1(I) so the sequence (
∫ b
a |xn(t)|dt) is also bounded.

Moreover, by (C3) and (C4) there exist r, ω , γ, u0 > 0, s.t. (cf. [20, p. 196])

‖R(|x(·)|)‖N =
1
ω
‖ωR(|x(·)|)‖N

� 1
ω

inf
r>0

{∫
N(ωR(|x(t)|)/r)dt � 1

}

� 1
ω

(
1+

∫ b

a
N(ωR(|x(t)|))dt

)

� 1
ω

(
1+N(ωR(u0)) · (b−a)+ γ

∫ b

a
ϕ(|x(t)|)dt

)
,
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whenever x ∈ Lϕ(I) with ‖x‖ϕ � 1.
Thus∫
T
‖u(t,s,xn(s))‖ ds � 2‖K(t, ·)χT‖M · (‖b‖N +‖R(|xn(·)|)‖N)

� 2‖K(t, ·)χT‖M ·
(
‖b‖N +

1
ω

(
1+N(ωR(u0)) · (b−a)

+ γ
∫ b

a
ϕ(|xn(t)|)dt

))

and then the sequence (‖u(t,s,xn(s))‖) is equiintegrable on I for a.e. t ∈ I . By the
continuity of u(t,s, ·) we get lim j→∞ u(t,s,xn j (s)) = u(t,s,x0(s)) for a.e. s ∈ I . Now,
applying the Vitali convergence theorem we obtain that

lim
j→∞

A(xn j)(t) = A(x0)(t) for a.e. t ∈ I.

But the equation (3) implies that A(xn j) is a subset of Eϕ2(I) and then lim j→∞ A(xn j )(t)
= A(x0)(t) which contradicts the inequality (4). Since A is continuous between in-
dicated spaces. By assumption (G3) the operator G is continuous from B1(Eϕ(I))
into Eϕ1(I) and then by (G1) the operator U has the same property and then U :
B1(Eϕ (I)) → Eϕ(I) is continuous. Finally, by the assumption (C1) the operator B :
B1(Eϕ (I)) → Eϕ(I) is continuous.

Step II. We will construct the invariant ball for our operator i.e. B1(Eϕ(I)) .
Let x be an arbitrary element from B1(Eϕ (I)) . By using our assumptions and

recalling the estimation (2) and the formula (3), then for sufficiently small λ (i.e. |λ |<
ρ ), where

ρ =
1−‖g‖ϕ −‖a‖ϕ − b1

Z

2b0k1b2 ·C · ‖K‖M
,

we have

‖B(x)‖ϕ � ‖g‖ϕ +‖ f (t,x(η),U(x))‖ϕ

� ‖g‖ϕ +‖a‖ϕ +b1‖x(η)‖ϕ +b2‖Ux‖ϕ

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +b2‖λG(x) ·A(x)‖ϕ

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +b2k1|λ |‖G(x)‖ϕ1 · ‖A(x)‖ϕ2

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +b2k1 ·b0 · ‖x‖ϕ |λ | ·

∥∥∥∥
∫ b

a
u(t,s,x(s)) ds

∥∥∥∥
ϕ2

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +2k1b2b0‖x‖ϕ · |λ | ·C · ‖K‖M

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
+2b0k1b2 ·ρ ·C · ‖K‖M � 1,

whenever ‖x‖ϕ � 1. Then we have B : B1(Eϕ(I)) → Eϕ(I) is continuous.
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Step III. Let Q1 ⊂ B1(Eϕ(I)) consisting of all functions that are a.e. nondecreas-
ing on I . This set is nonempty, bounded, convex and closed set in Lϕ(I) see [15].
Moreover, the set Q1 is compact in measure due to Lemma 4.

Step IV. Now, we will show, that B preserves the monotonicity of functions. Take
x ∈ Q1 , then x and x(η) is a.e. nondecreasing on I and consequently A(x) is a.e.
nondecreasing on I thanks for the assumption (C2). Since the pointwise product of
a.e. monotone functions are still of the same type and by (G3), the operator U is a.e.
nondecreasing on I . Further, Ff (x(η),U(x)) is also of the same type in virtue of the
assumption (G2). Moreover, the assumption (C1) permits us to deduce that the operator
B is also a.e. nondecreasing on I . This gives us that B : Q1 → Q1 is continuous.

Step V. We will prove that B is a contraction concerning the measure of noncom-
pactness μ . Assume that φ 	= X ⊂ Q1 and let ε > 0 be fixed arbitrary constant. Then
for an arbitrary x ∈ X and for a set D ⊂ I , measD � ε , we have

‖B(x) · χD‖ϕ � ‖g · χD‖ϕ +
∥∥∥∥Ff

(
x(η),Ux

)
· χD

∥∥∥∥
ϕ

� ‖g · χD‖ϕ +‖a · χD‖ϕ +b1‖x(η) · χD‖ϕ +b2‖U(x) · χD‖ϕ

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ +b2‖λ ·G(x) ·A(x) · χD‖ϕ

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ +b2k1 · |λ | · ‖G(x) · χD‖ϕ1 · ‖A(x) · χD‖ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ +b2k1 · |λ | ·b0 · ‖xχD‖ϕ ·

∥∥∥∥
∫

D
u(t,s,x(s)) ds

∥∥∥∥
ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ +b2k1 · |λ | ·b0 · ‖xχD‖ϕ ·2‖K‖M‖b+R(r)‖N

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ +2b0k1b2 · |λ | · ‖xχD‖ϕ · ‖K‖M(‖b‖N +R(1)).

Hence, taking into account that g,a ∈ Eϕ , we have

lim
ε→0

{ sup
mes D�ε

[sup
x∈X

{‖gχD‖ϕ +‖aχD‖ϕ = 0}]}.

Thus by definition of c(x) and by taking the supremum over all x ∈ X and all measur-
able subsets D with measD � ε we get

c(B(X)) �
(

b1

Z
+2b0k1b2 · |λ | · ‖K‖M · (‖b‖N +R(1))

)
c(X).

Since X ⊂ Qr is a nonempty, bounded and compact in measure subset of Eϕ , we can
use Lemma 5 and get

βH(B(X)) �
(

b1

Z
+2b0k1b2 · |λ | · ‖K‖M · (‖b‖N +R(1))

)
βH(X).

Since

(
b1
Z + 2b0k1b2 · |λ | · ‖K‖M · (‖b‖N +R(1))

)
< 1, we can apply Theorem 1,

which accomplishes the proof. �
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3.2. The case of Δ3 -condition

Let us consider the case of N -functions satisfying Δ3 -condition with the growth
essentially more rapid than a polynomial. Note, that an N -function M determines the
properties of the Orlicz spaces LM(I) , and then the less restrictive rate of the growth
of this function implies the “worser” properties of the space. By ϑ we will denote the
norm of the identity operator from Lϕ (I) into L1(I) i.e. sup{‖x‖1 : x ∈ B1(Lϕ (I))} .

THEOREM 3. Assume, that ϕ ,ϕ1,ϕ2 are N -functions and that M and N are
complementary N -functions, where ϕ satisfies Δ2 -condition and that (G1)–(G3), (C1)–
(C3), (K1), and (K3) hold true. Moreover, put the following assumptions:

(C5) 1. N satisfies the Δ3 -condition,

2. K ∈ EM(I2) and t → K(t,s) ∈ Eϕ2(I) for a.e. s ∈ I ,

3. There exist β , u0 > 0 such that

R(u) � β
M(u)

u
, for u � u0,

(K4) ϕ2 is an N-function satisfying∫∫
I2

ϕ2(M(|K(t,s)|)) dtds < ∞

and(
b1

Z
+2b0k1b2|λ | · (2+(b−a)(1+ϕ2(1))) · ‖K‖ϕ2◦M · (‖b‖N +R(r0)

))
< 1,

where

r0 =
1
ϑ

(
ω

b1
Z +2b0k1b2|λ | · (2+(b−a)(1+ϕ2(1))) · ‖K‖ϕ2◦M

−‖b‖N

)
.

Then there exist a number ρ > 0 and a number ϖ > 0 such that for all λ ∈ R

with |λ | < ρ and for all g,a ∈ Eϕ(I) with (‖g‖ϕ +‖a‖ϕ) < ϖ , there exists a solution
x ∈ Eϕ(I) of (1) which is a.e. nondecreasing on I .

Proof. We will introduce only the steps of the proof when they are unlike in The-
orem 2.

Step I’. In this case, we will study the operator B on the whole Eϕ(I) .
By [20, Lemma 15.1 and Theorem 19.2] and the assumption (K4):

‖A(x)χT‖ϕ2 � 2 · (2+(b−a)(1+ϕ2(1))) · ‖K ·χT×I‖ϕ2◦M (‖b‖N +‖R(|x(·)|)‖N) (5)

for arbitrary x ∈ Lϕ(I) and arbitrary measurable subset T of I .
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Let us note, that the assumption (C5) 3. implies that there exist constants ω ,u0 > 0
and η0 > 1 such that N(ωR(u)) � η0u for u � u0 .

Thus for x ∈ Lϕ(I)

‖R(|x(·)|)‖N � 1
ω

(
1+

∫
I
N(ωR(|x(s)|) ds

)

� 1
ω

(
1+ η0u0(b−a)+ η0

∫
I
|x(s)| ds

)
.

The remaining estimations can be derived as in Theorem 2 and then we obtain, that
A : Eϕ (I) → Eϕ2(I) , so by the properties of G and Ff , we get B : Eϕ(I) → Eϕ(I) .

Step II’. We will study the operator B on the ball Br(Eϕ(I)) , where r is a positive
number satisfying

‖g‖ϕ +‖a‖ϕ (6)

+
(

b1

Z
+2b0k1b2|λ |C‖K‖ϕ2◦M

)
· r
(
‖b‖N +

1
ω

(
1+ η0u0(b−a)+ η0ϑr

))
� r,

where C = (2 + (b− a)(1 + ϕ(1))) . The above inequality has two positive solutions
r1 < r2 for sufficiently small λ < ρ , (see [15]), where

ρ =
1(

b1
Z +2b0k1b2 ·C · ‖K‖ϕ2◦M

)(
‖b‖N + 1

ω (1+ η0u0(b−a))
) .

The following assumption about the discriminant implies the existence of solution of
(6).

4(‖g‖ϕ +‖a‖ϕ)η0ϑ
ω

<

(
‖b‖N +

1
ω

(1+ η0u0(b−a))− 1
b1
Z +2b0k1b2|λ |C‖K‖ϕ2◦M

)2

×
(

b1

Z
+2b0k1b2|λ |C‖K‖ϕ2◦M

)

i.e. ϖ =

(
‖b‖N +

1
ω

(1+ η0u0(b−a))− 1
b1
Z +2b0k1b2|λ |C‖K‖ϕ2◦M

)2

×
b1
Z +2b0k1b2|λ |C‖K‖ϕ2◦M

4η0ϑ
.

For x ∈ Br(Eϕ (I)) , we have the following estimation:

‖B(x)‖ϕ � ‖g‖ϕ +‖ f (t,x(η),Ux)‖ϕ

� ‖g‖ϕ +‖a‖ϕ +b1‖x(η)‖ϕ +b2‖Ux‖ϕ

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +b2k1|λ |‖G(x)‖ϕ1 · ‖A(x)‖ϕ2
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= ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +b2k1|λ |‖G(x)‖ϕ1 ·

∥∥∥∥
∫ b

a
u(t,s,x(s)) ds

∥∥∥∥
ϕ2

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +2b2k1 ·C ·b0 · |λ | · ‖x‖ϕ‖K‖ϕ2◦M

(
‖b‖N

+
1
ω

(
1+N(ωR(u0)) · (b−a)+ η0

∫
I
|x(s)| ds

))

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +2b0k1b2|λ | ·C · ‖x‖ϕ‖K‖ϕ2◦M

(
‖b‖N

+
1
ω

(
1+N(ωR(u0)) · (b−a)+ η0‖x‖1

))

� ‖g‖ϕ +‖a‖ϕ +
b1

Z
‖x‖ϕ +2b0k1b2|λ | ·C · ‖x‖ϕ‖K‖ϕ2◦M

(
‖b‖N

+
1
ω

(
1+N(ωR(u0)) · (b−a)+ η0ϑ‖x‖ϕ

))

� ‖g‖ϕ +‖a‖ϕ +
(

b1

Z
+2b0k1b2|λ | ·C · ‖K‖ϕ2◦M

)
· r

×
(
‖b‖N +

1
ω

(
1+ η0u0(b−a)+ η0ϑr

))
� r.

Then B : Br(Eϕ (I)) → Br(Eϕ(I)) is continuous.

Step III’ and Step IV’ of our proof are similar to those from Theorem 2 for a subset
Qr ⊂ Br(Eϕ(I)) .

Step V’. We will prove that B is a contraction concerning a measure of noncom-
pactness. Assume that φ 	= X ⊂ Qr and let ε > 0 be fixed arbitrary constant. Then for
an arbitrary x ∈ X and for a set D ⊂ I , measD � ε , we obtain

‖B(x) · χD‖ϕ � ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+b2k1 · |λ | ·b0 · ‖x · χD‖ϕ ·
∥∥∥∥
∫

D
u(t,s,x(s)) ds

∥∥∥∥
ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+b2k1 · |λ | ·b0 · ‖x · χD‖ϕ ·
∥∥∥∥
∫

D
|K(·,s)|(b(s)+R(|x(s)|)) ds

∥∥∥∥
ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+b2k1 · |λ | ·b0 · ‖x · χD‖ϕ ·
(∥∥∥∥
∫

D
|K(·,s)|b(s) ds

∥∥∥∥
ϕ2

+
∥∥∥∥
∫

D
|K(·,s)|R(|x(s)|)) ds

∥∥∥∥
ϕ2

)
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� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+2b2 ·C · k1 ·b0 · |λ | · ‖x · χD‖ϕ ·ϑ · ‖K‖ϕ2◦M‖b‖N

+2b2 ·C · k1 ·b0 · |λ | · ‖x · χD‖ϕ ·
∥∥∥∥
∫

D
|K(·,s)|R(|x(s)|) ds

∥∥∥∥
ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+2b0k1b2|λ | ·C · ‖x · χD‖ϕ · ‖K‖ϕ2◦M
(
‖b‖N +R(r)

)

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+2b0k1b2|λ | ·C · ‖x · χD‖ϕ · ‖K‖ϕ2◦M
(
‖b‖N +R(r0)

)
,

where

r0 =
1
ϑ

(
ω

b1
Z +2b0k1b2|λ | · (2+(b−a)(1+ϕ2)) · ‖K‖ϕ2◦M

−‖b‖N

)
.

Let us note, that r0 is an upper bound for solutions of (6).
Similarly, as in the previous theorem, we get

βH(B(X)) �
(

b1

Z
+2b0k1b2|λ | ·C · ‖K‖ϕ2◦M · (‖b‖N +R(r0)

))
βH(X).

Since

(
b1
Z +2b0k1b2|λ | ·C ·‖K‖ϕ2◦M ·(‖b‖N +R(r0)

))
< 1, we can apply the Theorem

1, which accomplishes the proof. �

3.3. The case of Δ2 -condition

In this section, we will discuss the case when N -function satisfies Δ2 -condition.

THEOREM 4. Assume, that ϕ ,ϕ1,ϕ2 are N -functions and that M and N are
complementary N -functions and that (G1)–(G3), (C1)–(C3), and (K3) hold true. More-
over, put the following assumptions:

(C6) Assume the N -functions ϕ and N satisfy the Δ2 -condition.

1. There exist γ � 0 such that

R(u) � γN−1 (ϕ (u)) for u � 0.

2. s → K(t,s) ∈ LM(I) for a.e. t ∈ I and p(t) = ‖K(t, ·)‖M ∈ Eϕ2(I) .
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Assume that for some q > 0 , there exists r∗ > 0 on the interval I such that

∫
I
ϕ
(
|g(t)|+ |a(t)|+ b1

Z
· r∗ +b0k1b2 ·q · r∗ · |p(t)|

(
‖b‖N + γ · r∗

))
dt � r∗.

If

(
b1
Z + b0k1b2 · |λ | · ‖p‖ϕ2 ·

(‖b‖N + γ · r∗)) < 1, then there exists a number ρ > 0

such that for all λ ∈ R with |λ | < ρ , there exists a solution x ∈ Eϕ(I) of (1) which is
a.e. nondecreasing on I .

Proof. Step I”. First of all observe that by the assumptions (C2) and (C3), (cf.
[20, Lemma 16.3 and Theorem 16.3] (with M1 = N,M2 = ϕ2 and N1 = M ) implies
that the operator A is continuous mappings from the unit ball B1(Eϕ(I)) into Eϕ2(I) .
By our assumption (G3) the operator G is continuous from B1(Eϕ(I)) into Eϕ1(I) and
then by (G1) the operator U is a continuous mapping from B1(Eϕ(I)) into the space
Eϕ(I) . Finally, by assumptions (C1), (G2), and (K3) we can deduce that the operator
B : B1(Eϕ(I)) → Eϕ(I) is continuous.

Step II”. We will construct an invariant set V ⊂ B1(Eϕ(I)) for the operator B is
bounded in Lϕ (I) .

Fix λ ∈ R with λ < ρ and let ρ = supQ , where Q is the set of all positive
numbers q for which there exists r∗ > 0 such that

∫
I
ϕ
(
|g(t)|+ |a(t)|+ b1

Z
· r∗ +b0k1b2 ·q · r∗ · |p(t)|

(
‖b‖N + γ · r∗

))
dt � r∗.

Let V denote the closure of the set {x ∈ Eϕ(I) :
∫ b
a ϕ(|x(s)|) ds � r∗ −1} . Clearly V is

not a ball in Eϕ(I) , but V ⊂ Br∗(Eϕ(I)) (cf. [20, p. 222]). Notice that V is a bounded
closed and convex subset of Eϕ(I) .

Take an arbitrary x ∈ V . By using ([20, Theorem 10.5 with k = 1]), we obtain
that for any t ∈ I

‖R(|x|)‖N � γ
∥∥∥∥N−1 (ϕ (|x|)))

∥∥∥∥
N

� γ + γ
∫ b

a
ϕ (|x(s)|) ds (7)

and then by the Hölder inequality and our assumptions we get

|A(x)(t)| � |p(t)|
(
‖b‖N +‖R(|x|)‖N

)
.

Thus for any measurable subset T of I . For arbitrary x ∈V and t ∈ I , we have

|B(x)(t)| � |g(t)|+ |a(t)|+b1‖x(η)‖ϕ +b2k1|λ | · |G(x)| · |A(x)(t)|

� |g(t)|+ |a(t)|+ b1

Z
‖x‖ϕ +b2k1|λ |b0‖x‖ϕ · |p(t)|

(
‖b‖N +‖R(|x|)‖N

)
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� |g(t)|+ |a(t)|+ b1

Z

(
1+

∫
I
ϕ(|x(t)|) dt

)

+b2k1|λ |b0

(
1+

∫ b

a
ϕ(|x(t)|) dt

)
· |p(t)|

(
‖b‖N + γ + γ

∫ b

a
ϕ (|x(s)|) ds

)

� |g(t)|+ |a(t)|+ b1

Z
· r∗ +b0k1b2|λ | · r∗ · |p(t)|

(
‖b‖N + γ + γ(r∗ −1)

)
.

Therefore,

∫
I
ϕ(B(x)(t)) dt �

∫
I
ϕ
(
|g(t)|+ |a(t)|

+
b1

Z
· r∗ +b0k1b2|λ | · r∗ · |p(t)|

(
‖b‖N + γ · r∗

))
dt.

By the definition of r∗ we get
∫
I ϕ(B(x)(t)) dt � r∗ and then B(V )⊂V . Consequently

B(V ) ⊂ B(V ) ⊂V = V . Then B : V →V is continuous on V ⊂ Br∗(Eϕ(I)) .

Step III” and Step IV” of our proof are similar to those from Theorem 2 for a
subset Qr∗ ⊂ Br∗(Eϕ(I)) .

Step V”. Assume that X ⊂ Qr∗ is a nonempty and let ε > 0 be arbitrary fixed
constant. Then for an arbitrary x ∈ X and for a set D ⊂ I , meas D � ε , we obtain

‖B(x) · χD‖ϕ � ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖

+b0k1b2 · |λ | · ‖x · χD‖ϕ ·
∥∥∥∥
∫

D
|K(·,s)|(b(s)+R(|x(s)|)) ds

∥∥∥∥
ϕ2

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ

+b0k1b2 · |λ | · ‖x · χD‖ϕ · ‖p‖ϕ2

(
‖b‖N + γ + γ

∫ b

a
ϕ (|x(s)|) ds

)

� ‖g · χD‖ϕ +‖a · χD‖ϕ +
b1

Z
‖x · χD‖ϕ

+b0k1b2 · |λ | · ‖x · χD‖ϕ · ‖p‖ϕ2

(
‖b‖N + γr∗

)
.

Similarly as done in Theorem 2, we have

βH(B(X)) �
(

b1

Z
+b0k1b2 · |λ | · ‖p‖ϕ2 ·

(‖b‖N + γ · r∗))βH(X).

Since

(
b1
Z +b0k1b2 · |λ | ·‖p‖ϕ2 ·

(‖b‖N +γ ·r∗))< 1, we can apply Theorem 1, which

accomplishes the proof. �
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4. Particular cases and examples

Let us present some particular cases and examples of equation (1) that illustrate
the applicability of our results.

Assume that, N1,N2 the complementary functions for M1,M2 , respectively. Let
M1(u) = exp |u|−|u|−1, N1(u) = (1+ |u|) · ln(1+ |u|)−|u| and M2(u) = u2

2 = N2(u) ,
where M1 satisfies the Δ3 -condition and N1 satisfies the Δ′ -condition. If we define
an N -function either as Ψ(u) = M2[N1(u)] or Ψ(u) = N1[M2(u)] , then by choosing
arbitrary kernel K from the space LΨ(I) we are able to apply [20, Theorem 15.4].
Thus (Hx)(t) =

∫ b
a K(t,s)x(s) ds : LM1(I) → LM2(I) is continuous and it is useful in

applying our results.
Note that, a full discussion about the continuity and acting conditions for the op-

erator G(x) = l(t) · x(t), l ∈ Lϕ , between different Orlicz spaces are presented in [20,
Theorem 18.2] (cf. our assumption (G)).

EXAMPLE 1. Let f (t,x,y) = f (t,y), G(x) = 1 in equation (1), we have the func-
tional integral equation

x(t) = g(t)+ f

(
t,
∫ 1

0
K(t,s)x(η(s)) ds

)
, t ∈ [0,1],

where the existence of monotonic integrable solutions of this equation discussed in [4]
see also [17].

EXAMPLE 2. The classical-Urysohn integral equations have been studied in Or-
licz spaces in [26, 27, 28] with f (t,x,y) = y, G(x) = 1 i.e.

x(t) = g(t)+
∫
I
u(t,s,x(s)) ds, t ∈ I.

The case of classical Hammerstein integral equations were also discussed in Orlicz
spaces in [20, 30].

EXAMPLE 3. The existence of L1 -solution of functional-quadratic integral equa-
tion with a perturbation term can be found in [25], where f (t,x,y) = f1(t,y), G(x) =
f2(t,x) which takes the form

x(t) = g(t,x(η3(t)))+ f1

(
t, f2(t,x(η2(t))) ·

∫ t

0
u(t,s,x(η1(s))) ds

)
, t ∈ R

+.

The author used the measure of noncompactness to obtain the results see also [23].

EXAMPLE 4. The authors in [12, 15, 16] discussed the quadratic-Hammerstein
integral equation in Orlicz spaces under various set of assumptions with f (t,x,y) = y

x(t) = g(t)+G(x)(t)
∫ b

a
K(t,s) f1(s,x(s)) ds, t ∈ I.

This has been done for equations with linear perturbation of the second kind in Orlicz
spaces (cf. [24] see also [14]).
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EXAMPLE 5. Let G(x)(t) = l(t) · x(t) , then we have the quadratic integral equa-
tions

x(t) = g(t)+ f

(
t,x(t), l(t) · x(t) ·

∫ 1

0
u(t,s,x(s)) ds

)
, t ∈ [a,b],

which represent a particular case of equation (1) with a suitable form of the functions
g and f .

EXAMPLE 6. In case of g(t) = 1, f (t,x,y) = y and G(x) = λ · x in equation (1),
we have a general form of Chandrasekhar equation studied in [2, 10, 19]

x(t) = 1+ λ x(t)
∫ 1

0

t
t + s

e−s(b(s)+ log(1+ |x(s)|α)) ds,

where R(x) = log(1+ |x(s)|α) .
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