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Abstract. In this paper the class of quasi-n -hyponormal operators is introduced. The representa-
tion and characterization of the operators on a Hilbert space are established. Using these results,
we obtain some spectral properties of the quasi-n -hyponormal operators. Finally we show that
the class of n -hyponormal operators is properly contained in the class of quasi-n -hyponormal
operators.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on an infinite di-
mensional complex separable Hilbert space H . If T ∈ B(H) , we shall write N(T )
and R(T ) for the null space and the range space of T , respectively. Normal oper-
ator plays a crucial role in the development of operator theory and has been widely
studied due to its fundamental importance in the theory of automatic continuity and
harmonic analysis. As natural extension of normal operators, an operator T is said
to be an n -normal operator [1] if TnT ∗ = T ∗Tn , where n is a positive integer. By
Fuglede-Putnam theorem, it is easy to see that T is n -normal if and only if Tn is nor-
mal (see [1]), in particular for n = 1, a 1-normal operator is a normal operator. In
[13] an operator T ∈ B(H) is called n th root of hyponormal (abbrev. n -hyponormal),
if Tn is hyponormal (T ∗T � TT ∗ ) for some positive integer n . Equivalently, T is
an n -hyponormal operator if and only if T ∗nT n � TnT ∗n for some positive integer n .
Clearly, the classes of hyponormal and 1-hyponormal operators coincide. n -normal
operators and n -hyponormal operators attract much attention and they have many in-
teresting properties (see [3, 4, 5, 8, 12, 13, 17]).

DEFINITION 1.1. For a positive integer n , an operator T ∈ B(H) is called quasi-
n -hyponormal if

T ∗(T ∗nT n−TnT ∗n)T � 0.

In particular for n = 1, this operator is called quasi-hyponormal. It is clear that the
class of n -normal operators ⊆ the class of n -hyponormal operators ⊆ the class of
quasi-n -hyponormal operators.
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2. Main results

LEMMA 2.1. If T ∈ B(H) does not have a dense range, then the following state-
ments are equivalent:
(i) T is a quasi-n-hyponormal operator;

(ii) T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗), where T ∗n

1 Tn
1 −Tn

1 T ∗n
1 � Tn−1

1 T2T ∗
2 T ∗(n−1)

1 .

Furthermore, σ(T ) = σ(T1)∪{0}.

Proof. (i) ⇒ (ii) Consider the matrix representation of T with respect to the de-
composition H = R(T )⊕N(T ∗) :

T =
(

T1 T2

0 0

)
.

Let P be the projection onto R(T ) . Since T is a quasi-n -hyponormal operator,
we have

P(T ∗nTn −TnT ∗n)P � 0.

Thus
T ∗n
1 Tn

1 −Tn
1 T ∗n

1 � Tn−1
1 T2T

∗
2 T ∗(n−1)

1 .

Since σ(T1)∩{0} has no interior points, [11, Corollary 7] deduces that σ(T )= σ(T1)∪
{0}.

(ii) ⇒ (i) Suppose that T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗) , where T ∗n

1 Tn
1 −

Tn
1 T ∗n

1 −Tn−1
1 T2T ∗

2 T ∗(n−1)
1 � 0. Then

T ∗(T ∗nT n−TnT ∗n)T

=
(

T1 T2

0 0

)∗

×
((

T1 T2

0 0

)∗n(
T1 T2

0 0

)n

−
(

T1 T2

0 0

)n(
T1 T2

0 0

)∗n)

×
(

T1 T2

0 0

)

=
(

T1 T2

0 0

)∗( D T ∗n
1 Tn−1

1 T2

T ∗
2 T ∗(n−1)

1 Tn
1 T ∗

2 T ∗(n−1)
1 Tn−1

1 T2

)(
T1 T2

0 0

)

=
(

T ∗
1 DT1 T ∗

1 DT2

T ∗
2 DT1 T ∗

2 DT2

)

=
(

T1 T2

0 0

)∗(
D 0
0 D

)(
T1 T2

0 0

)
=T ∗(D⊕D)T,

where D =T ∗n
1 Tn

1 −Tn
1 T ∗n

1 −Tn−1
1 T2T ∗

2 T ∗(n−1)
1 . It follows that T ∗(T ∗nTn−TnT ∗n)T �

0. Therefore, T is a quasi-n -hyponormal operator. �
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LEMMA 2.2. Suppose that T ∈B(H) is a quasi-n-hyponormaloperator and R(T )
is dense. Then T is an n-hyponormal operator.

Proof. The conclusion is evident by Definition 1.1. �

THEOREM 2.3. An operator T ∈ B(H) is quasi-n-hyponormal if and only if T
has the matrix representation

T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗),

where T ∗n
1 Tn

1 −Tn
1 T ∗n

1 � Tn−1
1 T2T ∗

2 T ∗(n−1)
1 . The space R(T ) or N(T ∗) may be absent,

that is, equals to {0} .

Proof. Clearly by Lemma 2.1 and Lemma 2.2. �

COROLLARY 2.4. [10] An operator T ∈ B(H) is quasi-hyponormal if and only if
T has the matrix representation

T =
(

T1 T2

0 0

)
on H = R(T )⊕N(T ∗),

where T ∗
1 T1 −T1T ∗

1 � T2T ∗
2 . The space R(T ) or N(T ∗) may be absent, that is, equals

to {0} .

Proof. Clearly by Theorem 2.3. �

DEFINITION 2.5. [14] A bounded linear operator T on H is called scalar of order
m if it possesses a spectral distribution of order m , i.e., if there is a continuous unital
morphism of topological algebra Φ : Cm

0 (C) → B(H) such that Φ(z) = T , where z
stands for the identity function on C , and Cm

0 (C) stands for the space of compactly
supported functions on C , continuously differentiable of order m, 0 � m � ∞ . An
operator is subscalar if it is similar to the restriction of a scalar operator to an invariant
subspace.

LEMMA 2.6. [16, Theorem 2.4] Suppose that T ∈B(H) is a quasi-n-hyponormal
operator. Then T is subscalar of order 2n+2 .

COROLLARY 2.7. Suppose that T ∈ B(H) is a quasi-nilpotent quasi-n-hyponor-
mal operator. Then T is nilpotent.

Proof. Since a quasi-nilpotent subscalar operator is nilpotent, it follows by Lemma
2.6 that T is nilpotent. �
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DEFINITION 2.8. An operator T ∈ B(H) is said to belong to the class H(p) if
there exists a natural number p := p(λ ) such that

H0(λ I−T ) = N(λ I−T )p for all λ ∈ C,

where H0(λ I−T ) := {x ∈ H : lim
n→∞

||(λ I−T )nx|| 1
n = 0}.

LEMMA 2.9. [15] Every subscalar operator T ∈ B(H) is H(p) .

COROLLARY 2.10. Every quasi-n-hyponormal operator is H(p) .

Proof. It follows by Lemma 2.6 and Lemma 2.9. �

LEMMA 2.11. [7] H(p) operators satisfy Weyl’s theorem (i.e., σ(T )−ω(T ) =
π00(T ) , where ω(T ) is the Weyl spectrum of T and π00(T ) is the set of all isolated
points which are eigenvalues of T with finite multiplicities.)

COROLLARY 2.12. Every quasi-n-hyponormal operator satisfies Weyl’s theorem.

Proof. It follows by Corollary 2.10 and Lemma 2.11. �
For every T ∈ B(H) , the function σ : T 
−→ σ(T ) is upper semi-continuous, but

fails to be continuous in general. Conway and Morrel [6] made a detailed study of
spectral continuity in B(H) . Duggal [8] proved that the function σ is continuous on
the class of n -hyponormal operators. We now study the spectral continuity of quasi-n -
hyponormal operators.

LEMMA 2.13. Suppose that T is a quasi-n-hyponormal operator, 0 �= λ ∈σp(T )
and

T =
(

λ I A
0 B

)
on H = N(T −λ I)⊕N(T −λ I)⊥.

Then N(B−λ I) = {0} .

Proof. Suppose (B−λ I)x = 0, where x∈N(T −λ I)⊥ . If λ �= 0, then Bnx = λ nx .
Let

T =
(

λ I A
0 B

)
.

By simple calculations, we have

Tn =

⎛
⎝λ nI

n−1
∑
j=0

λ jABn−1− j

0 Bn

⎞
⎠ .

Since T is a quasi-n -hyponormal operator, T satisfies

T ∗(T ∗nT n−TnT ∗n)T � 0.
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Thus

T ∗(T ∗nTn −TnT ∗n)T

=
(

λ I A
0 B

)∗

×
((

λ I A
0 B

)∗n(λ I A
0 B

)n

−
(

λ I A
0 B

)n(λ I A
0 B

)∗n)

×
(

λ I A
0 B

)

=
(

λ I 0
A∗ B∗

)

×
( −FF∗ λ

n
F −FB∗n

λ nF∗ −BnF∗ F∗F +B∗nBn−BnB∗n

)

×
(

λ I A
0 B

)

=
(−λλFF∗ G

G∗ M

)
�0,

where

F =
n−1

∑
j=0

λ jABn−1− j,

G = −λFF∗A+ λ
n+1

FB−λFB∗nB,

M = −A∗FF∗A+B∗λ nF∗A−B∗BnF∗A+A∗λ
n
FB−A∗FB∗nB+B∗F∗FB

+B∗B∗nBnB−B∗BnB∗nB.

Recall that

(
X Y
Y ∗ Z

)
� 0 if and only if X � 0,Z � 0 and Y = X

1
2WZ

1
2 for some

contraction W . Since −FF∗ = −
n−1
∑
j=0

λ jABn−1− j(
n−1
∑
j=0

λ jABn−1− j)∗ � 0, we have

n−1

∑
j=0

λ jABn−1− j = 0,

hence
n−1
∑
j=0

λ jABn−1− jx = 0, which implies Ax = 0. Hence (T −λ I)x = 0, therefore,

x ∈ N(T −λ I) and x = 0. �

LEMMA 2.14. [2] Let H be a complex Hilbert space. Then there exists a Hilbert
space K such that H ⊂ K and a map ϕ : B(H) → B(K) such that
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(i) ϕ is a faithful ∗ -representation of the algebra B(H) on K , i.e., ϕ(T +S) = ϕ(T )+
ϕ(S) , ϕ(λT )= λ ϕ(T ) , ϕ(TS)= ϕ(T )ϕ(S) , ϕ(T ∗)= (ϕ(T ))∗ , ϕ(I)= I and ||ϕ(T )||
= ||T || for any T,S ∈ B(H);
(ii) ϕ(A) � 0 for any A � 0 in B(H);
(iii) σa(T ) = σa(ϕ(T )) = σp(ϕ(T )) for any T ∈ B(H) .

DEFINITION 2.15. [9] The set C(i) consists of (all) the operators T ∈ B(H) for
which σ(T ) = {0} implies T is nilpotent (possibly, the 0 operator) and T ◦ (the Berbe-
rian extension of T ) satisfies the property:

T ◦ =
(

λ I A
0 B

)
on H = N(T ◦ −λ I)⊕N(T◦ −λ I)⊥

at every nonzero λ ∈ σp(T ◦) for some operators A and B such that λ /∈ σp(B) and
σ(T ◦) = σ(B)∪{λ}.

THEOREM 2.16. The function σ is continuous on the set of quasi-n-hyponormal
operators.

Proof. Suppose T is a quasi-n -hyponormal operator. Let ϕ : B(H) → B(K) be
Berberian’s faithful ∗ -representation of Lemma 2.14. In the following, we show that
ϕ(T ) is also a quasi-n -hyponormal operator. In fact, T is a quasi-n -hyponormal oper-
ator, we have T ∗(T ∗nTn −TnT ∗n)T � 0. Hence

ϕ(T )∗(ϕ(T )∗nϕ(T )n −ϕ(T )nϕ(T )∗n)ϕ(T ) = ϕ(T ∗(T ∗nT n−TnT ∗n)T ) � 0,

so that ϕ(T ) is also a quasi-n -hyponormal operator. By Corollary 2.7 and Lemma
2.13, T belongs to the set C(i) . Therefore, the function σ is continuous on the set of
quasi-n -hyponormal operators by [9, Theorem 1.1]. �

Finally we give an example to show that the class of n -hyponormal operators is
properly contained in the class of quasi-n -hyponormal operators. The following lemma
is needed.

LEMMA 2.17. Let K =
⊕+∞

m=1 Hm , and Hm
∼= H . For given positive operators A

and B on H , and any fixed positive integer n, define the operator T = TA,B,n on K as

T (x1,x2,x3, . . .) = (0,Ax1,Ax2, . . . ,Axn,Bxn+1,Bxn+2, . . .).

Then the following assertions hold
(i) T belongs to n-hyponormal if and only if⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B2n−A2n � 0,
B2n−BA2n−2B � 0,
B2n−B2A2n−4B2 � 0,
· · · · · ·
B2n−Bn−1A2Bn−1 � 0.

(2.1)
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(ii) T belongs to quasi-n-hyponormal if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(B2n−A2n)A � 0,
B(B2n−BA2n−2B)B � 0,
B(B2n−B2A2n−4B2)B � 0,
· · · · · ·
B(B2n−Bn−1A2Bn−1)B � 0.

(2.2)

Proof. Since

T (x1,x2,x3, . . .) = (0,Ax1,Ax2, . . . ,Axn,Bxn+1,Bxn+2, . . .),

we obtain

T ∗(x1,x2,x3, . . .) = (Ax2,Ax3, . . . ,Axn+1,Bxn+2,Bxn+3, . . .).

By simple calculations, the following equalities hold.

Tn(x1,x2,x3, . . .) = (

n items︷ ︸︸ ︷
0, . . . ,0,Anx1,BAn−1x2,B

2An−2x3,

. . . ,Bn−1Axn,B
nxn+1,B

nxn+2, . . .);

T ∗n(x1,x2,x3, . . .) = (Anxn+1,A
n−1Bxn+2,A

n−2B2xn+3,

. . . ,ABn−1x2n,B
nx2n+1,B

nx2n+2, . . .).

Hence

T ∗nT n(x1,x2,x3, . . .) = (A2nx1,A
n−1B2An−1x2,A

n−2B4An−2x3,

. . . ,AB2n−2Axn,B
2nxn+1,B

2nxn+2, . . .);

TnT ∗n(x1,x2,x3, . . .) = (

n items︷ ︸︸ ︷
0, . . . ,0,A2nxn+1,BA2n−2Bxn+2,B

2A2n−4B2xn+3,

. . . ,Bn−1A2Bn−1x2n,B
2nx2n+1,B

2nx2n+2, . . .);

T ∗T ∗nT nT (x1,x2,x3, . . .) = (A2n+2x1,A
nB2Anx2,A

n−1B4An−1x3,

. . . ,AB2nAxn,B
2n+2xn+1,B

2n+2xn+2, . . .);

T ∗TnT ∗nT (x1,x2,x3, . . .) = (

n−1 items︷ ︸︸ ︷
0, . . . ,0 ,A2n+2xn,BBA2n−2BBxn+1,

. . . ,BBn−1A2Bn−1Bx2n−1,B
2n+2x2n,B

2n+2x2n+1, . . .).
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Therefore, T is n -hyponormal (T ∗nT n � TnT ∗n ) if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B2n−A2n � 0,
B2n−BA2n−2B � 0,
B2n−B2A2n−4B2 � 0,
· · · · · ·
B2n−Bn−1A2Bn−1 � 0.

Similarly, T is quasi-n -hyponormal (T ∗(T ∗nT n −TnT ∗n)T � 0) if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(B2n−A2n)A � 0,
B(B2n−BA2n−2B)B � 0,
B(B2n−B2A2n−4B2)B � 0,
· · · · · ·
B(B2n−Bn−1A2Bn−1)B � 0.

�

EXAMPLE 2.18. Let A =
(

1 0
0 0

)
and B =

(
1 1
1 1

)
be operators on R

2
, and let

Hm = R
2

for all positive integers m . Consider the operator T on ⊕+∞
m=1Hm defined by

T (x1,x2,x3, . . .) = (0,Ax1,Ax2, . . . ,Axn,Bxn+1,Bxn+2, . . .).

Then T is non-n -hyponormal and quasi-n -hyponormal.

Proof. Since

A2n = A =
(

1 0
0 0

)
and B2n = 22n−1B =

(
22n−1 22n−1

22n−1 22n−1

)
,

we have

B2n−A2n =
(

22n−1−1 22n−1

22n−1 22n−1

)
� 0.

Hence T is non-n -hyponormal.
On the other hand,

A(B2n−A2n)A =
(

1 0
0 0

)(
22n−1−1 22n−1

22n−1 22n−1

)(
1 0
0 0

)

=
(

22n−1−1 0
0 0

)
� 0,

B(B2n−BA2n−2B)B =
(

1 1
1 1

)(
22n−1−1 22n−1−1
22n−1−1 22n−1−1

)(
1 1
1 1

)

=
(

22n+1−4 22n+1−4
22n+1−4 22n+1−4

)
� 0,
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B(B2n−B2A2n−4B2)B =
(

1 1
1 1

)(
22n−1−4 22n−1−4
22n−1−4 22n−1−4

)(
1 1
1 1

)

=
(

22n+1−16 22n+1−16
22n+1−16 22n+1−16

)
� 0,

· · · · · ·

B(B2n−Bn−1A2Bn−1)B =
(

1 1
1 1

)(
22n−1−22n−4 22n−1−22n−4

22n−1−22n−4 22n−1−22n−4

)(
1 1
1 1

)

=
(

22n+1−22n−2 22n+1−22n−2

22n+1−22n−2 22n+1−22n−2

)
� 0.

Thus T is quasi-n -hyponormal. �
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