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DEFERRED STATISTICAL CONVERGENCE
AND POWER SUMMABILITY METHOD FOR
q—-LAGUERRE POLYNOMIALS OPERATOR

P. N. AGRAWAL, BEHAR BAXHAKU* AND SOMPAL SINGH

(Communicated by M. Mursaleen)

Abstract. In the present article, we discuss the Korovkin type approximation thereoms and the
rate of convergence with the aid of the modulus of continuity using deferred statistical conver-
gence and the power series summability technique for an operator based on ¢-Laguerre polyno-
mials introduced by Ozarslan (Studia Sci. Math. Hungar., 44 (1), 65-80). We also define the
r—th order generalization of these operators by means of the Taylor polynomial to approximate
functions in f € C"[0,1] such that f(’) € Lipgo, 0 < o < 1. Furthermore, we find an estimate
of the rate of convergence of the q-Laguerre operator acting on { at those points x where the
one sided q-derivatives Dqﬂ‘ and D f exist.

1. Introduction

The generalized Laguerre polynomials or the associated Laguerre polynomials are
the orthogonal polynomials that arise in the study of quantum mechanics and also in
the treatment of quantum harmonic oscillator due to their relationship with the Hermite
polynomials. They are the polynomial solutions of the second order ordinary linear
differential equation

sal’ + (o0 + 1 — s0)u' +mu =0,

where o is a real constant. In the special case o = 0, one obtains the simple La-
guerre polynomials. The generating function for the generalized Laguerre polynomials

jfk(a)(w) is given by

- | .
2 AL W) = e exp(f”) ()

4

Taking o = m(€ N), Cheney and Sharma [1] introduced the following linear positive
operators based on the generalized Laguerre polynomials

B, (f;20) = if(mLH)iﬂk(m) (W)M(l - %)m+1exp <1W—%), 2)
k=0

—
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where s € [0,1) and w € (—e,0].
From (1), it is clear that if w =0 and o = m then .,ka(m)(O) = ("*) and hence
the operator given by

Sm(f;%)=§6f<mLH€) ("), e

is a particular case of the operator (2).
Now we present some basic definitions based on the ¢-calculus [12], which are
used in this paper. Let 0 < q < 1.
1—q¢
The g-integer [c|q (c € N) is defined as [c]q = { I 9 ,
-1

or,

[clg=1+q+...+q".

1 —q°

The g-shifted factorial (1—3)g (c € NU{0})is defined as (1—s0)q =TI, T
—

andforc=meN,

(I=5)g =1 =35)(1—gx)...(1 —q" ).

For the integers m, s such that 0 < s < m, the q-binomial is defined as

For any non-negative integer m, the q-factorial is defined as
[m]g! = [m]q[m—1]q'if m>1

and [m]q! =1ifm=0.
Let f: R — R be a function and let >z € R. The q-derivative D of a function §
at s is given by

Daf() = % 0, Dqf(0) = lim Dqf(>2). )

Notice that in the limit ¢ — 1~ then D qf(>c)—f'(3¢) provided f' () exists.
The left and right g-derivatives of § are given by

() = % )
and
D41 = 7“:() q__f(j) 5)

provided that » # 0.
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The Jackson type q-integral introduced by Thomae [34] and Jackson [11] is de-

fined as follows: ‘ =
| H0dar = (1= ) X flea')a
s=0

where ¢ € [0,). The g-analogues of the rules for differentiation of a product of func-
tions and integration by parts are given by

D4q(f9)(50) = Dqf(3)8(5) + f(a2)Dq8(>) (6)

and
| 86DafGadae = e)ste) ~ [B)a(®) - [ a0DagGdere (D)

respectively.

In the last two decades, there has been a great deal of interest among researchers
to define positive linear operators based on g-integers and investigate their various
approximation properties. For some recent significant studies in this direction, we refer
the reader to the papers ([21], [23], [24], [25], [29] and [35] etc.).

The q-Laguerre polynomials ([9], p. 29), ([10], p. 57) and ([18], p. 21) are given
by

(@) uq) = (an’q) (9 7n;q)1 q(j) — ) (qrtatl,g
7 (n0) = (a:9)n ,% (0"t 150)(a59), (1=arls )y

where the g-shifted factorial is defined as

n—1

(@:9)o=1; (a:9)a=]](1—aq’), neN
=0

and a € C. Moak ([18], eq. (4.17), p. 29) found the generating function for the ¢-La-
guerre polynomials as

( a+l,q) oo qn2+am{ (1 q)%W}m oo i
G(2e,w) = .,? /. (Rea>1
Gew) (aa)e =0 (@:9)m (3q°7iq Z ( )
(3
where
(@:9) = [T(1 —q"a), g < 1.
k=0
Evidently,
oy (@9)e
(:0)m = (aq™;q)e

In 2007, for § € C[0,1), Ozarslan [27] considered the q-analogue of the Laguerre type
operators as

) — Ja () (-
Onaf@)an) = g T i ) A O
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where 0 < 22 < 1, —eo <w <0, g€ (0,1) and ¥,,(5¢,w) is the generating function
given by (8). In order to study the approximation of f € C[0, 1], we modify the definition
(9) as follows:

G g (f(u))(3e,w) = ﬁif( Mg )%}’”’(w;q)/ﬂ 0< %<1 (10)

m(%,w) =0 [m—|—k]q

and
(Bmafte) ) (1) = (1), o= 1.

The purpose of the present article is to discuss the deferred weighted statistical conver-
gence of the operators given by (10) and also investigate the convergence by the power
summability method. We also consider the r —th order generalization of these opera-
tors with the help of a Taylor polynomial. Lastly, we investigate the approximation of
functions whose q-derivatives are of bounded variation on the interval [0, 1].

2. Preliminaries
We shall need the following basic result to establish the main results of the paper.

LEMMA 1. [27] For the operators given by (10), we have

; M2 ) — 2 & L
O 1(Gma)iw) = (P S g =gy T g

y , W
(@) [[(Bmqu)(sw) = ()] < W’

(@ii)  [[(Smql)(5w) = 1] = 0.
where ||.|| denotes the sup-norm on [0,1].

In 1935, Zygmund [36] gave the concept of statistical convergence which was later
formalized by Steinhaus [31] and Fast [7]. In the past two decades, the investigation of
statistical convergence has become an active area of research. Many researchers have
contributed in this direction (e.g. [3], [4], [8], [13], [19] and [22] etc.).

A real or complex valued sequence & = &; is called statistically convergent to [ if
for a given € > 0,

!
lim —
m—oo ;M

{i:igm,|§i—l>8}‘=0,

where the vertical bars represent the cardinality of the set. We denote this convergence
by
st— lim &, =1.

Let (cy) and (d,) be sequences of non negative integers such that ¢,, < d,,, Vm e N
and
lim d,;, = .

m-—oo
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Then we call a sequence & = (&;) to be deferred statistically convergentto [ if for every
€ >0, wehave

’il_lg’ (dm - Cm)

{l cm < i< dpy, |éz ‘/ }‘:0 (11

It is denoted as
DS.4y— lim &, =1.
’ m—oo

Let us note that if d,, =m and ¢, = 0, then the deferred statistical convergence reduces
to the statistical convergence. However, if d,, = A,, and ¢, = 0, where A,, is a sequence
of positive integers such that A,, < A,,+1,V m € N then the definition (11) coincides
with the A -statistical convergence (see [20], [26]). Further, if d,;, = 1, and ¢, = N1
where 1, € NU{0} and 1, — N;—1 — o, as m — oo then the definition (11) includes
the lacunary statistical convergence.

Let (b,;) be a positive non increasing sequence. Then the sequence (&,,) is said to
converge deferred statistically to the number ! with the rate o(by,) provided for every

>0,
. 1 1
,%‘Elo—bm{u—m—cm) { om < S dm |61 2 € }}:O'

We denote it as &, — [ = DS. 4 —o0(b), as m — o. The sequence (&) is called
deferred -statistically bounded with the rate O(b,), if for every € >0,

1
{l cm <i<dm, |§| >¢€ H}<°°7

1
S:ip bm { (dm - Cm)
and it is denoted by &, = DS, 4 — O(by,), as m — oo. For further details, please see
({51, [6D.

Next, we discuss the power series summability method, a member of the class of
continuous summability methods, to study the convergence by g-Laguerre polynomials
operator.

Let (&) be a sequence of non-negative real numbers such that & > 0 and the

radius of convergence r of the power series &(z) = Z &z satisfy 0 < r < oo, then

we say that the sequence n = (ni) is convergent to l in the sense of power series
summability method if lim z Emidt=1.

The power series method is called regular if

i1
lim &2 —0,VieN.
== &(2)
In particular, if & =1, Vi e N, then £(z) = l%z and r =1, hence the power series
method includes the Abel’s method and if we choose & = ), , Vie N, then we

obtain &(z) = e* and r =  and so, the power series method turns into Borel method.
Many researchers have contributed to the study of approximation by positive linear
operators using the above methods. The interested reader may refer to ([30], [32] and
[33] etc.).
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3. Main results

Let us assume that {(g,,) be a sequence in (0,1) such that g,, — 0, as m — e and
gm—a,asm—oo, 0<a<l.

3.1. Deferred statistical convergence

First, we show that the sequence of g-Laguerre operators converges deferred sta-
tistically to the function f, if f is continuous on [0, 1].

THEOREM 1. Forall § € C[0,1], we have

DSea— lim [[(Gng,f)(-,w) = ] = 0.

Proof. By the uniform continuity of { on [0,1], fora given € >0 3 a § > 0 such
that |f(u) — f(>¢)| < €, whenever |u— 3| < 8. For |u— 3| > &, we have |f(u) —f(5)| <

Hence, for all u, > € [0,1], we can write

10§69 < &+ 200 (502

Thus, in view of (&,,q,,(1))(52,w) =1, we get

(Sm,q ([F(u0) = §(3)])) (s w)
e+ %ZH (Qi,mqm (u— %)2> (sew).

N

[(Gimq,f) (e w) — ()|

We may write

G 27 ) )

(
— (@) i) =2 10,00 ) )+
{ <®m7qm(u2)> (esw) — %2} _ 2%{ <®m7qm (u)) (se;w) — %},

| (@t () ()] < | @)~

hence

+2 (Gnau) -0 a2
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Consequently,

-
el

-1

72 (Ban)iim -

w
ZM H o 21“1‘ o [m;qm } i [m}qm<21|vi|q%+l>}

m qm (sw) — (

2 4 ]
- gi” { [m]qn1(1|T|CI%H) * (m]g,, } (13)
Now, for any € > 0, let us consider the sets
Ji = dmicm {k Lom <k < d, |[(Bmg, ) (W) — fH > 8,};
I _
Sy = dmicm {k e <k <dp, 52[m]i|leWIqu) S € . g}
and
J3 = dmicm {k: em < k< dp, 622[2”% > 8’2—8 }

Then in view of (13), we obtain
J1 ChHhUJ3
which implies that
V1l < 2] + 3.
Hence
Jim 141 fim |+ fim V|

Since the sequences

8]If]/]w|
52[m]CIm(l _q%""l)
and
2|5l
62[mlq,,
tend to zero, as m — oo, it follows that
8]If]/]w|

DS, ;— lim =
s §2mg,, (1— gt
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and

2|l
DS, 4— 1 _
S 8%[mlq,,

Hence, lim,,_... |J;| = 0, whence the result. [

In the following result, we determine the rate of deferred statistical convergence
for the operators (10) by means of modulus of continuity.

THEOREM 2. Let f € C[0,1] and DS 4 — (f;\/Vim.2) = 0(&n), as m — oo then

DS.q— H(®rn7qu)(~§w) —fll =0(&n), as m— oo,

where Vi, 2 = H(’jmqm (u—())(5w)].

Proof. For any § € CJ0, 1], considering the elementary inequality

(u— )

il < (1+ “ 55 (o). 60

we have
(@ naelorn) ~ 1] < (14 55 (O a2 ) G ) 0(1:3), 50
which implies that
| (©nant) =1 < (14 55 | mantu— 2w ot
= 20(f;v/Vn2),

where we choose 6 = ,/V,,,». For any € > 0, we consider

1
Jl = {kzcm<k<dm7 <®mqm(f))(,W)—fH>8}

dm —Cm '

and
1
S = {k:cm<k<dm,Zw(f;w/vmg)}s}.
dy — Cm
It is clear that J; C J5.
Consequently,
1| < 2]

and hence

m—oo m—oo



q-LAGUERRE POLYNOMIALS OPERATOR 1013

Since

DScq— @(f;/Vim2) =0(En), as m — oo,
it follows that

1
— || — 0, as m— oo

Cm

and hence

n—00

1
lim — ;| =0,
le |
which proves the theorem. [
In our further consideration, let us denote [, () = <®m7qm(u - %)”) (ew),

neNU{0}.

3.2. Power summability method

The following theorem is a Korovkin type approximation theorem for the operators
(10) by using power summability method.

THEOREM 3. Forall f € C[0,1], the operators (10) verify

Gunq (F) (1w) = F||Em" ! =0

. e
lim %mgl

z7—R—

Proof. Taking into account the inequality (13), we have

- mi G () — 1| £
<et %{%i (g () ) — ("
+5 2 I(@na) )=}
st %{ﬁ:l { m]a, (21“jl ) [m}qm }’5’"{"1
o (=) e "

Now, let us show that

R 2w L\, i
zl“z?{az)2{[m}qm<1—q;z+l>+[m1q }’5’“1 0 ()

m=1
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Since i (zl‘w‘qmﬂ) + [m]lq — 0, as m — oo, for the given € > 0, 3 mp(e) € N such
qm m
that w
2w 1 €
+ < =, Vm>mgy(e).
o, (=) I, 2 o(e)
Therefore,

1 2w Dl i MR,
35 2{ Mu&ﬂ*MMEM SEm 2o > (9

where
2|w| 1

M= max + :
1<m<mo(s>{[ Jam (1=t [m]qm}

By the regularity condition 3 §,,(€) > 0 such that

émzm—l _ €
E(a)  2Mmo(e)’

Vr—u(e) <z<rn

and m=1,2,...,mo(€). Let us choose

S(e)= min  8,(e).

1<m<mg(€)
Then,

émszl _ €
&) 2Mmo(e)’

Hence from (16) it follows that

Vr—96(e)<z<rand m=1,2,...,my(e).

2|w| 1

L S m—1 r_ r
TEP R e a T RS UL

Since € > 0, is arbitrary, the equation (15) is established.
By a similar reasoning, we can show that

. 1 & wl 1
lim E " =0.
=R=&(2) mgl (g, (1—aqnth)

lim S (S (1)) (W) — "' =0. D

The following theorem yields the rate of convergence of (&, q,,f(u))(>;w) to §
by the power series method.
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THEOREM 4. For f € C[0,1], there holds

G5"17% (f)(’w) —f émzm_l < 2w(f§5),

1

oo 2
where & = {L Y émzmlvmﬁg} and Vy,» is defined as in Theorem 2.

Proof. Since f € C[0,1], for any z € (0,R) and 6 > 0,

L S w m—1

55 2 |[Enan (Do) 6o

L S L u— 2 ‘W m—1
SIS A
= (D(f,a) l+%% Zlémzm_lvmg}
= 20(f;9),

D=

_ 1 < m—1
where 0 = {mmzlémz Vmg} .

The following example shows that our Theorem 3, is a non-trivial generalization
of the classical Korovkin result given in [17].

EXAMPLE 1. Let us consider the q-Laguerre operators &,, 4, (f)(.;w) defined by
(10). Using these operators, for f € C[0,1], we define the following positive linear
operators on C[0, 1]:

G () (W) = (14 1) G, (D (W), (18)
- l,ifm=p3 peN, . . .
where <nm> =o. otherwise . It is clear that the sequence (7,,) diverges in

the classical sense. From the definition (18), we have
B (1)) (W) = (14 1) Bung, (h)) (W) where hj=u’, j=0,1,2.

Now if we take &, = 1, for all m € N, then we obtain &(z) = ¥oo_ £, ! =
|z] <1 which implies that R = 1. Further, we obtain

Z End"”

From Exercise 35 on page 54 of [G. Pélya and G. Szego, Problems and theorems in
analysis I: Series. Integral Calculus. Theory of Functions, Springer-Verlag, 1972], we
have

=g

19)

z—»l—

2 (20)

| =
lim — En?" I = hm
&(2) mg‘l

7z—1-
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Using the definition (18) of auxiliary operators and (19), we conclude that

1 & .
lim —— 22| B ho)(sw) —hol| =0
Z—lf}lﬁ é(z) mglé < H m:CIm( O)( W) OH

Moreover, from Lemma 1 we have
[l

. M
H®m7qm(h1)(~, ) th < [m]qm(l _q%-&-l) + <l+ [m}qm(l _q%+l))nm'

: S U . AM hthat (14 —
Sinee | g qm+‘>)_>0’ as m = e, 3 My >0 such that | 1+ g ) <

M,V m € N. Therefore, in view of the equation (19) we get

. 1 < m—1|1gx . —
Zl_l}rflmnglémz H1Bmqm (1) (5w) — Ay || =0

Finally, again using Lemma 1 and the definition of the operators &, 4, given by (18)
we have

2|w| 1

+
[m} qm(l - q%+1) [m] am
2|w| 1 )
+N + +1]. 21
" ([m}qmu—qm“) o e

Ty + [m]lq converges to 0, it is also convergentto O in the

G, (h2)(5w) = ha| <

2|w|
[m]ap (1—am

sense of power series method. On the other hand, since <[ ] (zl‘w‘qmﬂ) + [m]lq + 1) <
qm m

(M, + 1), for some M, > 0, in view of (20) it follows that
. 1 - B 2|w] 1
hm — EnZ™ I ( + + 1)
1= & 2 [mlq,, (1 - anth - mlq,
. Mz + 1)
< Z gm nm =0.

Zﬁli m=1

Since for m — oo,

Hence from (21), we obtain

. 1 s m—1|1gx . —
21—1}{1 mmglémz G (12) (5w) — || =0

So, we can say that our operator defined in relation (18) satisfies all the conditions of
Theorem 3 and therefore we have

. L < m 1
lim g(@mz:,lé G m.qm () (-:w) —fl| =0.

z—1-
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Thus the auxiliary operator &, 4. () converges to f in power summability method but,
since (7M,,) is not convergent to 0, as m — oo, we can say that the classical Korovkin
theorem does not hold true for these operators.

The next theorem yields the rate of convergence by the operators (10) with the aid
of power summability method for continuously differentiable functions on [0, 1].

THEOREM 5. For any §' € C[0,1] and for all z sufficiently close to R from left
side, the following inequalities are satisfied:

Lw ml
oPi

OIS fH 1711 2)+ 22 (D) 0(F s Aa (2)

where

and

=55 3 émzm—l\/ |@nanl= 0w |

Proof. Following Shisha and Mond Theorem [28] and applying Cauchy-Schwarz
inequality we see that, for any 6 > 0

< Il gl Y £

ml

Gnn (1))~ 1|

gz S 6! e, Wt - 0

+alf (%iéz \/q >>2><.;W>H)

Ve 2 émzm‘l\/ Heﬁm,qm«u— O] (2)

Now, we use Lemma 1 in (22) and choose

5= ald) = 515 5 6" \/H =P O
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Now, we determine the rate of convergence of the sequence &,, 4(f)(.;w) to f with
the help of power summability method for the elements of the Lipschitz class Lipk o,
forO< o <1.

We recall that a function f € Lipg « if the inequality

[7(u) = F(5)| < Kl — 5 (23)
holds for all u, s € [0,1].

THEOREM 6. Let f € Lipgat then for all z € (0,R), the operators (10) verify the
following inequality:

Lw ml
£ 2>

B () fH < K64 (2)

(4

1 > m—1 4w 1 ’
where 84(z) = Q) mélémz [[m] (=T + [m]CIm:| )

Proof. Let f € Lipk(a), o € (0,1]. By linearity and monotonicity of &, q,, (f)(-;w)
and (23), we write

(B, (F) (s w) = F(39)| < K(B g, () (Ju— 2¢[*5w)).

By the Holder inequality for r = E and s = ﬁ, and if we take maximum on [0, 1]
and use (12) and Lemma 1, then we have

Lm ml
ta.2 5

whence the result. [

NIR

L‘” 4|w| 1
mqm fH sg' Z’ [ ]qm(l qzn+l)+

[m]g,,

In the following theorem, our focus is to determine the degree of approximation
for the operators (10) by using power summability method in terms of second order
modulus of continuity via Peetre’s K -functional.

Let C2[0,1] := {f € C[0,1] : {/,§" € C[0, 1]} with the norm defined by

fllczo.0y = N5+ 051+ 11F711-

For any 6 > 0 and f € C[0, 1], the Peetre’s .# -functional is given by

H )= it {f g+6gczm}
geC?0,1

From Devore and Lorentz [2], there holds
A (1,8) < Can(F: V), (24)

where C > 0 is a constant.
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THEOREM 7. Forany § € C|0,1] and for all z € (0,R), there holds the inequality

L S m—1
;gr (Z) mg‘l émZ

Qﬁm,qm(f)(~;W)—fH<sz((f); 50

where §(z) = ,;ngl (2[m}qm5(1w T 2[m )gmzm :

Proof. Let g € C? [0,1] be arbitrary. By the Taylor’s expansion, we have

G40 (0)(55) ~ 8(2)| < [Bg (6 2) )6/
P, (WPl ENGew), @)

where & lies between u and s¢. Then using Lemma 1 in (25), we get

% 21 G (8) () — ]| &
< ||g’||%mi1 ([m]q('%ql)) & 2!

+92"”$ ;1('<®mqn,<u2>><,w> +2H( man (1 >) H)’v‘mz

S P (i R 7 o
On the other hand

|@man D) =] <205~ 0l + |man@)i) s @1

From (26) and (27), we have

@ 2 S

1 & 3w 1
<2f ol +lolerozrg 3 (s + 7 ) &)

Taking infimum over all g € C?[0, 1] on the right side of the last inequality, and choos-

ing § =05(z) = %mél ({m] (31‘W‘q"’“ + 2[m )émz , we obtain

mqmm(.;w)—fH

Lm ml
epive

Now, we apply the relation (24) to obtain the required result. []

O () iw) 1| <2 (50).
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3.3. g-Laguerre-Taylor operators

It is well known that the linear positive operators have a weak convergence and
do not respond to the smoothness of the function. In order to overcome this problem,
Kirov and Popova [16] considered the generalization of the operator by means of the
Taylor polynomial. Following their idea, for r € Ny, f € C"[0, 1] and m € N, we define
the q-Laguerre-Taylor operators as

[%]q

> ,iﬂ,f’”)(w;q)ﬁi fm([mﬂdq) (,{_[ [K]q

®m7r7q (f(”))(%7w) = 2

J
- ,0<x<1
k=0 G (52,w) j=0 J! ] )

m+klg
(28)
and

(Bmoaf()) 1) = (1), = 1.
Clearly &,,0.q(f(u))(3¢,w) = & q(f(u))(3¢,w) forevery f€ C[0,1] s €[0,1], meN.

THEOREM 8. For any r € N, f € C'[0,1] such that §") € Lipg(a), 0 < o < 1
and all z € (0, R) we have

P H o) |

Blo+1 71’ S ,
< KB s T 60 @l 1))
Proof. For f € C"[0,1], we apply the following Taylor formula [16] about the point

(K] .

miie— €[0,1]:
r (j) [k]CIm . o [k]qm "
f(%) — 2 f <[m+k]CIm ) <% o [k} am )J + <% [m+k]qm >
=0 J! [m+ kg, (r—1)!

[l [10 (i (s ) )0 ()

From the Taylor formula and the definition of the operators given by (28), we write the
difference between &,, .q,,(f)(.;w) and f(>¢) as follow:

f(59) = G () (W)
K

(- pt)’ e,
e 2 47 oS ()

where

= oo [ (s e (i) ()
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Since ) € Lipg(a), we get

(r) [k]CIm ( _ [k]CIm )) _ (r) ( [k]CIm ) o _ [k}qm *
§ ([m“‘k}qm—i—u g [m+K|q,, f [m+K|q,, | < Ku e [m+kg, |
thus from (29), we have
| N ’%_ : [k]]‘l]m o+r
m m+ qm
IQﬁm,r.,qm(f)(-;W)—f(%)l<Kmk§)fk( i) Blact 1),
(30)
Hence,
L, o+r
J@nan (-] < BT o, (- 1]
Thus,

¢(z)
Bla+l,r) 1 & —
<K=—or g 2 &

Gumg ([0 — ()[*7)

~
I
—
N
e

This completes the proof. [

REMARK 1. Consider the function {* defined as
() = u— 52|
Using the well known inequality
|a®* —b*| < tla—b|, forO0<a,b<land 1> 1,
it follows that f* € Lipg.,1. Since §*(3c) =0, we have

1B, ()l < (14552 ) (736

where Vyy2 = |G, (4 — (.))?(:;w)||. Choosing § = ,/V,n2, from Theorem 8, we
obtain
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3.4. Functions with derivatives of bounded variation

In this section, we shall estimate the degree of approximation of functions whose
q-derivatives are of bounded variation. First we shall need the following result:

LEMMA 2. Form sufficiently large and » € (0,1), the following inequality holds:
(i) pm(se,w,5) = [ (DqyLm(e,w,y))dqy < Wn2() 0 < 5 < 5 and

(3c—s5)2 "
(i) 1= pA(se,w,2) = [HDq L8 (e, w,y))dqy < M, x <7< 1, where
P z ) q (5c—s)
2" (wq)
%m ToGe) ,0<y<1
£ (emy) = ¢ 55
0, y=0.
1 y=1.

Proof. (i) For 0 < s < 7z, we obtain

PYC,IL(%,W,S) = / ®q7y£5n(%7way>dqy
0

s . 2
</ Z)q,yil,i(%,my)(% y) dqy
0

n—_

1 s
< (%—s)2/0 DL (56w, y) (%—)’)2qu

Vin,2
< ——.
T (e—s)?

Similarly, we can prove the second assertion (ii). [

The rate of convergence for functions of BV and those having derivatives of BV
for g-operators was not resolved until 2019. Karsli [14, 15] proved this and studied
the rate of convergence for BV functions for ¢-Bernstein-Schurer operators and q-
Bernstein Durrmeyer operators.

Now, we shall obtain the rate of convergence of &, (f)(.;w) for functions having
q-derivatives of bounded variation on [0, 1]. We show that the points s where Z)t‘;f(%)
and D f(5) exist, the operators &, q(f)(s;w) converge to the function f(3) in the
space of DBV . Let ©4BV[0,1] be the space of all g-differentiable functions on
[0,1] which have a q-derivative of bounded variation on [0, 1]. Such a function f €
D4BV[0,1] can be represented as

i) = [ EG)gs+C 0< <1

where, & € BV[0,1] and C is a constant. It is clear that

DyBV[0,1] = {f: Dqf = & € BV[0,1]}.
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THEOREM 9. Let f € D4BV|(0,1] and let the one sides limits q-derivatives D f
and D f exist at a fixed point 3 € (0,1). Then for m sufficiently large and 3 € (0,1),
we have the following estimate:

G q () (26w) — §(>)]

.um2(%) [m] 1
< 7% 2 ( \/ @qf/> +|E<@;—f(%)—©q_f(%)| [ng(%)
P4 * %Jr\}ﬁ 1— 2
[m]q( V qu%)+ V@
g ”
L %)\/W/JFIT/
#2005 TN @00+ [ (9410 + Dyl 3D
k=1 2

where

0, s=x

Daf(s) — Daf (), % <s<1
fels) =
’ Dyf(s) —Dqf (), 0< s < e

VU Dqyt.) is the total variation of D4f.. on [c,d].

Proof. By the hypothesis, we may write the g-derivative D in the form
1 1
24f(s) = 3 (94169 +231)) + Dafols) + (93169~ 24 )sn(s—
+8.40)(2af) - 3 (23169 + 93162 ). 62)

where
1 ,s=ux
Ose(s) = {0 , 8 #X.
Applying Lemma 2, we have
G () (5sw) —§(5)

= [ s 0w )das ) = [ (D00 w:5))55) ~ )l
= [ @as e Gam 1)~ 1)y + [ (D023 em.5))(15) ~ 16-))das

- _/0% (/S%’qu(Y)dqy> (D s £8. (2, w,))dy s
+/: (/:gqf(y)dqy> (D00 (32, ,5))dys

= £1(3¢) + £2(), say.
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By using equation (32), we get
= [ [ (3(1169+ 24169 + 24t
+5 (2410~ 251 ) sents -
+8.00) (410~ 5 (41 +94) ) (D L5
Since [}(8,.(y))dqy =0, we have

Li(3) = = (@Jrf )+ D f(5 )0/ 2)(D gL (32, w,5))dqs

Dafre(¥)dqy | (Dq.s L0 (52,w,5))dys
/(/ q q) q. q
3 (a0 -2ai0) f7

Proceeding similarly, we find that

(2= 5)(Dq L (5, w,5))dgs.  (33)

x

+/%1 (/:’qu%(y)dqy) (Dq.s L5 (52,w,5))dgs

+§(@$f<z>—®;f<z>) /;< ) (DL (ews)dgs.  (34)

£20) = 5 (9416 +2316)) [ (5= 2D s))dos

By combining (33) and (34), we get

(1))~ () = 5 (41 + 25 ) [ 5 50000 m:5)) s
5 (2400~ 2410 ) [ 15— (D0, 8565 s
/ (/ Dyfinly dqy> D& (52, w,5))dgs

+/% (// Dqfi( y)dqy> (D080 (3¢, ,5))dqs.

Consequently, we obtain
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+' /0% (/S%@qf%(y)dqy) (Dqs L (52, w,5))dqs
/%1 (/:z)qf%(y)dqy> (D s L8 (56, w,5))dys

+ . (35)

Now, let

Ba(Daf) = [ ([ Db 0)dey ) (D805,

and

1 s
Bua(Daterr) = [ ([ Dufy ) (D08h6s )

Then, we just need to estimate the terms 20, q(Dqfs, ) and By, q(Dqfs, 2). From
the definition of p (3¢, w,s) given in Lemma 2, applying the q-integration by parts, we
can write

R, q (Do, 5¢) = /0% (/S%qu%(}’)dq)’)/Dq,sp;?q(%was)dqs
= [ Dafls)poem)das.
Thus,
Rq(Dafe )| < [ Dalls)lpoew:5)dgs
< [ 040wy

»

[ ) Ipg e s

[m] q

Since Dyf.(3) =0 and p,(se,w,s) < 1, we get

| as)lpiCemsldas = [ 19ahls) ~ Dafi () P3G w5)das

7

SRv/Tr [m]q
P V.
</ . (ngf}f)dqt
o N s
<2 x
(T ([
> n——E
%—\/m [mlq
2w s
_ ( v ’qu/)
[m}q e Z
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Using Lemma 2 and considering s = » — Z, we can derive

[ 04t P gy < (o) [ 041

.um2 / \/7 (\/@ f;«r qu

= Um2 (> / Vil ( \/ @qf/) dqu
Wimla) , s
(>) ( )

—

SN

(

=N

)2
V i

%__

T

<
< k

Therefore, on combining the above inequalities we reach to

T Jon)e (V20

k=1 “
VImlg

”m2(%) (36)

‘mqu(gqf?ﬂ%” S o

Again using q-integration by parts in B, q(D4f:, ) and applying Lemma 2, we can

A

< [ bt~ o3

acquire

/quf%(y)dqy> (gq,sggq(%7wvs))dqs

Fl

‘%mq (qu;{» %)| =

< [V 04 5+ [ el
m]q
JH_\/W
= [ D45) = D) s
1 dys
Fna() [ [Dafls) = Do) =y
%Jr\/m (% S)
M 1— 1 s dys
<V @)t [ V@l
o e A PEnE
Now considering s = > + ;” , wWe obtain
D 15
[m]q e x-1 dou
1— 1 < u? ) q
|%m, (© f%7%)| < (© f%)—+“m.2(%) (9 f/)
q(~q Y q Ty , on Y q (1;%)2
1—3 %+1 o
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Therefore, we can deduce

pran 1—5¢
mlq [/Tmlq) 2+ 152
11— m
Ba@afr )| <\ Dgfn) e + £22Y V @h). G

P [mlq 1_% k=1

Now from (36), (37) and (35), we obtain the desired result. [

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]
[21]

[22]

[23]

[24]

REFERENCES

E. W. CHENEY AND A. SHARMA, Bernstein power series, Canad. J. Math. 16, 241-252 (1964).

R. A. DEVORE AND G. G. LORENTZ, Constructive Approximation, Springer Verlag, Berlin, 1993.
E. DUMAN AND O. DUMAN, Statistical approximation properties of high order operators constructed
with the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 218 (5), 1927-1933 (2011).

O. DUMAN AND C. ORHAN, Statistical approximation by positive linear operators, Stud. Math. 161,
187-197 (2004).

O. DUMAN AND C. ORHAN, Rates of A-statistical convergence of positive linear operators, Appl.
Math. Lett., 18, 1339-1344 (2005).

O. DUMAN, M. K. KHAN AND C. ORHAN, A-statistical convergence of approximating operators,
Math. Inequal. Appl., 6 (4), 689-699 (2003).

H. FAST, Sur la convergence statistique, Colloq. Math. 2, 241-244 (1951).

A. GADIJIEV AND C. ORHAN, Some approximation theorems via statistical convergence, Rocky Mt.
J. Math. 32, 129-138 (2002).

W. HAHN, Uber orthogonal polynome, die g-differenzengleichungen genugen, Math. Nachr. 2, 4-34
(1949).

F. H. JACKSON, Basic double hypergeometric functions (1), Quart. J. Math. Oxford, Ser. 15 (1), 49-61
(1944).

F. H. JACKSON, On g-definite integrals, Quart. J. Pure Appl. Math., 41, 193-203 (1910).

V. KAcC, P. CHEUNG, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002.

V. KARAKAYA AND T. A. CHISHTI, Weighted statistical convergence, Iran. J. Sci. Technol., Trans.
A. Sci. 33, 219-223 (2009).

H. KARSLI, Some properties of q-Bernstein-Durrmeyer operators, Tbilisi Math. J., 12 (4) 189-204,
(2019).

H. KARSLI, On approximation to discrete g-derivatives of functions via q-Bernstein-Schurer opera-
tors, Math. Found. Comput., 4 (1), 15-30 (2021).

G. KIROV, AND 1. POPOVA, A generalization of linear positive operators, Math Balkanica, 7, 149-162
(1993).

P. P. KOROVKIN, Linear Operators and Approximation Theory, Hindustan Publishing Corporation,
Delhi, India, 1960.

D. S. MOAK, The g-analogue of the Laguerre polynomials, J. Math. Anal. Appl. 81, 20-47 (1981).
S. A. MOHIUDDINE, Statistical weighted A-summability with application to Korovkin’s type approxi-
mation theorem, J. Inequal. Appl. 2016, 101 (2016).

M. MURSALEEN, A -statistical convergence, Math. Slovaca, 50 (1), 111-115 (2000).

M. MURSALEEN, K. J. ANSARI AND A. KHAN, Approximation properties and error estimation of
q-Bernstein shifted operators, Numer. Algor. 84, 207-227 (2020).

M. MURSALEEN, V. KARAKAYA, M. ERTURK AND F. GURSOY, Weighted statistical convergence
and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218, 9132-9137
(2012).

M. MURSALEEN, MD. NASIRUZZAMAN AND A. A. H. AL-ABIED, Dunkl Generalization of q-
Parametric Szdsz-Mirakjan Operators, Int. J. Anal. Appl., 13 (2), 206-215 (2017).

MD. NASIRUZZAMAN, K. J. ANSARI AND M. MURSALEEN, On the parametric approximation re-
sults of Phillips operators involving the g-Appell polynomials, Iran. J. Sci. Technol. Trans. Sci. (2021),
https://doi.org/10.1007/540995-021-01219-9.


https://doi.org/10.1007/s40995-021-01219-9

1028 P. N. AGRAWAL, B. BAXHAKU AND S. SINGH

[25]

[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]
[34]

[35]

[36]

MD. NASIRUZZAMAN, A. MUKHEIMER AND M. MURSALEEN, Approximation results on
Dunkl generalization of Phillips operators via g-calculus, Adv. Differ. Equ., 2019, 244 (2019),
https://doi.org/10.1186/s13662-019-2178-1.

J. A. OSIKIEWICZ, Summability of Matrix Submethods and Spliced Sequences, Ph. D. Thesis, August,
(1997).

M. A. OZARSLAN, g-Laguerre type linear positive operators, Studia Sci. Math. Hungar., 44 (1), 65—
80, (2007).

O. SHISHA AND B. MOND, The degree of convergence of sequences of linear positive operators, Proc.
Natl. Acad. Sci. USA 60 (4) 1196-1200 (1968).

H. M. SRIVASTAVA, M. MURSALEEN AND MD. NASIRUZZAMAN, Approximation by a class of g-
Beta operators of the second Kind via the Dunkl-type generalization on weighted spaces, Complex
Anal. Oper. Theory, 13 (3), 1537-1556 (2019).

U. STADTMULLER AND A. TALL, On certain families of generalized Norlund methods and power
series methods, J. Math. Anal. Appl., 238, 44-66 (1999).

H. STEINHAUS, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74
(1951).

E. TAS, Some results concerning Mastroianni operators by power series method, Commun. Fac. Sci.
Univ. Ank. Ser. A1 Math. Stat. 63 (1), 187-195 (2016).

E. TAS AND T. YURDAKADIM, Approximation by positive linear operators in modular spaces by
power series method, Positivity 21 (4), 1293-1306 (2017).

J. THOMAE, Beitrdge zur Theorie der durch die Heinische Reihe: Darstellbaren Functionen, J. Reine
Angew. Math., 70, 258-281 (1869).

MN. ZAMAN, A. M. ALOTAIBI AND M. MURSALEEN, Approximation by Phillips operators via
q-Dunkl generalization based on a new parameter, J. King Saud Univ. Sci. 33 (4) (2021): 101413,
doi:10.1016/j. jksus.2021.101413.

A.ZYGMUND, Trigonometric Series, Cambridge Univ. Press, Cambridge, 1979.

(Received June 3, 2021) P. N. Agrawal

Department of Mathematics

Indian Institute of Technology Roorkee
Roorkee-247667, India

e-mail: pnappfma@gmail . com

Behar Baxhaku

Department of Mathematics

University of Prishtina

Prishtina, Kosovo

e-mail: behar .baxhaku@uni-pr.edu

Sompal Singh

Department of Mathematics

Indian Institute of Technology Roorkee
Roorkee-247667, India

e-mail: ssingh@ma.iitr.ac.in

Journal of Mathematical Inequalities

v.ele-math.com

jmi@ele-math.com


https://doi.org/10.1186/s13662-019-2178-1
doi:10.1016/j.jksus.2021.101413

