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HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR THE
CLASS OF STRONGLY CONVEX FUNCTIONS ON TIME SCALES

KIN KEUNG LAI*, JAYA BISHT, NIDHI SHARMA AND SHASHI KANT MISHRA

(Communicated by J. Pecari¢)

Abstract. In this paper, we introduce the notion of a strongly convex function with respect to two
non-negative auxiliary functions on time scales. We establish several new dynamic inequalities
for these classes of strongly convex functions. The results obtained in this paper are the gener-
alization of the results of Rashid e al. (Mathematics, 7 (10), 956, 2019). Further, we discuss
some special cases which may be deduced from our main results. Moreover, some examples of
our main results are mentioned.

1. Introduction

In 1988, Hilger [1] introduced the theory of time scale which is a unification
of the discrete theory with the continuous theory. Recently, much attention has been
given to the time scales calculus by many researchers, see for instance [3, 17, 19, 29].
Consequently, the concept of time scale theory has been extended and generalized.
Time scales calculus has applications in various fields such as Economics, Engineer-
ing, Physics, Signal processing, Aerospace, Dynamic programming, Recurrent neural
networks, and Control theory, see references [2, 5, 6, 7, 8, 9].

Bohner and Peterson [3, 4] provided foundational results for the analysis of dy-
namic equations defined on generalized domains which can be a mixture of continuous
and discrete. Analysis of dynamic equations is now unrestricted by domains. Dinu [10]
introduced the notion of convex functions on time scales and defined the subdifferential
of convex functions on time scales. Many researchers investigated time scales versions
of several dynamic inequalities that essentially depend on integral inequalities, see ref-
erences [11, 13, 14, 16, 18, 19]. Dinu [12] investigated Ostrowski type inequalities on
time scales. Donchevet al. [15] obtained Hardy type inequalities with general kernels
to arbitrary time scales using multivariable convex functions.

The concept of strongly convex functions was introduced by Karamardian [21] and
showed that every differentiable function is strongly convex if and only if its gradient is
strongly monotone. Karamardian also established a relationship between the strongly
convex function and the Hessian matrix. For more details, one can refer to [22, 23,
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27]. Hermite [24] and Hadamard [25] discovered an interesting inequality for a convex
function which provides a lower and an upper estimate for the integral average of any
convex function defined on a compact interval. It states that if f : X = [uj,us] — R is
a convex function with u; < uy. Then the following double inequality holds:

f<u1‘;u2) 2_,41/ flo f(”l);f(’@)’

for all uy,uy € [uy,us], which is known as Hermite-Hadamard inequality in the liter-
ature. Further, Dinu [17] obtained Hermite-Hadamard inequality for convex functions
on time scales. In recent year, there have been many extensions and generalizations of
Hermite-Hadamard inequalities studied in [26, 27, 28, 29, 30, 31, 32, 33, 34]. In 2019,
Tahir et al. [19] established some new Hermite-Hadamard type integral inequalities us-
ing the concept of time scales. Recently, Rashid er al. [20] investigated the time scales
version of two non-negative auxiliary functions for the class of convex functions and
obtained several dynamical variants that are essentially based on Hermite-Hadamard
inequality.

Inspired by the work and ideas of above mentioned research, we introduce the
notion of a strongly convex function with respect to two auxiliary functions ¢; and
¢> on Time scales T. We derive some new dynamic inequalities for these strongly
convex functions. Further, our main results include several new results in particular
cases. Some examples are also mentioned in the support of our theory.

2. Preliminaries

Time scale is a nonempty closed subset of the set of real numbers R. The set of
integers Z, the set of real numbers R, finite unions of disjoint intervals, limit sets such
as {0}U{1}:n=1,2,..., Cantor sets etc are the examples of time scales. Throughout
this paper, we denote time scale by T, time-scaled interval by [u;,us]T, and the interior
of X by X°. There are two types of the operator: The forward jump operator (o) =
inf{w € T: o> o} and the backward jump operator ¢(a) = sup{w € T: o < a} for
all oo € T. The forward jump operator represents the next element and the backward
jump operator represents the previous element in the domain. If T has a maximum o,
then o(o) = o, and if T has a minimum o, then (o) = ct.

If o(o) > a, then o is called right-scattered and if (&) < ¢, then « is called
left-scattered. The point ¢ is said to be isolated if it is both right-scattered and left-
scattered: o(ot) > o > ¢(a) for o € T. It is a characteristic of discrete domains that
all points within them are isolated. o is said to be right-dense if 6(¢t) = o and o is
said to be left-dense if ¢(o) = . The point « is said to be dense if it is both left-dense
and right-dense: o(a) = oo =¢g(a) for ¢ € T.

The mappings 1,§ : T — [0,0) defined by

n(e) =o(a)—a, {(a):=oa—-g(a)

are said to be forward and backward graininess functions, respectively. The graininess
function measures the step size between two consecutive points in T. The set T* which
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is derived from time scale T is defined as follows: If T has a left-scattered maximum
m, then T¥ = T — m: otherwise TF = T.

The delta derivative is a basic time scale derivative and is denoted by f(a). Let
f:T — R be a function. Then the delta derivative f*(c) of f at a point o € TX
is defined to be the number such that given € > 0, there exists a neighborhood N =
(a¢—8,0+40) for some 0 > 0, such that

[f(o(a)) = f(s) — fA(e)(o(e) —s)| < el () = 5],

forall s e N.

If T =R, then the delta derivative f* = f’ where f’ is the derivative from con-
tinuous calculus.

If T = Z, then the delta derivative f = Af where Af is the forward difference
operator from discrete calculus.

DEFINITION 2.1. [3] A function f: T — R is called rd-continuous if it is con-
tinuous at every right-dense point of T and if its left-sided limit is finite at any left
dense point of T. All rd -continuous functions are denoted by C,; .

DEFINITION 2.2. [3] A function F : T — R is called an antiderivative of f: T —
R if F4(a) = f(a), for all o € TX. Then, delta integral is defined by

[ rarsa =F(s) - Flu),
where s,u; € T.

THEOREM 2.1. [3] If f € C,q and o € T* then

THEOREM 2.2. [3] Let f1,f> € Coy, A €R and uy,up,uz € T then

(D) [ (fi(@)+ fa(0)Ao = [ fil@)Ao+ [, fr(0)Ao;

(ii) Juf Af(@)Ao =2 [, f@)Aw;
(iii) [, f(@)Ao = — [} f(0)Ao;

(iv) [ f(@)A0 = [;7 f(@)Ao+ [} f(©)Aw;

) L2 fE(0) 2 (0)A0 = (fifa) () — (fif2) (1) = [;2 fi(0) L(0)Ao;
i) fu fi(@)f3 (@)Ao = (fi2)(2) = (if2) () = [i7 f7 (@) f5 (@) Aw;
vii) [;! f(@)Aw =0;
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(viii) If f(®) >0 forall ®, then [,* f(®)Aw > 0;
(ix) If |fi(0)| < fa(®) on [ur,uo], then | [, fi(®)Ao| < [,? fr(0)Ao
From assertion (ix) of Theorem 2.2 for fr(®) = |fi(®)| on [u1,us], we have

/L:Zfl(a))Aa) < /12 A1(@)]Ao.

DEFINITION 2.3. [20] Consider a time scale T and let ¢, ¢, : (0,1) — R be two
nonnegative funcions. A function f: X = [uj,us|T — R is said to be a (¢, ¢ ) -convex
function with respect to two nonnegative functions ¢; and ¢, if

F(1=a)uy +auz) < ¢1 (1 — o) do(0) f(ur) + ¢ (1 — o)1 () f (u2),
Vu,u € X, a€l0,1].

DEFINITION 2.4. [21] A function f: X CR — R is said to be strongly convex
on a convex set X C R if there exists a constant ¢ > 0 such that

(1= o)uy + omz) < (1— @) f(uy) + 00 f (u2) — cor(1 — @) (uz — uy ),
Yu,u €X, ael0,1].
DEFINITION 2.5. [11] Let % : T?> — R, k € Ny be defined by
w(o.p)=1,va,peT

and then recursively by
o
W ()= [ n(0.9)a0, Yo peT

LEMMA 2.1. [19] Let f:T — R be a delta differentiable mapping and uy,ur € T
with uy < us. If f* € C,q, then the following equality holds:

/u2 f°(w)Aw

Uy — Uyl Juy

f){1=1(1,0)} + f(u2)12(1,0) -

2_u1// (o + (1= a)uz) — f2(Bur + (1 = Bu)] (o~ B)AcAB.

LEMMA 2.2. [19] Let f: [u1,uz]r — R be a delta differentiable mapping on T°
and uy,us € T with uy < uy. If f2 € Cy, then the following equality holds:

Uy +uyp 1 2 s
f< 2 )_ 2—M1/ fr(w)an
uz—ul// (ouy + (1= o)uz) — f2(Buy + (1 — Bluz)](w(B) — w(a))AcAB,

where
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COROLLARY 2.1. [20] Consider a time scale T and X = [uy,up]r such that
uy < up and uy,uy € T. Suppose that there is a delta differentiable function f: X — R
on XO. If fA € C,y, then

J(ur) + f(u2) 1 "2 o
7 _Mz_l/ll/ul fC(o)Aw
up—u

T2 [/01 of*(oup + (1 — 05)’41)A0‘_/01 of* (o + (1 — o)u)Aar| .

COROLLARY 2.2. [20] Consider a time scale T and X = [uj,uz]r such that
uy <upy and uy,up € T. Suppose that there is a delta differentiable function f: X — R
on X0, If fA € Cyy, then

Uy +uyp 1 2 s
f( 2 )_Mz—ul/ul fr(@)An
1

1/2
= (up —uy) {/ af*(ous 4 (1 —a)u)Ao+ [ (o0 —1)f2(auy + (1 — o)up)Aar| .
0 1/2

3. Main results

Now, we define a class of strongly convex function with respect to two auxiliary
functions ¢; and ¢ on time scales T.

DEFINITION 3.1. Consider a time scale T and let ¢, ¢, : (0,1) — R be two non-
negative funcions. A function f: X = [uj,us]r — R is said to be a (¢, ¢»)-strongly
convex function with respect to two nonnegative functions ¢, ¢ and modulus c if

F(1=a)ur +oauz) < ¢1(1— o) (o) f(ur) + (1 — o)1 (00) f (u2)
—co(1—o)(up— ul)z, Yu,u € X, acl0,1].
Now, we discuss some new special cases of Definition 3.1.
D). If ¢1 () = 2 () = & in Definition 3.1, then we get Breckner type of s-strongly

convex functions.

DEFINITION 3.2. Consider a time scale T and s € [0,1] be a real number. A
function f : X = [uj,us]T — R is a Breckner type s-strongly convex function, if

FU(1 = s + an) < (1— ) @ [ (1) + F ()] — cr(1 — o) (2 — )2,
Yu,uy € X, a€l0,1].

(D). If ¢ (o) = ¢o(cr) = 1 in Definition 3.1, then we get P-strongly convex functions.

DEFINITION 3.3. Consider a time scale T, then f: X = [uj,uz]yr — R is a P-
strongly convex function, if

F((1 = a)uy + ouy) < flur) + fua) — ca(l — o) (ua —uy)?, Yuyp,ur € X, o €10,1].
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THEOREM 3.1. Consider a time scale T and X = [uy,uy|r such that uy < uy and
uy,uy € T. Suppose that there is a delta differentiable function f: X — R on X°. If
|f2] is (¢1,r)-strongly convex function with respect to two nonnegative functions ¢y,
¢» and modulus c, then

f(ul);rf(”z) N uziul /:sz’(w)Aw‘
< ”2;”1 [(A* () + B*(00))(|f* (ur) |+ | (w2)]) — 2¢ (1 — w1 )>C* (x)],
where
A% (o) = /01 adi(a)g2(1 — a)Aa,
B* (o) = /01 o ()i (1 - a)Aa
and

C*(a) = /01 o (1—a)Aat.

Proof. Using Corollary 2.1, modulus property and (¢;, ¢ )-strong convexity of
| f2|, we obtain

’f(ul);rf(“?) _ uziul /:zf"(w)Aw‘

_ I !
-5 [/0 ol £ (e + (1~ ex)uy) | Aot + /O ol f* (o + (1 = ajuz) [ Acx

N

u; —up

=y o {01(0)02(1 — )| ()] + 920 (1 — )| FA(ar)]

N

~ea(t— o)~ w)}Aat [ 0@ - )l )

+92(e)1 (1 — )| f4(u2) | - cr(l — ) (12 — 1)} Acl

u —uy

S| eton (@20 1)+ )+ a(n (1 o0 1)

1
1)) o= 2efus—m)? [ 02(1 - a)Aa]

u —uy

5—[(A% (o) + B (@) (I (1) | + 2 (w2) ) = 22 — 1 )C* (a1)).

This completes the proof. [
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COROLLARY 3.1. In Theorem 3.1, if |f2| is a Breckner type s-strongly convex
function, then

f(u1)+f(u2)_ 1 szo-((x))A(D'

2 Uy — Ul Ju
< (2 — ) [ (@) ([f* ()| + [ A (u2)]) = 2¢(u —141)2/01 o (1 - a)Aal,

where

Hy(a) = /01 o (1 - a)Aa.

REMARK 3.1. If T =R, then delta integral reduces to the usual Riemann integral
from calculus. Hence, Theorem 3.1 becomes

lf(ul);rf(uz)_ Lo f(w)dm‘

Uy — Uyl Juy

Uz —uj

< B A7 (o) + B (o)1 () |+ 11 (w2)]) = 2e(u2 = ) C* (@)

where

1
(o) = [ ot (e)a(1 — a)do

1
B (o) = /0 s ()01 (1 — a)dar

and

THEOREM 3.2. Consider a time scale T and X = [uy,uz|r such that uy < up and
uy,uy € T. Suppose that there is a delta differentiable function f: X — R on X°. If
|f218 is (91, ¢n)-strongly convex function with respect to two nonnegative functions ¢y,
¢ and modulus c, where %—i—% =1 with b > 1. Then, we have

‘f(u1)+f(uz) 1
2

142—“1

“ f"(w)Aa)‘

cm(f aAa) / (O1(@)02(1 -0l 1) "+ 62(@n (1 - ) )
~ca(l - a)(u-m)jaa) + ( / {1 (@) (1 — ) ()|
+92(0)91 (1= @)l (o) — a1 = )y — 1 *}Aat) ]
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Proof. Using Corollary 2.1, modulus property, Holder’s integral inequality and
(91, ¢,) -strong convexity of |f*|, we get

Sur) + f(u2) I "6

‘ 2 _uz—ul /ul / (a))Aw’

p—— [/1 OCfA(OCu2+(l—OC)M1)A06|+ lafA(au1+(l—a)u2)Aa]
2 0 0

e (/01 oﬂAoc)'i (/01 2 (ot + (1 — a)u1)|hAa> '
# () 1o+ - a>u2>”Aa) E

< () “A“) ( / {01(0)02(1 — @)l (02) " + 92(@)r (1 — ) ()"
— ca(l - a)(uz— 1) }Aa /{«m )0 (1= 00)) | A ()|

(0n(@)on (1 = ) ot o) - PPaer) .
This completes the proof. [

COROLLARY 3.2. In Theorem 3.2, if |f*|" is a Breckner type s-strongly convex
function, then

o)+ fler) uziul INEC Aw’
<lau (/ ma) / {08 (1= ) (L) + 12 (w)?)

—co(1—a)(ur—u) }Aa) }

REMARK 3.2. If T =R, then delta integral reduces to the usual Riemann integral
from calculus. Hence, Theorem 3.2 becomes

flur) + f(u2) 1 "
2 B Uy — Uy /141 f(w)dw’

Uz —uy

<73 (/Olaadaf[ /1{¢1a¢2(1—a>|f’(u2>|”+¢z<a>¢1(1—a>\f’(u1>\”

~ co(l— o) (ur — ) }der) /{qm Yo (1 — a))|f ()"

f
+ oa(@)r (1 — )| ()P — cor(1 — )z — )} }
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THEOREM 3.3. Consider a time scale T and X = [uy,uy|r such that uy < uy and
uy,uy € T. Suppose that there is a delta differentiable function f: X — R on X°. If
|f2] is (¢1,r)-strongly convex function with respect to two nonnegative functions ¢y,
¢» and modulus c, then

uy+uyp 1 2 s
() s

< (= w1) [A (@)1 (u2) |+ B™ (@)1 ur)] — eluz =€ (ar)

where

1/2 1
A0 = [ ap(@n0 -@sot [ (1- 0@ - oae

1/2 1
5@ = [ o)1 )rat [ (1= @)p(@)p(1 - @)
and

1/2 1
C**(oc):/o a2(1—oc)Aoc+/1/2a(1—a)2A(x.

Proof. Using Corollary 2.2, modulus property and (¢;, ¢, )-strong convexity of
£, we get

uy+uy 1 o
‘f< 2 >_u2—u1/m / (w)Aw‘

1/2 1
< (g —uy) [/o a\fA(au2+(l—a)u1)|Aa+ /1/2 |a—l||fA(au2+(l—a)u1)|Aa

1/2
< (=) [ o01(@)da(1— )| ()] + 62(@)0n (1 = o) (1)
~ea(l~ @) —m)}aat [ (1= @) (6 (@)1~ o))
1/2
+02(e)r (1 - )| ()| — cor(1 — o) (1 — 1)} A
/
~ =) [{ [ oot -aat [ (1-0 @ - asaf )
/
+{ [ antma-apat [ 1= ae(@on - maa} i)
—c(uz—ul)z{/ol/zaz(l—a)Aa—l— 1 a(l—a)zAaH

= (1= ) [A™ (@)1 (12)] + B ()| (u1)] — etz = ’C™ (@) .

1/2

This completes the proof. [l
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REMARK 3.3. If T = R, then our delta integral reduces to the usual Riemann
integral from calculus. Hence, Theorem 3.3 becomes

’f ( W) : uzf(a))dw‘ < (w2 — ) [A™ (@)1 (wr)| + B™ ()| /' (w2)|

Uy — Uy Juy
— c(ur —u)*C* ()],

1/2 1
(@)= [ aoi(@n(1 - a)da+ [ (1= @0(@e(1 - a)da

1)2 1
B (@)= [ aga(@)or(1- o)t | (1= @)@ (1~ @)da

and
1/2 1
C**(a):/ az(l—a)d(x—i—// a(l—o)’da.
0 12

THEOREM 3.4. Consider a time scale T and X = [uy,uy|r such that uy < uy and
uy,uy € T. Suppose that there is a delta differentiable function f:X — R on X°. If
|F2P is (@1, ¢o)-strongly convex function with respect to two nonnegative functions ¢y,
¢ and modulus c, where %—i—% =1 with b > 1. Then, we have

‘f<u1+u2> 1 f"( ©)A '

Uz —uy

<G| ([ a“Aa) ([ oot -l

1

+02(c) (1 — 1) 4 " —ca(l—a)(uz—ulf}m)ﬁ

+ (/1;2 11— a|“Aa> / {91(a —a)|fA(u)”

+ 02(a)91 (1= @) f2(wr)|” —cex(1 —a)(uz—u1)2}Aa>F] .

Proof. Using Corollary 2.2, modulus property, Holder’s integral inequality and
(91, ¢,) -strong convexity of |f*|, we get

‘f(’””z) ! uzfc(w)Am‘

Uy — Uyl Juy

< (ur— 1) H/Ol/z o f (o + (1 —(x)ul)A(x'—i-

/1;2(05—l)fA(ocug—i—(l—a)ul)AocH
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< (2 —u) { (/01/2 a“Aoc)i (/01/2 1 (o + (1 — oc)ul"m)é
+ugpwmfgéﬁmﬁwﬂwm@j
< (ur— ) { (/01/2 a“Aoc) ‘ (/01/2{(251(05)(02(1 — ) fA )l

+ 92(0)dn (1 — )| f2(m) | = cax(1 — )1 — )}

+ (/1;2“ —(xaAa> a (/1;2{(251(05)(252(1 — o)A ()

+92(e)01 (1 = @)l () — a1 - @) (w2 — w1} Acr)”

Sl

|

REMARK 3.4. If T =R, then our delta integral reduces to the usual Riemann
integral from calculus. Hence, Theorem 3.4 becomes

(5) it
< ([ oc“azoc)'i ([ to1@e:0- i

1

+02(@)91 (1= @)l ()"~ ca(1 — ><u2—u1>2}da)5

N (/1;21 —a|ud(x) / {B(@)bs(1 — )| f ()]

+0a(@)0n(1 - o) ()P —ca(1 —a><uz—u1>2}da)ﬂ.

This completes the proof. [l

THEOREM 3.5. Let f: T — R be a differntiable mapping and uy,ur € T with

uy < uy. Let | f2| be (¢1, o) -strongly convex function with respect to two nonnegative
Sfunctions @y, ¢y and modulus c, then

(1= 200+ Flw)(1,0) - o [ @10
Uy — Ul Ju
u; —up

< =5 AT (0 B)LA ) 4+ BT (e B ()| = ez — ur)2C7 (01, B),

where

av @)= [ [ (0(@6:1- 00+ 0:B)a(1 — B)} e+ B)aanp,
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1 rl
()= [ [ {oa(e)on(1—a)+ 6x(B)01 (1 B} -+ B)AaAp.

and Lo
c(@B) = [ [ {a(i—a)+B(1—B)Hat Baaap.

Proof. Using Lemma 2.1, property of modulus and (¢, ¢ )-strong convexity of
| 2|, we obtain

F) (1= (1,0} + laan(1.0) - e [ 7 (@)20)

Mz_ul

1% s+ (1 @)~ 2B + (1~ B Bl

u u
< 2 — Ul

S

2 [0 @ (0 ) 7B+ (- )@+ B)aaap

20 [ [ or@0a1 - @l )1+ 020001 (1 - @)1 )

—ca(l—a)(uz wr)? + ¢1(B)d2(1 = B)|f2 ()| + 92(B) g1 (1 — B)| 2 (u2)]
—eB(1=P)(uz—w1)*} (00 + B)Acp

== “1// [{91( o)+ d1(B)da (1= B)}H /A (ur)| + {da(0) 91 (1 — ox)

+0a(B)1 (1= BY IS (w2)] — (s — ) {ex(1 — &) + B(1 — B)}] (0 + B)AGAB
— 2T (00, B) 2 () + B (0, B2 (02)| — ez — 11 )2C (e, B)].

This completes the proof. [l

u —uy
<

REMARK 3.5. If T =R, then our delta integral reduces to the usual Riemann
integral from calculus. Hence, Theorem 3.5 becomes

’f(ul);rf(uz) S f(a))dw’

u —uy

S (AT (e B ()| + B (o B (2)] = ez = 1) 2C™ (et ),

<

where

(@)= [ [ 10100001~ @)+ 01(B)a(1 — B} oc + B)dedp,

B (. B) //{¢2 )61(1 =) +6a(B)¢1 (1~ B)} (et B)dexd,

(o, B) //{a (1-a —B)}(o+ B)dadp
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and

1(1,0) :/()I(I—a)da: 1/2.

THEOREM 3.6. Let f : [uj,us]r — R be a delta differentiable mapping on T°
such that uy < uy. If |f2| is (1, r)-strongly convex function with respect to two
nonnegative functions ¢y, ¢ and modulus c, then

uy+up 1 2
() ) e

< Mzzul [A****((X ﬁ)|f (ul)|+B****( 7[3)\fA(u2)\—c(ug—u1)2C****(a7B)},
where

A7 (0, B) //w/ (0)92(1— &) + 91 (B)do(1 — B)] A,

B (e, B) //W )1191(1 = @)ga(00) + 61(1— B)a(B)] AAB

and

1 rl
c(@B)= [ [ 1w(B) = vl o1 — o)+ B(1 — )| Acap.

Proof. Using Lemma 2.2, property of modulus and (¢, ¢ )-strong convexity of
| 2|, we obtain

‘f<u1+u2> uzlul/MI:ZfG wAw‘
< / / @t + (1= auz) — £2(Buy + (1 — BJu) [ w(B) — y()|AcAB

Uy —Up

< [ @+ (1) 4 B (1B} w(B) - (@) B

u2 Ui

20 [ [ 0@ - @)+ 620001 (1 - @)l

co(1— ) (uz—u1)* + 91(B)ga(1 — B)[f2(ur) |+ 92(B) 91 (1 — )| (u2)]
—cB(1 = B)uz—u P} w(B) — y(a)|daAp

\

=2 L (@601 — )+ 0u (81021~ B )] + (6200 (1 - )
BB ) loz 1) BB (B) (]
= S A o B ) |+ B (@ B )] — ez )€ (@ B))

This completes the proof. [l
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REMARK 3.6. If T =R, then our delta integral reduces to the usual Riemann
integral from calculus. Hence, Theorem 3.6 becomes

‘f(”lJr“Z) L " fo)do

Uy —uy Ju

< A 0 )1 ) 4 B (0 B ()] — el — 1€ (00 ).

where
A" (o, B) //wf )| [61 ()62 (1 — ) + 61 (B)9 (1 — B)] doxdB,
B (a, B) / / W(B) — w(0)] [91(1— @)o(0) + 01 (1 — B)gn(B)] dadB
and

(B = [ [ i) - wiella( @)+ (1 - p)ldadp.

EXAMPLE 3.1. Let T =R. Obviously, f(a) = « is a strongly convex function
with ¢; () =2 — o, ¢(a) =1, ¢ =1, and continuous on (0,c), so we may apply
Theorem 3.1 with u; = 1/2 and uy = 1. Clearly

‘f(m) +fw) 1 1y f(w)dw‘
Uy — Uy Juy
3 1
=—-=2 wdow = 0. 0
4 1/2
On the other hand
P (A (o) + B (@)(f ()] 1 (2)]) 22— C* (@)
:Z[EXZ—ZXIXZXE}NO.7395, 2)
where
* . 1 2
A (a) —/O (2~ a)do =3,
* o 1 5
B (Oc)—/o a(l+a)d .
and
! 1
C*(a) :[) o (l— )da: E

From (1) and (2), we see that 0 < 0.7395.
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EXAMPLE 3.2. Let T = R. Obviously, f(c) = ot + 1 is strongly convex with
d1(a) =2, ¢o(a) =4, ¢ =1/4 and continuous on (0,e0), so we may apply Theorem
3.3 with u; =0 and uy = 1 /4. Clearly

uy+up 1 u2
(252 s
1

Uy —uy Ju

1/2
:’__4/ (@4 1)do| 0. 3)
8 0
On the other hand
(uz — uy) [A* ()| (1) + B () |f (u2)| — c(uy — 11)>C*™]

1 1 1 5

4[(2><1+2><1)—Z><R %]~0.9997, 4)
where

1/2 1
A**(oc)zB**((x):S/ adot8 [ (1—o)da=2
0 1/2
1/2 1 5
C**(a)z/ ?(1—a)do+ | a(l—o)do=—.
0 1/2 96
From (3) and (4), we see that 0 < 0.9997.
EXAMPLE 3.3. Let T = R. Obviously, f(a) = /o is strongly convex with

o1(a) =4, ¢(a) = o, ¢ =1/4, and continuous on (0,), so we may apply The-
orem 3.5 with u; =2 and up = 4. Clearly

f<ul+u2> 1 uzf(a))d(u‘

Uz —up

‘,/zi ! Jade| ~0.0081. )
On the other hand
= 2 LA™ (o, B2 ()| + B (0, B) | f2 (2) | — etz — ur )2C™ (x, B)]
4-2110 1 14 1 1 1
T[—Xﬁ+?XZ—ZX4X§:|z2.OII& (6)
where
1 1 10
A (o) = [ [ 41— ) +4(1—B)} o+ B)dadp = =,
skokok _ ! ! _E
B (oc,B)_/O /O (40-+4B) (er+ B)doud = =
and

1 rl 1
()= [ [ {oll=0)+ (1~ B)}(a+ Bldodf = 5.
0 JO
From (5) and (6), we see that 0.0081 < 2.0118.
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4. Conclusions

In this paper, we have introduced the concept of strongly convex functions on time

scales by selecting the appropriate values of functions ¢; and ¢, . Further, we have
established Hermite-Hadamard type inequalities for (¢, ¢,)-strongly convex functions
with respect to two nonnegative functions ¢y, ¢» on time scales. We have also discussed
several particular cases when T = R. The results obtained in this paper are the general-
ization of the previously known results. The idea of (¢, ¢,)-strongly convex function
and obtained results in this paper may have further applications in future research work.
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