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REVERSE FORM OF THE MINKOWSKI
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(Communicated by M. Kian)

Abstract. In this paper, we obtain the reverse of Minkowski inequality for matrices, and from
this we give reverse forms of the Oppenheim inequality for n -simplices and the Neuberg-Pedoe
inequality for triangles.

1. Introduction

Let A and B be positive definite matrices of order n . Then we have

|A+B| 1
n � |A| 1

n + |B| 1
n , (1.1)

where |A| denotes the determinant of the matrix A . Moreover, equality holds if A = λB
(for some λ > 0). Inequality (1.1) is called the Minkowski inequality for matrices; see
[1, 2, 3]. Bergstrom [4] established an important inequality which is analogous to (1.1),
as follows.

Let A( j),B( j) denote the sub-matrices of A and B obtained by deleting the j -th
row and column, then

|A+B|∣∣A( j) +B( j)
∣∣ � |A|∣∣A( j)

∣∣ + |B|∣∣B( j)
∣∣ .

Fan [5] gave a generalization of (1.1) and established an inequality for matrices.
Yuan and Leng [6] gave a generalization of the inequality (1.1), as follows.

Let Ai denote the principal sub-matrix of A formed by taking the first i rows and
columns of A , and In−i denote the unit matrix of order n− i , (0 � i < n ). If α and β
are two nonnegative real numbers such that A > aIn and B > bIn , and D = A+B , then

( |D|
|Di| − |(α + β )In−i|

)1/(n−i)

�
( |A|
|Ai| − |αIn−i|

)1/(n−i)

+
( |B|
|Bi| − |β In−i|

)1/(n−i)

,
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with equality if and only if α−1A = β−1B .
There is a vast amount of work on the generalization of inequality (1.1); see

[7–13]. In this paper, we study the problem on reverse form of inequality (1.1), and
establish a reverse form of the Minkowski inequality. Moreover, we use this inequal-
ity and establish reverse forms of the Oppenheim inequality for n -simplices and the
Neuberg-Pedoe inequality for triangles.

2. Main results

Let Hn be the set of all n× n real positive definite matrices and In be the n× n
unit matrix. We use the notation AT to denote the transpose of matrix A . We give a
reverse of the Minkowski inequality (1.1) as follows.

THEOREM 2.1. Let A,B ∈ Hn . If λ1 � λ2 � · · · � λn > 0 are the eigenvalues of
the matrix B−1A, then

|A+B| 1
n � 1+ λ1

1+ λn

(
|A| 1

n + |B| 1
n

)
. (2.1)

Moreover, equality holds if A = μB for some μ > 0.

From Theorem 2.1 we state two corollaries as follows.

COROLLARY 2.1. Under the conditions of the Theorem 2.1, if x,y > 0 are two
real numbers, then

|xA+ yB| 1
n � y+ λ1x

y+ λnx

(
x|A| 1

n + y|B| 1
n

)
. (2.2)

Moreover, if A = μB for some μ > 0 , then the above inequality turns into an equality.

COROLLARY 2.2. Under the conditions of the Theorem 2.1, we have

|A+B| 1
n � λ1

λn

(
|A| 1

n + |B| 1
n

)
. (2.3)

Moreover, equality holds if A = μB for some μ > 0.

We give another reverse for inequality (1.1) as follows.

THEOREM 2.2. Let A,B ∈ Hn . If λ1 � λ2 � · · · � λn > 0 are the eigenvalues of
matrix B−1A, then

|A+B| 1
n �

√
2
(

λ1 + λ−1
n

) 1
2
(
|A| · |B|

) 1
2n � 1√

2

(
λ1 + λ−1

n

) 1
2
(
|A| 1

n + |B| 1
n

)
. (2.4)

Moreover, equality holds if A = μB for some μ > 0.

The other aim of this paper is to study the inverse of the Oppenheim inequality for
n -simplices and to investigate of the Neuberg-Pedoe inequality for triangles. Suppose
that ABC is a triangle with area S and sides a,b,c, and A

′
B

′
C

′
is another triangle with
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area S
′
and sides a

′
,b

′
,c

′
. Defined numbers a

′′
,b

′′
,c

′′
by a

′′
= (a2 + a

′2)
1
2 , etc., then

a
′′
,b

′′
,c

′′
are the sides of a triangle A

′′
B

′′
C

′′
with area S

′′
. Then the following inequality

is valid (see [14, 15]).
S
′′ � S+S

′
, (2.5)

with equality if the triangles ABC and A
′
B

′
C

′
are similar.

Inequality (2.5) is called the Oppenheim inequality. The concept of metric addi-
tion began with Oppenheim [14], and was first explicitly defined by Alexander in [16].
Let Ωn = P0P1 · · ·Pn and Ω′

n = P
′
0P

′
1 · · ·P

′
n be two n -simplices in the n -dimensional

Euclidean space En with vertices P0,P1, · · · ,Pn and P
′
0,P

′
1, · · · ,P

′
n , respectively. Then

there is an n -simplex Ω′′
n = P

′′
0 P

′′
1 · · ·P

′′
n with vertices P

′′
i (i = 0,1, · · · ,n), such that

|P′′
i P

′′
j |2 = |PiPj|2 + |P′

i P
′
j|2 for i, j = 0,1, · · · ,n. The simplex Ω′′

n is called matrix ad-

dition of the simplices Ωn and Ω′
n (see [16, 17]), and denoted by Ω′′

n = Ωn + Ω′
n .

Alexander conjectured the inequality

V
′′ � V 2 +V

′2, (2.6)

holds, whence V , V
′
and V

′′
are the volumes of Ωn , Ω′

n and Ω′′
n , respectively.

However, Yang and Zhang [17] proved that (2.6) is not true, and proved the in-
equality

V
′′ 2

n � V
2
n +V

′ 2
n , (2.7)

where equality holds if the simplices Ωn and Ω′
n are similar.

Inequality (2.7) is called the n -dimensional Oppenheim inequality for simplices.
Let ai j = |PiPj| , a

′
i j = |P′

i P
′
j |(i, j = 0,1, · · · ,n) denote the edge-lengths of the simplices

Ωn and Ω′
n , respectively. And a

′′
i j = |P′′

i P
′′
j | = (a2

i j + a
′2
i j)

1
2 (i, j = 0,1, · · · ,n) denote

the edge-lengths of the simplex Ω′′
n . We put gi j = a2

i0 +a2
0 j −a2

i j , g
′
i j = a

′2
i0 +a

′2
0 j −a

′2
i j

(i, j = 1,2, · · · ,n) , G = (gi j) and G
′
= (g

′
i j) are n×n symmetric matrices. Let g

′′
i j =

a
′′2
i0 +a

′′2
0 j −a

′′2
i j (1 � i, j � n) and G

′′
= (g

′′
i j) be n×n symmetric matrix. It is easy to

see that
G

′′
= G+G

′
. (2.8)

According to [17, 6], it is known that the matrices G and G
′
are both positive definite,

and
|G| = 2n(n!)2V 2, |G′ | = 2n(n!)2V

′2. (2.9)

Using Theorem 2.1, inequality (2.7) and inequality (2.8), we get the reverse of the
Oppenheim inequality (2.6) as follows.

THEOREM 2.3. Let Ωn and Ω′
n be n-dimensional simplices in En , and Ω′′

n =
Ωn + Ω′

n , μ1 � μ2 � · · · > μn > 0 be the eigenvalues of the matrix G
′−1G. Then

V
′′ 2

n � 1+ μ1

1+ μn

(
V

2
n +V

′ 2
n

)
, (2.10)

with equality if the simplices Ωn and Ω′
n are similar.

From Theorem 2.2 we get the following corollary.



1054 J. PAN, S. YANG AND W. WANG

COROLLARY 2.3. Under the conditions of Theorem 2.2, we have

V
′′ 2

n � μ1

μn

(
V

2
n +V

′ 2
n

)
. (2.11)

Moreover, equality holds if Ωn and Ω′
n are similar.

By taking n= 2 in Theorem 2.2 we get a reverse form of the Oppenheim inequality
(2.4) as follows.

COROLLARY 2.4. Let ABC and A
′
B

′
C

′
be two triangles, and A

′′
B

′′
C

′′
= ABC+

A
′
B

′
C

′
. Then

S
′′ � 1+ μ1

1+ μ2

(
S+S

′)
. (2.12)

The equalities hold if the triangles ABC and A
′
B

′
C

′
are similar.

Using inequalities (2.4) and (2.9) we get another reverse form of inequality (2.7)
as follows.

THEOREM 2.4. Under the conditions of Theorem 2.3, the following inequalities
hold:

V
′′ 2

n �
√

2(μ1 + μ−1
n )

1
2 (VV

′
)

1
n � 1√

2
(μ1 + μ−1

n )
1
2

(
V

2
n +V

′ 2
n

)
, (2.13)

with equality if the simplices Ωn and Ω′
n are similar.

From Theorem 2.4 we get the following corollary.

COROLLARY 2.5. Let the conditions of Corollary 2.4 be satisfied. Then

S
′′ �

√
2
(

μ1 + μ−1
2

) 1
2 (SS

′
) � 1√

2

(
μ1 + μ−1

n

) 1
2
(
S+S

′)
. (2.14)

The equalities hold if the triangles ABC and A
′
B

′
C

′
are similar.

For two triangles ABC and A
′
B

′
C

′
, we have the well-known Neuberg-Pedoe in-

equality as (see [18,15])

H ≡ a
′2(b2 + c2−a2)+b

′2(c2 +a2−b2)+ c
′2(a2 +b2− c2) � 16SS

′
. (2.15)

Equality holds if the triangles ABC and A
′
B

′
C

′
are similar.

For two triangles ABC and A
′
B

′
C

′
, we put

D =
(

b2 1
2 (b2 + c2−a2)

1
2 (b2 + c2−a2) c2

)
,

D
′
=
(

b
′2 1

2 (b
′2 + c

′2−a
′2)

1
2 (b

′2 + c
′2−a

′2) c
′2

)
.

(2.16)
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Now we prove that D and D
′
are both positive definite matrices. Using the formula for

area of a triangle, we have

|D| = 1
4
(2a2b2 +2b2c2 +2c2a2−a4−b4− c4) = 4S2 > 0. (2.17)

From the above fact and since b2 > 0, c2 > 0, we reach that D is a symmetric positive
definite matrix. Similarly, D

′
is also symmetric positive definite matrix and

|D′ | = 4S
′2. (2.18)

Let α1 � α2 > 0 be the eigenvalues of the matrix D
′−1D . Using Theorem 2.1 we get

|D+D
′ | �

(
1+ α1

1+ α2

)2(
|D| 1

2 + |D′ | 1
2

)2
. (2.19)

An easy calculation shows that

|D+D
′ | = 1

4

(
2a2b2 +2b2c2 +2c2a2−a4−b4− c4)

+
1
4

(
2a

′2b
′2 +2b

′2c
′2 +2c

′2a
′2 −a

′4−b
′4− c

′4
)

+
1
2
H

=
1
2
H +4

(
S2 +S

′2
)

.

(2.20)

Using (2.17), (2.18), (2.19) and (2.20), we get a reverse of the Neuberg-Pedoe inequal-
ity (2.12) as follows.

THEOREM 2.5. Let ABC and A
′
B

′
C

′
be two triangles and α1 � α2 > 0 be the

eigenvalues of the matrix D
′−1D. Then

H � 8

(
1+ α1

1+ α2

)2(
S+S

′2
)
−8
(
S2 +S

′2
)

. (2.21)

Equality holds if the triangles ABC and A
′
B

′
C

′
are similar.

By Theorem 2.3 we get a corollary as follows.

COROLLARY 2.6. Let the conditions in Theorem 2.3 be satisfied. Then

H � 8

[(
α1

α2

)2(
S+S

′)2 −
(
S2 +S

′2
)]

, (2.22)

with equality if the triangles ABC and A
′
B

′
C

′
are similar.

THEOREM 2.6. Let the conditions of Theorem 2.5 be satisfied. Then

H � 16
(

α1 + α−1
2 −1

)
SS

′
, (2.23)
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with equality if the triangles ABC and A
′
B

′
C

′
are similar.

NOTE.

α1 + α−1
2 −1 � 2

(
α1α−1

2

) 1
2 −1 � 1.

Proof of Theorem 2.6. Form Theorem 2.2 we have

|D+D
′ | � 2

(
α1 + α−1

2

)(
|D| · |D′ |

) 1
2
. (2.24)

Substituting (2.17), (2.18) and (2.20) into (2.24) we get the inequality (2.23). It is easy
to see that equality holds in (2.23) if the triangles ABC and A

′
B

′
C

′
are similar. �

3. Proofs of Theorems

In this section we present the proof of Theorem 2.1.

Proof of Theorem 2.1. Since A and B are real positive definite, then there exists
an invertible matrix P of order n such that PT BP = In. It is easy to know that PT AP
is also positive definite matrix. Due to [1, Theorem 7.2], there exists an n× n unitary
matrix U such that

U∗PT APU =

⎡
⎢⎢⎢⎣

γ1 0
γ2

. . .
0 γn

⎤
⎥⎥⎥⎦ , (3.1)

where γi > 0 (i = 1,2, · · · ,n) are the eigenvalues of the matrix PT AP .
From PT BP = In we get B = (PPT )−1, thus B−1 = PPT and P(PT AP)P−1 =

(PPT )A(PP−1) = B−1A. From this we know that γi (i = 1,2, · · · ,n) are eigenvalues of
the matrix B−1A. So

|PT P| · |A+B|= |PT (A+B)P|= |U∗PT (A+B)PU |
= |U∗PT APU +U∗PT BPU |= |diag(γ1,γ2, · · · ,γn)+ In|

=
n

∏
i=1

(γi +1).

(3.2)

Since λ1 � λ2 � · · · � λn > 0 are the eigenvalues of the matrix B−1A, thus we have

|PT P| · |A+B|=
n

∏
i=1

(γi +1) =
n

∏
i=1

(λi +1). (3.3)

By (3.3) we get

n

∏
i=1

(λi +1)
1
n = |PT P| 1

n · |A+B| 1
n = |B−1| 1

n · |A+B| 1
n ,
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i.e.
n

∏
i=1

(λi +1)
1
n =

|A+B| 1
n

|B| 1
n

. (3.4)

Besides, we have (
n

∏
i=1

λi

) 1
n

= |B−1A| 1
n =

|A| 1
n

|B| 1
n

. (3.5)

Using (3.4) and (3.5) we have

1+
(

n
∏
i=1

λi

) 1
n

n
∏
i=1

(
λi +1

) 1
n

=
|A| 1

n + |B| 1
n

|A+B| 1
n

,

|A+B| 1
n =

n
∏
i=1

(
1+ λi

) 1
n

1+
(

n
∏
i=1

λi

) 1
n

(
|A| 1

n + |B| 1
n

)
. (3.6)

It is easy to know that

n

∏
i=1

(
1+ λi

) 1
n � 1+ λ1,1+

(
n

∏
i=1

λi

) 1
n

� 1+ λn. (3.7)

Equality holds if λ1 = λ2 = · · · = λn.
By (3.6) and (3.7) we get

|A+B| 1
n � 1+ λ1

1+ λn

(
|A| 1

n + |B| 1
n

)
. (3.8)

If A = μB , then B−1A = μIn and λ1 = λ2 = · · · = λn , and equality holds in (3.8).
Theorem 2.1 is complete. �

Proof of Theorem 2.2. We put Q =B− 1
2 AB− 1

2 , then Q is a positive definite matrix.
(In fact, by [19], since A is a positive definite matrix, then there exist an invertible
matrix C satisfies A = CCT . And since B is a positive definite matrix, we know that
B− 1

2 is also a positive definite matrix. Then Q = B− 1
2 (CCT )B− 1

2 = (B− 1
2C)(B− 1

2C)T .
So Q is a positive definite matrix.) It is known that matrix Q and B−1A are similar.
Thus λi(i = 1,2, · · · ,n) are the eigenvalues of the matrix Q , and from this we get

|In +Q|= |Q| 1
2 · |Q− 1

2 +Q
1
2 | = |Q| 1

2

n

∏
i=1

(
1√
λi

+
√

λi

)
. (3.9)
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By the power mean inequality we have

1√
λi

+
√

λi �
√

2

(
1
λi

+ λi

) 1
2

, (i = 1,2, · · · ,n). (3.10)

Using (3.9) and (3.10) we get

|In +Q| � |Q| 1
2

n

∏
i=1

√
2
(

λi + λ−1
i

) 1
2 � 2

n
2

(
λ1 + λ−1

n

) n
2 · |Q| 1

2 . (3.11)

Besides, we have

|A+B|= |B| · |In +B− 1
2 AB− 1

2 | = |B| · |In +Q|. (3.12)

Substituting (3.11) into (3.12) we get

|A+B|� 2
n
2

(
λ1 + λ−1

n

) n
2 · |B| · |Q| 1

2 = 2
n
2

(
λ1 + λ−1

n

) n
2 |A| 1

2 · |B| 1
2 ,

i.e.

|A+B| 1
n �

√
2
(

λ1 + λ−1
n

) 1
2
(
|A| · |B|

) 1
2n

. (2.13)

Using the arithmetic-geometric mean inequality and (2.13) we get

|A+B| 1
2 �

√
2
(

λ1 + λ−1
n

) 1
2
(
|A| · |B|

) 1
2n � 1√

2

(
λ1 + λ−1

n

) 1
2
(
|A| 1

n + |B| 1
n

)
. (2.14)

If A = μB , then B−1A = μIn and μ1 = μ2 = · · · = μn, and equality holds in (2.4).
Theorem 2.2 is proved. �
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