lournal of
athematical
nequalities
Volume 16, Number 3 (2022), 1029-1049 doi:10.7153/jmi-2022-16-69

GENERALIZED INEQUALITIES FOR FUNCTIONS OF L,
SPACES VIA MONTGOMERY IDENTITY WITH PARAMETERS

NAZIA IRSHAD, ASIF R. KHAN AND S. SIKANDER SHIRAZI

(Communicated by Y.-H. Kim)

Abstract. We obtain new Montgomery identity with parameters for two variables. By using
this obtained identity, we give some generalization of Ostrowski type inequality for L, spaces
with better bounds. In addition, we modify Griiss type inequality for two independent variables
involving parameters.

Montgomery identity is one of the classical results that creates many important
inequalities such as Ostrowski inequality, Griiss inequality and Ostrowski-Griiss in-
equalities. Its bivariate form has introduced some new generalization and advancement
in different inequalities. These inequalities have many applications in various fields of
mathematics such as numerical integration and probability theory. We can also obtain
special means with the help of these inequalities. In the last 20 years rapid advancement
in generalization and improvement of these types of inequalities has been observed for
references see [2, 4, 12, 13, 15, 16,21, 23, 24]. This article deals with its bivariate form
in order to generate our proposed results of Ostrowski and Griiss type inequalities in
terms of parameters. The idea behind the results based on parameters is to make further
generalization of those results of Ostrowski and Griiss inequality which are non para-
metric based, as parameters extends the region of inequality more wider and provides
a family of solutions and the quality of inequality will improve conclusively. If we talk
about L, spaces, this is the first ever combination of L, space, parameters and bivariate
differentiable functions, which some how connects our result with lebesgue measure.

We need the following definition to use in our results. Holder’s inequality, named
after Otto Holder, is a basic inequality and an essential tool for the study of L, spaces.
Holder’s inequality was first found by Rogers in 1888, and discovered independently
by Holder in 1889. Integral version of Holder’s Inequality [19] is stated as:

1 1
THEOREM 0.1. Let 1 < p oo with —+—-=1. If f€L, and g € L, then
P 4
fgeL and
[ 17g)lax < 1111l
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1/p
where [l = ( [ 1r1rar) " <
Moreoverif f € L) and g € L., then

[1£@gldx <7l lgll-
where ||f|| = ess sup|f(x)].
Vx

In the first section, we obtain Montgomery identity with parameters of two inde-
pendent variables, while in the second section, we establish new inequalities of Os-
trowski type for two variables in terms of parameters for L,, spaces. In the Last section,
we will achieve Griiss type inequalities with its Cebysev functional.

Throughout the paper, we have I = [0, o] and J = [0, 0] .

1. Montgomery identity for functions of two variables involving parameters

Montgomery identity is very useful to gain some interesting inequalities. Here
we state the classical Montgomery identity from “Inequalities for Functions and their
Integrals and Derivatives” by Mitrinovi¢ et al. in [18, p. 565].

PROPOSITION 1.1. Let f: 1 — R be an absolutely continuous function. Then
1 1

o oy ,
10) = g | e+ e | Pl f (e, (11)

where Peano kernal P(x,t) is given as

t—0y, if t€[0,x],
P(x,1) = (1.2)
r—0p, l:fte(x7(xb]'

In 2001, Dragomir et al. introduced the previous identity with parameters in [7] as
recalled in the following proposition.

PROPOSITION 1.2. Let f:1— R is differentiable on [0, 0] with f' integrable
on (0, ), where € € [0,1]. Then generalized integral identity holds

flow) + fow) 1 /O‘b 1

(1=e) )+ el [* s —— [" s
(1.3)

where € € [0,1] and Py (x,t) is defined as

t— (0 +€%5%) , if 1 € [0g,x],
Py (x,1) = (1.4)
t— (o —e25%) , if t € (x,04],

forall x € [0, 0.
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In [1], (see also [6]) authors proved the double integral Montgomery identity for
two independent variables stated as follows:

PROPOSITION 1.3. If f:1xJ— R is differentiable such that af(a s) is inte-
grable on interior of 1 X J, then
Foey) = e [ pleydi “ flxs)d
X,y) = ———— t,y)dt + ——— x,s)ds
g (o0 =) Jo T =0 Ja
Op
— (t,s)dsdt
(oc;,—aa / f $)ds
% [0 82f(t s)
P(x,t —— L dsdt
[0 [ P S dsar,
(1.5)
where P(x,t) and Q(y,s) are the Peano kernels defined as
11— 0y .
b t E b b
o V€0
P(x.1) = (1.6)
=0y .
T re ) )
p— if 1 € (x,0]
and
§— O .
) E ) )
0y — o if s [ac y]
O(y,s) = (1.7)
S—0g .
ad_ac’ lfSE(y,(Xd}-

Now, we are going to establish new Montgomery identity with two parameters and
two independent variables, which will provide generalization of existing Montgomery
identities. Here we state our first main result.

2
Pris)

THEOREM 1.4. If f:1xJ — R be absolutely continuous such that ETE]
s

integrable on interior of I X J, then

(I—¢e)(1—x)f(x,y)
(R e o
_m . I, )dt+ o ), f(x,s)ds

f (t,5) dsdt—l— 5 Ve, «(f)

_(ocb—aa ) (0 — o) /
92
! / Pl(x t)Ql(ywv)Mdsdt7 (1.8)

(o — otg)(0fg — Ot) dtds
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where
Verll) = s [ (o) 4 flt. o)) dr = (1 =€) (.0 + (5. 04)
£ O
ey | F(0s) +(@.9)ds = (1= ) (F(e0.9) +(05.)
S (/0 00) + (s ) + (0, 0) + (0, 01) (19)
also Py(x,t) is defined as in (1.4) and Qi (y,s) defined as
s — (ac—l-Kad;aC) , I s € [0,
Qi(ys) = (1.10)
§— (ad_Kad;ac)7 lf s € (y7ad]7

where €,k € [0,1].

Proof. By using (1.4) and (1.10), we have

0ol Oy 2
[ [ A9 T LED

(1 C B B 2
LT (o)) o (e ) ) P
[27] — — 0L 2

+ / (t—(aa—i—s%z%)) (s—(ad—rcadza‘>)88];(;’;)dsdt
Og Jy
ol _ _ 2

+/ /y (t— (ab—sabza“>> (s— <a0+1<ad2 ac>) agft(at;s)dsdt
o Oy _ _ 2

+/ / (t—(ab—eabza“)> (s—(ad—xadzac)>aa];g’ss)dsdt

=h+hL+5L+1. (1.11)

After some calculations and simplifications, we have

L= (x— (aﬁea”;a")) (y— (ac+r<ad;a“)>f(x,y)
- (y— (oﬁx@)) xf(t,y)dz— (x— (aa+e ab;a")) if(X»S)dS
R e

ad—ac K (aa—i—e “))f(x, A aaf(z,ac)dt]
)

(a”_a“ (©a=9%) cg )+ [ [ fie,s)asar,
4 0y J o
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h=- (x— (aa+6ab;a“)> (y— (ad— Kad;ac))f(x7y)
+<y— <ad K ))/ f(ty) dl—( (aa+£_t)ta>) yadf(x»s)ds
+8@ [— (y— (ad— Kad;%))f(amy) —/adf(ams)ds}

y
+K@ Kx— (aa+8ab;a”>)f(X,OCd)—/O:f(f’adW}

+,<e(°‘h‘O‘“Zf“"_O“’f(aa,ad)+/;/yadf<z,s>dsdt,

13=—< - (ah—eah;a”» (y— (ac+1<ad;a“)>f(x,y)
ad?‘“)) /ab flt,y)di+ (x— (ocb—sa”;a“D
+sa”;a" [(y—<occ+1<a" )) flow,y) /fab, ]

+Kad;ac [— (x— (ab—eab 3 aa))f(x o) — | f(t ac)dt}

(o — 0ta) (Oa — Ot
4

/y f(x,s)ds

Oc

f(ab7ac)+/xah /()if(t,s)dsdu

and

o259 - 855
+ (y— (ocd—Kad;ac>) Xab flt,y)dt+ (x— ((x;,—s ab;a,I)) /yadf(x,s)ds

+€ab;% [— (y— (ad— K@))ﬂ%,)’)— adf(ah,s)ds}
y

+Kad;a“ [— (x— (ah—sah;a”)>f(x,ocd)—/xabf(t,ocd)dt]

(ab—aa)“(ad—ac)f(amad)_,_/ab adf(t7s)dsdt.
x Jy

+ K€

By substituting the values of I;,5,I3 and I4 in (1.11), after some simplifications we
get

o o, 82
/%" aCdPl(x7t)Q1(y7) ac(a 9 dsdr

= (1= )1 = K)o — o) (0 — @) () — (1= )@ —ax) [ F(t3)ds
(1= ¢)(op— o) /a Y e s)ds+ /a “ /a M (e, s)dsd
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O — O

e [”(f(z,ac)+f(z,ad))dz+

K(1—¢€)(op—0ag) (0t — o)
2

X (700 + s 0a) — e 2% [™ (1 (0009) + f(00,9)ds
e(l—x)(ogp—0y)(0g — o)
2
ex(op —og) (0 — o)
4

(f (e, y) + f (%, 7))

(f(aavac) +f(aa7ad) +f(ab»ac) +f(ab7ad)) s

which is our required identity. [

REMARK 1.5.

1. If we substitute €,k =0 in (1.8), then it gives (1.5) of [1] as stated in Proposi-
tion 1.3.

2. If we substitute f(z,s) = h(t)h(s) and x =y in (1.8), then it gives (1.3) of
[7] as stated in Proposition 1.2. Hence we easily get (1.1) of [18] as stated in
Proposition 1.1 by substituting € = 0 in Proposition 1.2.

REMARK 1.6. If we substitute € = k, then we get a special type of Montgomery
identity as established in [17].

(=) = S [ gy L2 [ pasyas

Op — Oq Joy c J O

1 O [0 1
_(ab_aa)(ad_ac /Ota o f(tas)det+§lV£(f)
9*f(1,5)
(ab_aa Olg — Ot / P””Ql(y’) r0s st
where
£ % £ O
‘Vs(f)zm/% (f(h%)*-f(h%))df—i-m/r (f(0a,s)
+f(0,s))ds —e(1 —€) (f(x,0) + f(x,0) + f(Ca,y) + f(%,y))
2
=5 (e 00) + £ (0as ) + (000, 00) + (0, ) )

also Peano kernels P (x,#) and Q’l (v,s) are defined asin (1.4) and (1.10) respectively.

In the next section, we are going to present Ostrowski type inequality for L, and
L. spaces by using the Montgomery identity (1.8) as we obtained in the current sec-
tion.
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2. Generalized Ostrowski type inequalities

The classical inequality introduced by Ostrowski in 1938 named in the literature
as Ostrowski inequality [20]. It is basically the absolute deviation of functional value
from its integral mean. It also approximates area under the curve of a function by a
rectangle. It is given in the following proposition.

PROPOSITION 2.1. Let f:1 — R be a differentiable mappings on I° such that
f € Loy, o] where o, < o whose derivative f' is bounded on interior of 1, i.e.,
1f Nl =" sup |f'(r)] < eo. Then

t€(0q,0p)

1
Oy — 0y Joy

(x _ Ogtoy

|f<x> - * Fle)dt] < (0 — )

! ]
zﬁm] IF@l- @D

The constant % is the best possible constant that it cannot be replaced by smaller one.

In 1997, Dragomir and Wang established the following inequality [8] of Ostrowski
type for differentiable functions where f’ € L, space.

PROPOSITION 2.2. Let f:1 — R be a differentiable function on I° where 0, <

1 1
oy such that f' € Ly[oy, o) where 1 < p < e and —+ — = 1. Then
P 4

1
O — Oy Joy

1
1A 1p, (2.2)

f() 1 [(X—Ola)q+l+(06b—x)q+l

ah—au q+1

|f<x> -

forall x € [0, 0.

In 2001, Ostrowski type inequality for double integrals was introduced by Barnett
and Dragomir in [1].

PROPOSITION 2.3. Let f:1xJ — R is differentiable such that 8f(8 s) is in-
tegrable on interior of I X J and is bounded in L.. space. Then
1 oy Oq
flx,y)— m o f(e,y)dt — (= 00) Ju. f(x,s)ds
o
+((Xb_(xa Yog— o) / ftsdsdt

1
<
4(op — oy)(0g — O)

[(x— Ota)2 + (o —x)?]

‘azf(LS)

X [(v=0e)® + (o =] || =5 5>

‘ . (2.3)
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Furthermore in 2000, Dragomir et al. in [4] generalized the results of [1] for L),
space.

- : I*f(t,s)
PROPOSITION 2.4. Let f :1xJ — R is differentiable such that

dtds
integrable on interior of 1 xJ and is bounded in L, space where 1 < p < o and
—+—=1. Then
P q

1 Op 1 %
lf()@y)—m o f(f»y)df—m o f(x,s)ds
+((Xb_(xa Y — o) / ftsdsdt

_ 1 82f(t,s)
= (o — o) (otg — ot ’ dtds ’p

y {(x— 00) " + (04 —x)’”l] 3 [(y— o) 4 (oy —)’)qH] ‘ (2.4)
g+1 g+1

In 2000, Dragomir et al. in [7] generalized the classical Ostrowski inequality [20]
as stated in the following proposition.

PROPOSITION 2.5. Let f:1 — R be a differentiable mappings on I° such that

f € L[, 04, where 0, < 04, whose derivative f' is bounded on (0, ), i.e., || f || :=
sup | f'(t)] < eo. Then

te(0g,0p)

(1 —S)f(x) +£f(06a) ;_f(ab) _ (Xbi(xa abf(l)dl

Olq

Ogt0p\ 2
sq%—moﬁ{ﬁ+@—m%+%it§%+.mmm7@&

where € € [0,1].

In 2003, Yang established Ostrowski inequality for L, spaces in [27] that is infact
a generalization of (2.5).

PROPOSITION 2.6. Let all assumptions of Proposition 2.2 be true. Then
f(o) + f (o) 1 %

1—¢ £ — t)dt

(1-)f(x) + 2% — [0

Oq

o — 0l q+1
<x_<mf+g . ))
1
o q+1 N q+1] g
+<<ab_£ab2aa) —)C> +2 <£ab2aa> ‘| ||f/(x)||pa (26)

1

N

(05— ) (g + 1)
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where € € [0,1].

Now, we are going to present Ostrowski inequality of double integrals for L, space
and L., space with parameters.

9*f(t,s)
tos

THEOREM 2.7. Let f :1xJ — R is differentiable such that 5
p < o and

d
tegrable on interior of I x J and is bounded in L, space where 1 <

1 1
—+—=1. Then
P q

|u—wu—wiyw~ﬂifl %fmww——giﬁjﬁffwww

(op — tta) Jo, (otg — ote

f (t,8)dsdt — Wgﬂ((f)'

92/(15)‘
(ap— o) (0g — o) (g + 1) p

dtds
[ P q+1 o — 0l g+1
x (x_<%+f )) <<%_f . )—w)
— g1 o\ 4t
(o) ] (eremr%))
1
o q+1 o \at1] e
—|—<<(Xd—K‘ad2aL>—y> +2<Kad2ac) ] , 2.7)

where €,k € [0,1].

((Xb—O{a ad_ac /

N

2
q

Proof. From Theorem 1.4, we have

(1-e)1 - R~ oo [

(l—g) [%
7%_%)%fwmmu%_%(%ﬂ%/

1 o o 2f(t,s
= oo o) o, o, D0 ik)ﬁw- a8

Applying absolute on both sides of (2.8) and using Holder’s inequality, we get

(161 =0~ o [

_(-¢) adf(x s)ds + /ab
(0g— ) Jo, ’ ((Xb_(xa 0y — OL)

1 a 92f(t,s)

:(%—%X%—wﬁh o DENAOD=55, d”

Pt~ 3 ve()

ft s)dsdt

fmwm—1%x0>

fts )dsdt
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*fl(t,
<
\(ab_aa ad_ac/ ~/0€p |PI~XIQ1y7 |‘ ata

dsdt

o | 9% f(t,s) 3
< e ([ [ mesnosorasa)! ([ (2250 s
= 82f(z s)
(ab_aa)(ad—ac)(q-pl)% dtds

P
1

o—a q+1 O— 01 g+1 O — 01 q+1] g
x| [ x— ( ogte2—1 o (og—e2) 10 (e
2 2 2
1
_ q+1 _ q+1 o q+1

q
g

COROLLARY 2.8. Let all the assumptions of Proposition 2.5 be valid. Also if we
select g=1 and p — oo in (2.7), then we get following result

‘(1_8)(1_1()]0()67)7)_% o f(f y)dl——ll/sk(f)
(I—¢) 0 o
oo Ju S (x,5)ds+ (Olh—au / f (t,5)dsdi
1

S Hop — o) (0g — o) [(x—aa)2+(ab—x) —g(1 —g)(ab_aa)Z]

2 N
[ o0+ o)~ xl1 = w00 | 245 09)
Ogtop\2
== [ 1) S
i (= “5%)°] || 20,9
le{K2+(K—1)2}+ (ad—fxc)2 ‘ S ‘ , (2.10)

where €,k € [0,1].

REMARK 2.9. It is to be noted the constant 1 is sharp in (2.10) in the first and
second bracket in the sense that it cannot be replaced by any smaller values.

To be more specific, if we suppose the inequality (2.10) be valid for constants
H,H, >0,1i.e.,

(I—x) [%
(0 — 0ta) Jar,

\u—au—wimw- F(e)di— 2y x(r)

(l—g) [%
_7(06[1—%) w f(x,s)ds-i-(ab_aa

/ fts \dsd
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Ogt0y,\ 2
< (o — o) (0w — o) [H1 {£2+(£— 1)2}4-@1

(0 — 0ta)?
O(C+OCL1
X[HQ{KZ—I—(K‘—I)Z}—i— - M(yfts ‘

(og — ocC dtds
Consider f(s,7) =st, x =04, y= 0, and €,k = 0 then above inequality reduces to

1 1

<|H - H -
<1+4)<2+4>

<H—l—1 H—|—1
X 1 4 2 4a

which gives that H| > % and H, > ‘l‘. Hence we are true in our claim.

In the similar manner one can find out that the improved bounds will be obtained
by choosing €,k = % .

= A=

1
=X
2

From (2.7) and (2.10) we can get many results of Ostrowski type inequality.

REMARK 2.10.

1. If we substitute € = k =0 in (2.7), the it gives (2.4) of [4] as stated in Proposi-
tion 2.4.

2. If we substitute € = k = 0 in (2.10), then it gives (2.3) of [1] as stated in
Proposition 2.3.

3. If we substitute f(z,s) = h(r)h(s), here h be absolutely continuous function,
also let ||| < o and x =y in (2.7), then it gives (2.6) of [27] as stated in
Proposition 2.6. Further if we choose € = k =0, then we get (2.2) of [8] as
stated in Proposition 2.2.

4. If we substitute f(z,s) = h(t)h(s), here h be absolutely continuous function,
also let ||| < e and x =y in (2.10), then it gives (2.5) of [7] as stated in
Proposition 2.5. Further if we choose € = k¥ = 0, then we get (2.1) of [20] as
stated in Proposition 2.1.

O+ 0 O+ 0y in

COROLLARY 2.11. If we take € = x =0, 7

and y =
(2.7), then we get

o, + oc;, o+ 0y 1 /O‘b O+ 0y
V( 2 ) (%—%>%f(“ 2 )w

1 Ca oy + 0y
—_ d t,s)dsdt
(o — o) /a(. f( 2 ’S) s+(ab—aa Yoy —c) / f s)ds

<%F%—%x%—wqéavmwt

(g+1)2 910
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The above inequality is Corollary 5 of [4].
g+ 0
COROLLARY 2.12. If we take € = Kk =0, x = — and y =
(2.10), then we get

aa—i—ab O+ 0y 1 /O‘h O+ 0y
— t dt
(=) e e (455

1 d Oy + o
‘(ad—aa/f f( 2 )d

O+ 0y
— n
2

+(%f_ml(m_1% / £, )dsd
(%—%Xw—%)87MQ
= 16 dtds ||,

The above inequality is Corollary 2.2 of [1].

REMARK 2.13. It is easy to see that in all our results, we get better bounds for
. . Oy + oy O, + (0%]
substituting x= ——, y= ——— and e = K = —.
ubstituting x 5 y 5 5
REMARK 2.14. We can also get many interesting results by varying the values of
p and ¢ in our main result (2.7). The case p = ¢ = 2 is of special interest.

3. Generalized Griiss type inequalities

Cebysev introduced the following inequality in his article [3] for two absolutely
continuous functions, in the literature this inequality is named as Griiss inequality which
is obtained by classical Montgomery identity defined previously in the Proposition 1.1.
It gives the estimation of bounded functional for two absolutely continuous functions.
Here is the inequality as given in the proposition stated below:

PROPOSITION 3.1. Let f,g:1 — R be two absolutely continuous function such
that f',g' € L.. spaces. Then we have

l / /
(0 — 0a)*[Lf' |l 3.1

T(1:8)l < 33

where T(f,g) is Cebysev functional defined as

1) = gt [ s ([* i) ([*sar). 62

Op — Oy oy
forall x € [atg, o).

Pachpatte [23] obtained the another generalized of (3.1), which states that:
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PROPOSITION 3.2. Let f,g:1 — R be two absolutely continuous function such
1 1 «
that f',g" € L, [0, 0] spaces where 1 < p < oo, —+— =1 and T(f,g) is a Cebysev
P q
Sunctional defined in (3.2). Then

1 / / % 2
7081 < g I ol [ (B 63

(0%

and
7001 sy . @I+ LA ) (Bo)ids, G

where

(x— o) + (0 — )41

Blx) = q+1

)

forall x € [0, 0.

In 2011, Gauezane-Lakoud and Aissaoui in [16] extended this inequality for two
independent variable as can be seen in the following proposition.

PROPOSITION 3.3. Let f,g:1xJ— R be differentiable functions such that their

32 2
fls)  9e(t.s)
dtds dtds

second order partial derivatives are integrable on I x J. Then

49 2 82f t, S
RTEE s (L L TR
and
T.(f.8)] < :
L(f,8)] < S(ab_aa)z(ad_ac)z
o ad azf(ts agts
X/ / |g(x’y” 9105 Hw |H 2105 Hw>
x{(x = 0a)? + (0 = x)* H{ (v — o) + (0t — y)* }dydlx,
(3.6)
where
T*(f7g) = (ab o aa / f X y (x’y)dydx
1 v drdyd
l ad dsdyd
(o, — ) (0 — )2 / gxy o f(x,s)dsdydx
1
+(0€b— 00)2 (0 — 0 ) / g X,y dydx/ f(t s)dsdt. (3.7)
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In recent years, a number of research papers related to Griiss type inequality and
its Ceby§ev functional have been published, we may mention the works [2, 16, 21, 22,
24, 25]. Now we would like to generalize Griiss type inequalities of [16] for functions
of L, space and by introducing some parameters.

THEOREM 3.4. Let f,g :1xJ — R be differentiable functions such that their
2 2

Prits)  Psls)
dtds dtds

1 1
are bounded in L, spaces where 1 < p < oo and —+ —. Then
P 9

are integrable on 1° X J° and

second order partial derivatives

Ty (f,8:€,x)|
1

(o — o) (0 — )* (g + 1)1

oy [0y Op — Oy atl Op — Oy ot
></ / (x— (Oﬂa—i—s )) +<<ab—£ )—x)
oy Jo 2 2
14 +1
op—o \ 1|1 oy — o\ \?
+2<£ bz ) ] <y—<ac+1< dz ))

> f(t,s)

< o),

2
. g+1 v q+17 q
+<<ad—1<°“’2a‘>—y) +2<K°“’2a‘> ]dyd)@ (3.8)
where
(1—¢)%(1—x)? /
T €, K) = ,y)dyd
1(f,8:€,%) (05— o) (g — ) ! Fry)glry)dydx

(1—2¢)(1 - )? /oc,, /th
- t.y)dedyd
(o — 04)%(0g — Ot 8(x,y) o f(t,y)dtdydx

1 —€)*(1 —2k) %
_(ofb—a Otd—OC / g X,y) ; f(x,s)dsdydx
ll C C
22ek—e—K
—l—(a}(]_a ocd—a / gxydydx/ / Sf(t,s)dsdt

/ Fe x(8) +Ge k(f) + §W£7K(f)W£7K(g)>dydx’ (3.9
where €,k € [0,1].

Proof. Let F, G, F and G be defined as follows

7((();:1;1) * f(s,y)ds— 7((5;:2) :d S(x,)dr

f (t,s dsdt__WS (),

F=(1-g)(1-x)f(xy) -

0
/
( o (Xa (Xd ac
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. f(t,s)
F = P
(o — 0)( ad—ac/ 1(61)€103) dtds dsdt,
(1—1() o (I—¢) O
G=(1-¢)(l—x — = 5,y)ds — ————2 x,1)dt
(1—¢e)(1-K)g(x,y) — ocb—oca) ag( y) o) Ju 8(x;1)
e e [ stesdsai = et
C
and
. 1 % 04 d%g(t,s)
G= Py (x,t —dsdr.
(ah—au)(ocd—ac)/a o, D)) =55 =ds
Then using the condition,
FG=FG,
1

multiplying the resultant by (05— o) (0 — o) and integrate from o, to ¢, over x
b — Qa d — Ue

and integrate o, to ¢ over y, we get

(1—¢)%( /
T JE,K) = dyd.
1(f.8:€,K) (ab—aa = o) fxy (x, y)dydx

(1—2¢)(1—x)? / /O‘b
- t,y)dtdyd.
(o — )20y — o) "gley) [ flty)didydx

1—¢)%(1-2x)
— (Ofb T P / g X,y) f(x s)dsdydx
a C
22exk—e—K
+(OCI(;— ) (Xd o) / g X,y dydx/ f(t s)dsdt
a 'C

a”/ Fq/gK +ngK(f)+—Ws,;c(f)ws,x(g)>dydx

:(ab—oca ad—occ / /a / Px,t,y,)azaf(a )ddz>

o
/ I P (x,2,y,s )aagt(at’s )dsdt>dydx.

Applying absolute, we get

ITi(f,8:€,%)|
o 2
<(Ofb—0€a)31(06d—060 /a /( / / >aaCas ’d dt)
X (/ / (x,0)01 (v, s )8 ’dsdt)dydx.
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Using Holder’s inequality, we get

ITi(f,8:€,%)|
1
= (o — o) (0 — )
0ol 0ol 1 82f([ s)
q q ’
/ /a / / 1Py (x,£)01 (v, 5))| dsdt) o |,
il 9%g(,s)
q q ’
/ /a |P1 (1) Q1 (v, 5)) dsdt) FPeR p)dydx
_ 1 2f(t,s) || ||9%e(t,s)
(o — )30 — ) || d1as ||, || deds ||,
oy 2
x/ / / / 1Py (x,1)01 (3, )|‘1dsdt>qdydx
oy Joe
_ 9*f(t,s) 2
(ab_aa)3(ad—ac)3 dtds 8t8s ny dydx
1 d*f(t,s)
<
= d1ds H H atas Hp

(o — 063 (0tg — 03 (q+1

oy oy _ q+1 _ q+1
L (o)) (e )
O 2 2
177 +1
op—o, \ |1 oy — o, q
)
+1 1 e
_ q _ q q
+<<ad—lcw)—y) +2<xw> 1 dydx. [

REMARK 3.5. If we substitute € = x =0 in (3.8), we get

1 d*f(t,s)
(ocb—oca)3(ad—occ3H dtds H H 8t8s Hp

[ Y — O( q+1+(ab_ )tI+1 q
/ / [ q+1 ]

_ g+1 _y\9+177q
O NS0k C 7 A P (3.10)
q+1

where T, (f,g) is defined in (3.7). The above result is generalized case for L, spaces
of (3.5) of [16].
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COROLLARY 3.6. Ifwe substitute g =1 and p — oo in (3.8), then we get

IT1(f.g:€,K)| <

(o — o) (0g — € > f(t,s)
D | ) ).

%+e(1_e){3(1—s) 4}” (1K) {(3(1—K)— 4}} G.11)
where T\ (f,g;€,K) is defined as in (3.9).

REMARK 3.7. If we substitute € = k =0 in (3.11), or ¢ =1 then p — o in
(3.10), then we get (3.5) of [106] as stated in the Proposition 3.3

Now we are going to present the second main result of Cebysev inequality.

THEOREM 3.8. Let all assumptions of Theorems 3.4 be valid. Then

T3 (f.g.6.%)
1
S 30— 00)2 (00 — 00 2(q + 1)2
oy oy 2
/ /af (‘g(x’y”Ha&J;&tss H I |H 8t85 H)

_ q+1 _ g+1
[l (mrem52)) o ((some5%) )
_ q+1 q . q+1
a(em5%) ] [ (ere3%))
2
+1 1%
_ q _ q q
+<(ad—x—“d2°‘0) —y) +2< “dz‘”C) ] dydx,  (3.12)

K
where
B(f,g:€,K)
1—¢€)( O
—(ai_a ad_a / fxy 8(x,y)dydx

1_ K OC/, Op
- (ab—a (o — o) / g x7y)/ f(t,y)dtdydx
a c

1— o
_ (1-¢) / dgxy/ Sf(x,s)dsdydx

(ab_aa)(ad_ac)2 .

Op
(o — a2 (0g — o) / g X,y dydx/ f(t,s)dsdt

- ; / / fy)e(s )+8(x7y)llfm(f)>dydx, (3.13)

2(0p — o) (0 — )

where €,k € [0,1].
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Proof. Applying identity (2.3) to the function g, we get

(1—¢e)(1—x)g(x,y)

= M/abg(t,y)dt_i_

(l—g) [%
-_— d
e — [ stesas

Oc

_(ab_a ad_a / gtSdet+ Wg;{()
a C

1 [07 32 ,
(%—%Wwﬂm/ auﬁﬂﬁwwéﬁﬁwm (3.14)

Multiplying (1.8) by (o — o0 (= ac)g(x,y), (3.14) by (@ — o0 (= ac)f(x,y),

summing the resultant identities, then integrate from ¢, to 04 over x and integrate o
to oy over y, we obtain

I—¢)(l—x)
Ué—a /) fxy (x,y)dydx
a
1—1(

_ / ‘() / abf(t,y)dtdydx

(%—% (0g — 0t)
1—8
(%—% %—m

L
- / g x,y)dydx / f (t,s)dsdt
il

[07
g (x,y) / df(x7S)dsdydx

(%—% (0tg — at)?

%aw—%(mqu / S y)Wee( )+8@JW&Aﬁ>®dn

1
2(op — 0t)?(0tg — 0t )?

s [ [ 2

s r) [ dPl(XJ)Ql(%) 5(8 )dzds)dydx (3.15)

Oq /0

from that we deduce,

(f,g:€,K)

2(0y — aa)i(ad — 0 )?

T o ot
+f@w/% Wﬂ@ﬁ@@@azgamw>@m. (3.16)

o Joe
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Consequently taking absolute value on it and then applying Holder’s Inequality, we
have

IT2(f,8:€, )|
1

S Z(OC;, - aa)2(ad - ac)z(q + 1)2

L *f(t,s) d%g(t,s)
/ /a <‘g(x’y)|H dtds H I |H dtds H)
[ P q+1 o — 0y q+1
X (x—(aﬁ—s > )) +<<ch—8 > )—x)
1
_ g+l]q _ g+1
(et ) | o (wnz®))
1
o q+1 B g+1] 7
+<<ad—r<a"2°“)—y> (O‘d O“) 1 dydv. O (3.17)

REMARK 3.9. If we substitute € = k¥ =0 in (3.12), then we get

IT.(f,8)]

1
<
20y — 0)2 (0tg — )2 (q + 1)?

A G = T~

1
><[(x—au)q“Jr(a,,—x)q“}"[(y—ac)q“Jr(ad )q“} dydx,  (3.18)

where T.(f,g) is defined as in (3.7).

REMARK 3.10. If we substitute ¢ = 1 and p — e in (3.12), then we get

|T2(fvg7£?’<)‘
1
S 8(0p — )2 (0tg — 0t )2
o 1oy D’ fl(t,s %g(t,s
[ (st | g2+ |52 )
x [(x—aa)2+(ab—x) —8(1—8)(ab—aa)2}
X [(y— o)+ (g —y)* = k(1 — k) (g — 0t)?] dydx, (3.19)

where T>(f,g;€,K) is defined as in (3.13).

REMARK 3.11. If we substitute € = k =0 in (3.19), then we get inequality (3.6)
of [16] as stated in Proposition 3.3.
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REMARK 3.12. We can get many interesting inequalities by varying the values of
€ and x. It is to be noted that the better bound for (3.8) and (3.12) is derived from

£,K=~.
’ 2

4. Conclusion

In this article, we acquired some new results of Montgomery identity, Ostrowski
inequality and Griiss inequality with parameters for L, spaces. We have obtained var-
ious inequalities with better bounds. Our proposed results capture number of results
statedin [1, 7, 8, 16, 17, 18, 20, 27] as special cases.
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