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POST-QUANTUM OSTROWSKI TYPE INTEGRAL INEQUALITIES
FOR TWICE (p,q)-DIFFERENTIABLE FUNCTIONS
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SORTIRIS K. NTOUYAS AND HUSEYIN BUDAK

(Communicated by A. Agli¢ Aljinovic)

Abstract. In this paper, we establish anew (p,q) -integral identity using twice (p,q)-differentiable
functions. Then, we use this result to derive some new post-quantum Ostrowski type integral in-
equalities for twice (p,q) -differentiable functions. The newly established results are also proven
to be generalizations of some existing results in the area of integral inequalities.

1. Introduction

Integral inequalities are a very necessary tool in the study of applied and pure
mathematics. Ostrowski type integral inequalities, one of the integral inequalities,
have been studied by many authors. They have been frequently employed in statis-
tics, quadrature, stochastic, probability and optimization theory, integral operator the-
ory, and information. The classical integral inequality for the differentiable function is
as follows:

THEOREM 1. [45] Let f : [a,b] — R be a differentiable function on (a,b) whose
derivative f': (a,b) — R is bounded on (a,b) and ||f'||.. = sup |f'(t)| < . Then

te(ab)

x_a—l—b 2
N2/

(b—a) b-a)lf.
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forall x € [a,b].
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In recent years, many researchers have focused on the Ostrowski type integral
inequalities and their applications, see [7, 18, 19, 20, 21, 25, 26, 38, 39, 51, 52] and the
references cited therein for more details. Specifically, many researchers have worked on
the Ostrowski type integral inequalities and their applications using quantum calculus,
some results can be found in [1, 4, 5, 6, 15, 17, 23, 37, 44] and the references cited
therein.

Quantum calculus, also known as g-calculus, is the study of calculus without lim-
its. In g-calculus, we obtain g-analoques of mathematical objects that can be recap-
tured by taking ¢ — 1. The concept was revealed by renowned mathematician Euler
(1707-1783), who introduced g parameter in Newton’s work on infinite series. In
1910, Jackson [33] defined g,-integral and q,-derivative on the interval (0,e) ex-
tending the concept of Euler. In 1966, Al-Salam [8] introduced fractional g, -integral
and fractional g,-derivative. The topic of g-calculus has been received outstanding
attention from many researchers because it has numerous applications in various fields
of physics and mathematics, for example, the theory of relativity, combinatorics, hy-
pergeometric functions, orthogonal polynomials, mechanics, and number theory, see
[10, 12, 24, 28, 29, 30, 31, 32, 35, 46, 49] and the references cited therein for more
details.

In 2013, Tariboon and Ntouyas [55] presented the g, -integral and the ¢, -derivative
on finite intervals and addressed numerous problems on ¢, -analogues of classical in-
equalities. Recently, in 2020, Bermudo et al. [13] presented ¢”-integral and ¢”-
derivative on finite intervals and also proved some of their basic properties. Currently,
these topics of g-calculus have been studied in various integral inequalities such as
Hanh, Hermite-Hadamard, Hermite-Hadamard-like, Newton, Simpson, Fejér, and Os-
trowski type integral inequalities, see [3, 11, 14, 16, 34, 48, 60] and the references cited
therein for more details.

The g-calculus generalization is called (p,q)-calculus, also known as post-quan-
tum calculus. The (p,q)-calculus has two independent parameters that are p-number
and g-number. Apparently, the g-calculus cannot be directly obtained by substituting
q by ¢q/p in g-calculus, but it can be directly obtained by taking p =1 in (p,q)-
calculus. Then, the classical inequalities can be gained by taking ¢ — 1. The concept
of (p,q),-integral and (p,q),-derivative on the interval (0,e) was first presented by
Chakrabarti and Jagannathan [22] in 1991. Later on, the concept of (p,q),-integral
and (p,q),-derivative on finite intervals was presented by Tung, and Gov [57, 58] in
2016. Recently, the concept of the (p,q)”-integral and (p,q)” -derivative on the finite
intervals has been presented by Vivas-Cortez et al. [59] in 2021. Currently, the topic of
(p,q)-calculus has been receiving outstanding attention from many researchers, some
new results can be found in [9, 27, 36, 40, 41, 43, 47, 50, 53] and the references cited
therein.

In 2021, Ali et al. [3] introduced quantum Ostrowski type integral inequalities
for twice g-differentiable functions. By taking ¢ — 1, they obtain classical results on
some Ostrowski type integral inequalities for functions, whose second derivatives are
h-convex functions [42]. Inspired by the above-mentioned reports, we establish some
new post-quantum Ostrowski type integral inequalities for twice (p,q)-differentiable
functions extend and generalize the results given in previous reports.
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The rest of the paper is organized as follows: In Section 2, we provide some ba-
sic knowledge and definitions of (p,q)-calculus. In Section 3, post-quantum Ostrowski
type integral inequalities for twice (p,q)-differentiable functions are presented. In Sec-
tion 4, we summarize our results.

2. Preliminaries

In this section, we discuss some basic knowledge and definitions of (p,q)-calculus
which will be used in our work. Throughout this paper, we assume that 0 < g < p < 1
are constants and [a,b] C R is an interval with a < b. The (p,q)-number of n is given
by n n
P —q

P—q
which is a generalization of the g-analogue or g-number of n such that

n]pg= =p" 4 p" g4+ pg" P+ 4", neN,

lg=——=1+q++q"?+4"", neN,
see [35] for more details.

DEFINITION 1. [57, 58] For a continuous function f : [a,b] — R, the (p,q),-
derivative on [a,b] of function f at ¢ is defined by

_ fpt+(—pa)—fgt+ (1 —q)a)
“Draft) = (p—q)(t—a) e (1)

aDp,qf(a) = }g% qu,qf(t)~

The function f is called (p,q),-differentiable function on [a,b] if D, ,f(t) exists for
all t € [a,(b—a)/p+ad].

Note that if p =1 and Dy 4f(t) = oDgyf(t) in (1), then (1) reduces to

_Jt)—flgt+(1—q)a)
D)= ey T 2)

oDaf (a) = lim uDyf (1),

which is the well-known g, -derivative of function f on [a,b], see [54, 56] for more
details.
Moreover, if @ =0 and oD, f(t) = D, f(t) in (2), then (2) reduces to

Dyf(t) = L()l __thqt)

D,f(@) = lim D,f(1),

, t#a,

which is the well-known g-derivative of function f on [0,5], also called g-Jackson
derivative, see [35] for more details.
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EXAMPLE 1. Define function f : [a,b] — R by f(t) =*>+C, where C is con-
stant. Applying Definition 1 for 7 # a, we have

[(pt+(1—p)a)*+C] - [(gt + (1 —q)a)*+C]
(p—q)(t—a)
(p+q)* +2at[l — (p+q)+al(p+49) -2
(t—a)
(p+q)(t—a)*+2a(t—a)
(t—a)
= [2]pq(t —a)+2a.

aDp (2 +C) =

DEFINITION 2. [59] For a continuous function f : [a,b] — R, the (p,q)? -derivative
on [a,b] of function f at 7 is defined by

"D, f(t):f(qt+(1—(Z)f)q;(i(_p;;r(l—p)b), 4b .
"Dy qf (b) =1im "Dy o f (1).

The function f is called (p,q)?-differentiable function on [a,b] if °D, ,f(t) exists
forall t € [b— (b—a)/p,b].

Note that if p =1 and °Dy ,f(t) = ?D,f(t) in (3), then (3) reduces to

(- )~ 1)
Dl = =T 6—0)

"Dy f(b) =lim "Dy f (1),

, t#D,

which is the well-known g”-derivative of function f on [a,b], see [2, 13] for more
details.

EXAMPLE 2. Define function f : [a,h] — R by f(t) = 1> +C, where C is con-
stant. Applying Definition 2 for 7 # b, we have

[(gt+ (1—q)b)*+C] — [(pt+ (1 —p)b)*+C]
(p—q)(b—1)
—(p+q)* +2bi[(p+q)— 1]+ b*2— (p+9)]
(b—1)
 —(pt+a)(b—1)*+2b(b—1)
(b—1)
= [2]p4(t —b) +2b.

bD, (> 4+C) =
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DEFINITION 3. [57] For a continuous function f : [a,b] — R, the (p,q),-integral
on [a,b] of function f is defined by
qn
(g @

[ 10 et = p=)e—0) 5, e (s
for x € [a,b].

The function f is called (p,q),-integrable function on [a,b] if [} f(t) od)p 4t ex-
ists.

EXAMPLE 3. Define function f : [a,b] — R by f(¢) = Ar+ B, where A and B
are constants. Applying Definition 3, we have

/f adp gt = /b(At+B) adp gt
:A(p—q)(b—a)riop(jil< qnlb+<1— qnl)a)

L B(p—q)(b—a) iopffil
Alb—a)(b—a(l - p—q))

= e +B(b—a).

DEFINITION 4. [59] For a continuous function f : [a,b] — R, the (p,q) -integral
on [a,b] of function f is defined by

/xbf(t)bdp,qt:(p—q)(b—x)i an( X (1—pn;>b> (5)

n=0P

for x € [a,b].

The function £ is called (p,q)”-integrable function on [a,b] if [* f(t) *d 4t ex-
ists.

EXAMPLE 4. Define function f : [a,b] — R by f(¢) = Ar+ B, where A and B
are constants. Applying Definition 4, we have

b b
/ f(t) bdp,qf :/ (At +B) hd,wt
- - 4 (¢ q"
_A(p_q)(b_a) Z pn+1 <pn+la+ (l - pn+l)b)

n=0
L B(p—q)(b—a) iopfﬁl
Alb—a)(a—b(1—p—q))

= e +B(b—a).
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LEMMA 1. [57] For a € R\ {—1}, the following inequality holds:

(b _ a)oc+1

- 6
[a+1]pg ©

b
/a (r—a)® adp gt =

THEOREM 2. [58] Let f,g: [a,b] — R be continuous functions and r > 1 with
1/s+1/r=1, then

b b 1/s b 1/r
[ 100 syt < ([ 1700 strt) ([0 styt)

3. Main results

In this section, we give some new estimates of post-quantum Ostrowski type in-
tegral inequalities for twice (p,q)-differentiable functions. We define J; = [b— p(b —
x),b] and J, = [a,a+ p(x—a)]. The (p,q)-integral identity is as follows:

THEOREM 3. If f: [a,b] — R is a twice (p,q)-differentiable function such that
bDlzw f and “Dlzw f are continuous and integrable functions on J| and J,, respectively.
Then

1
PLpg(x) = (x —a)?*(b—x)? [(a —Xx) /0 2aD3 f(tx+ (1—1)a) dp gt

) [[ P00 e (1-008) dyot] ®
where
oLp.q(x)
= E 0 (e apar(ar-+ (19 + (0-pasiar+ (1~ g)a)

— (x—a)(¢*+pq—p*)f(px+ (1 —p)b) — (b—x)(q*+ pq — p*) f(px+ (1 —p)a)]

2lpq

Pq’

2x+(1-p?)b

b 2x+(17 2)a
P [ S0 g o= [T g adp,qt]-

Proof. Using Definition 1, we have

D3 f(th+ (1 —1)a)

= 4Dpg(aDpgf(tb+(1—1)a))

B f(ptb+(1—pt)a) — f(qtb+ (1 —qt)a)
= «Pra ( (p—aq)(b—a) )
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_ 1 f(P*1b+ (1 p’t)a) — f(pgrb+ (1 - pgt)a)
(p—q)(b—a)t pt(p—q)(b—a)
f(pgrb+ (1= pgt)a) — f(g’tb + (1 — g’t)a)
qt(p—q)(b—a)
_ af(Ptb+ (1 = pr)a) ~ 2paf (patb+ (1~ pa)a) + pf(gtb + (1 —g’)a) o,
par*(p—q)*(b—a)? '

Applying (9) and Definition 3, we obtain

1
/O £aD3  f(tx+ (1=1)a) dp gt

B /1 qf (P*tx+ (1= p*t)a) — 2], 4f (pgix+ (1 — pgt)a) + pf(g’tx+ (1 — g°t)a)
~Jo pa(p—q)*(x—a)?
alp—q)(x—a) Y, pZH (pzpf,]Her <1 —pszH ) a)
n=0
pa(p—q)*(x—a)?
o ntl n+1 n+1
[2}177,1([7—(])@—&) gOZn-&-lf (pZn+lx+ (1 _pZn+l> a)
pa*(p—q)*(x—a)’
oo qn+2 qn+2 qﬂ+2
po-ae- 5 Lo (Lnr (1- 55 ) o)
pa*(p—q)*(x—a)?
e qﬂ qn qﬂ
(P—61><x—a>gopn+lf <P2Pn+1x+ (1 P ) a)
p(p—q)*(x—a)’
o _n+1 n+1 n+1
P2lpa(p—q)(x—a) ), ;%f (pQZMH <1 - pzan) a)
n=0
pg*(p—q)*(x—a)?
o n42 n+2 n+2
Po-ae-a 3 L (pzzn+3x+ (1 —ngn%) )
n=0
pg3(p—q)*(x—a)?
_ [2pg phet(l-p?)a (¢*+ pq—p*) f(px+ (1 —p)a)
B p3q3(x—a)3/a ) adpgt + g (p—q)(x—a)?
f(gx+(1—q)a)
EFAV A il Vi 10
lp—a)G—a)? 1o

Using Definition 2, we have
D2 f(ta+(1—1)b)= "D, 4("Dpof (ta+ (1 —1)b))

b f(qta+(1—qt)b) — f(pta+ (1 —pt)b)
= Pra ( (p—aq)(b—a) )

dp gt

+

+
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_ 1 fg’ta+(1—g’1)b) — f(pgra+ (1~ pqt)b)
(p—q)(b—a) qt(p—q)(b—a)
_ flpgra+(1—pqt)b) — f(p*ta+ (1 - p*t)b)
pt(p—q)(b—a)
_ pf(@ta+ (1—g’1)b) — [2]pqf (pgra+ (1 — pgr)b) + qf (p’ra+ (1 p’t)b)
pat*(p —q)*(b—a)? '

(11)
Applying (11) and Definition 4, we obtain

1
/0 20D fltx+ (1=1)b) dp gt

_ /1 pf(@*tx+(1=¢*)b) = 2lpaf (paix+ (1= pgt)b) +af (PPtx+ (1= p)b) ,
pa(p—q)*(b—x)? na
o 42 n—+2 n+2
p(p—q)(b—x)lgoznﬂf(qnﬂ <I_Zn+1>b>
pg*(p—q)*(b—x)3
oo qn+1 qn+1 qn+1
2]p.q(P—q)(b—x) Zop,,ﬂf (ppn+1x+ (1 —pan) b)

n=

pa*(p—q)*(b—x)?
oo n n-+2 n—+2
q 29 24
q(p—q)(b—x) ZO =t (P i (1 -p pm) b)
pa(p— 61)2(17 x)?
o n42 n+2
q 2" 24
Pr-a)b-x 2 TP ( pn+3 (1 p pm) b)
pa*(p—q)*(b—x)?
o qn+l ) qn+l 26]'1'“
PRlpg(p—q)(b—x) Zopwf (p pn+1x+ (1 —p p,,H) b)
n=|
pa*(p—q)*(b—x)?
oo qn qn+2 qn+2
ap=b=) 3 Lr (P Lper (1= 2 )b
n=0
pa(p—q)*(b—x)}
2 b 2 2 1— b
_ g}p,q 3/ £0) bdp7qt+(q +PQ3 P)f(px+( i p)b)
Pq*(b—=x)° Jprar(1-p2)b pa’(p—q)(b—x)
~ flgx+(1—q)b)
7*(p—q)(b—x)?
By multiplying (10) and (12) by (x —a)?(b —x)?*(a —x) and (x —a)*(b —x)*(x — b),
respectively, and adding the resultant inequalities, we obtain the required identity (8).
Therefore, the proof is completed. [

+

+

12)
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REMARK 1. If p =1 in (8), then we have the following identity:
1
PLy(x) = (x—a)*(b—x)? [(a —Xx) /0 2D} f(tx+ (1—1)a) dyt

—|—(x—b)/01t2 "D f(tx+ (1—1)b) dqt} ,
PLy(x) = % [~ a)af g+ (1— q)b) + (b—x)af(gr + (1 g)a)
(@ g 1)(b—a)f()]
b X
-2 =02 [0 g+ 027 [0 ]
which appeared in [3].

THEOREM 4. Let f: [a,b] — R be a twice (p,q)-differentiable function such that
bDf,’q f and an,’q f are continuous and integrable functions on J, and J,, respectively.

If |bD12,7q f| and |aD1277q f| are convex functions, then
SLpa(3)| < (v —aP(b—x)?
Bl

—a L, . [4]p.q—Blp.a 2 ria
SRl E R e el B )

+(h—x) (ﬁ"@;q (x))+7[4[]3’]’;17;4[]3j’;‘1)”D2 (b )D] (13)

Proof. Taking modulus of 8, applying the convexity of D3 . f| and |,D7, .f|, and
by using Lemma 1, we obtain

()] < (v—a)(b— ) {(x a/ 2 |uD2 o f (x+ (1= 1)a)| dpgt
Ho=2) [ 2D fex (1-00)] ]
< a2 [6=a) [ 2D} 0]+ (1 =0 LD (@)) dy
Ho=) [ (1D 0] + -0 D31 9)]) ]
= a0 [(6-0) (= [ D0+ Bt )

0 (i o] et )|

which completes the proof. [
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COROLLARY 1. With the assumptions of Theorem 4, if |bD§7qf\ and |aD12,7qf\ <
M, then the following inequality holds:

M(x—a)*(b—x)*(b—a
Blra
where M is constant.
REMARK 2. If p =1 in (13), then we have the following inequality:
SLy)| < (v (b — ) [(x—a) (i D2+ | D2f(a)|)
X a a
“ [y Blg4lg 1
+ 0= (| 2|+ | i) )]
[y 17 Blgl4lg 1 1
which appeared in [3].
REMARK 3. If p =1 in (14), then we have the following inequality:
M(x—a)*(b—x)*(b—a
q

which appeared in [3]. Moreover, if ¢ — 1 and x = (a+b)/2 in (15), then we obtain
the following inequality:

\f(“;b) o [t

which appeared in [42] and it can be found in [39].

< M(b—a)z,
24

THEOREM 5. Let f:[a,b] — R be atwice (p,q) -differentiable function on (a,b)
such that th,’q f and an,’q f are continuous and integrable functions on Ji and J,,

respectively. If \bDf,’q fI" and |an,’q S| are convex functions for r > 1, then

ﬁ%ﬂw‘éw—afw—xy<piﬂ>lur

(L 2 gl Bea=Blogy o\
’ [( ) Oharl + g 22 s
r)l/f|

[4p.q = Blpg
(16)

—%(b—x)( *D2 )| + |*D2 1 (0)

1
[“4]p.g Blpal4lpa



POST-QUANTUM OSTROWSKI TYPE INTEGRAL INEQUALITIES 1139

Proof. Applying Theorem 3 and the power mean inequality, we obtain

bpgl0)| € (=022 | (6-0) [ [, o+ (1-000)]

+(b—»x) /0 g |2D2 f (e (1= 1)) dp,qz]
< (x—aX(b—x)

X [(x—a) </01t2 dp,qt>ll/r (/0112 D, f(tx+ (1= 1)a)| dp’qt)l/r

= </olt2 dmt) o ( /0 19) Pp2 e+ (1—1)b)] dp,qz> 1/1 ,

Using Lemma 1 and applying the convexity of [’D3 f|" and [,D3, ,.f|", we have

L)

< (r—aP(b—x)? [<x—a> (7 drer)
([ (DRt + 1 -0 kD2r@]) dyot) "
o ([P ([ O Porasw] a0 o)

— (- (b ) [(»c 2 (@)H/r

1/r
(o g )

1-1/r ,
*b) (ﬁ) ([4]1,,,4 [*Dhat )] +

which completes the proof. [

1-1/r

Vi) |

L Blog=Blrg
Blp.al4lp.a

"D2 1 (0)

r) l/r]
REMARK 4. If p =1 in (16), then we have the following inequality:

ZLq(x)| < (x—a)2(b—x)> ({3]11)#) 1-1/r

. a L ) . , q3 5 . . 1/r
- [( (a2 + g P

V)

- x’(wﬂb Dif(s)| + [313?41q‘bD3f )
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which appeared in [3].

THEOREM 6. Let f: [a,b] — R be a twice (p,q)-differentiable function such that
bDf,’q f and an,’q f are continuous and integrable functions on J, and J,, respectively.

If |bD12,7qf|’ and \aDIzwf\’ are convex functions for r> 1 and 1/s+1/r=1, then

D20 + (p+a—1) | D2\ "
<o) 2l

1/r
+(b—x)<}bD2f I+ (g = D] "3/ )|> S an

2lp.q

Proof. Applying Theorem 3 and the Holder’s inequality, we have

bLyg0)] € (P02 (6= [ oD e+ (1000

—|—(b—x)/01t2‘ D} fx+(1 —t)b)) dwt}
< (v—a)’(b—x)?

X l(x—a) (/01,25 dp,qt)l/‘ (/1 |aD12,7qf(tx+(1 —f)a | dpqt>1/r
o </°l Mt) </ | "D} g flex (1 =0)0)| dp,qf>l/r] .

Using Lemma 1 and applying the convexity of |th,’q f|" and |an,’q S|, we obtain

L) < (6067 [<x—a> ([ &)

‘ ( | (2@ + 1= L2 @) dp,qt)
+(b—x) </01 % d,wt) v
r> dp’qt)l/r]

X (/01 (z )bDIzwf(x)‘r +(1-1) ‘bDi,qf(b)

1/r
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— (x—a)(b—x)

. ; 1/s }aDéf(x)}’_’_(p_’_q—1)}11D$f(61)|r 1/r
x| (x a><[2s—|—1]p,q> ( 2]p.q

_ LN (P02 )]+ (p+a— D] D)
=) ([2S+ 1]pq> ( 2l |

which completes the proof. [

REMARK 5. If p =1 in (17), then we have the following inequality:

L)

) (L i)
g

< (—ay(b—a)’ ([2s+ 2,

v (12BN al D) ]
2l

which appeared in [3].

4. Conclusions

In this work, we established a new (p, ¢) -integral identity using the second (p,q),-
and (p,q)”-derivatives. Then, we used this result to derive some new post-quantum
Ostrowski type integral inequalities for twice (p, q)-differentiable functions. The main
results in this study were proven to be generalizations of some previously proved results
of quantum Ostrowski type integral inequalities for twice g-differentiable functions.
Researchers can obtain similar inequalities in future works by using (p, q)-fractional
calculus.
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