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NORM INEQUALITIES RELATED TO

HEINZ AND LOGARITHMIC MEANS

GUANGHUA SHI

(Communicated by J. Mićić Hot)

Abstract. In this paper, we got some refinements of the norm inequalities related to the Heinz
mean and logarithmic mean.

1. Introduction

There are several means that interpolate between the geometric and arithmetic
means. For instance, the Heinz mean Ht(a,b), defined by

Ht(a,b) =
a1−tbt +atb1−t

2
for 0 � t � 1.

In 1993, Bhatia-Davis [2] obtained that if A,B and X are n× n matrices with A,B
positive semidefinite, then for every unitarily invariant norm |||·|||,
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2
|||AX +XB|||. (1.1)

The logarithmic mean L(a,b), defined by

L(a,b) =
a−b

loga− logb
=

∫ 1

0
atb1−tdt,

also interpolates the geometric and arithmetic means. In 1999, Hiai-Kosaki [5] proved
the following inequality
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2
|||AX +XB|||. (1.2)

Moreover, in 2006, Drissi [4] proved that the following Heinz-logarithmic inequality
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holds for 1
4 � t � 3

4 .
A complex-valued function ϕ on R is said to be positive definite if the ma-

trix [ϕ(xi − x j)] is positive semidefinite for all choices of real numbers x1,x2, . . . ,xn,
and n = 1,2, . . . . Let M(a,b) and N(a,b) be two symmetric homogeneous means on
(0,∞)× (0,∞). M is said to strongly dominate N, denoted by M � N, if and only if
the matrix [

M(λi,λ j)
N(λi,λ j)

]
i, j=1,...,n

is positive semidefinite for any size n and λ1, . . . ,λn > 0. Drissi [4] proved that for
a,b � 0, Ht(a,b)� L(a,b) if and only if 1

4 � t � 3
4 . In general, the inequality M � N

is stronger than the Löwner’s order inequality M � N.
For more operator or norm inequalities related to the Heinz mean and logarithmic

mean we refer the readers to [8, 9, 7] and the references therein.

2. Main results

LEMMA 2.1. For sinhx and coshx , we have

(i) If |β | > |α| > 0, then the function coshαx
coshβ x is positive definite.

(ii) If |β | > |α| > 0 with α,β the same sign, then sinhαx
sinhβ x is positive definite.

(iii) If β > 0 and |α| < β/2, then β xcoshαx
sinhβ x is positive definite.

Proof. We follow a similar argument as in Chapter 5 of [1]. From the product
representations in p. 147–148 of [1],

sinhx
x

=
∞

∏
k=1

(
1+

x2

k2π2

)
, coshx =

∞

∏
k=0

(
1+

4x2

(2k+1)2π2

)
, (2.1)

we have

sinhαx
sinhβx

=
α
β

∞

∏
k=1

1+ α2x2/k2π2

1+ β 2x2/k2π2 ,
coshαx
coshβx

=
∞

∏
k=0

1+4α2x2/(2k+1)2π2

1+4β 2x2/(2k+1)2π2 . (2.2)

Each factor in the product is of the form

1+a2x2

1+b2x2 =
a2

b2 +
1−a2/b2

1+b2x2 , b2 > a2.

Since 1/(1 + b2x2) is positive definite [1, 5.2.7], it follows that the function
coshαx/coshβx is positive definite for |β | > |α| > 0, and sinhαx/sinhβx is posi-
tive definite for |β | > |α| > 0 with α,β the same sign.

Since
βxcoshαx

sinhβx
=

β
2 x

sinh β
2 x

· coshαx

cosh β
2 x
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and x/sinhx is positive definite [1, 5.2.9], it follows from the above argument that
when β

2 > |α| the function β xcoshαx
sinhβ x is positive definite. �

Now, we define

Ls(a,b) =
a1−sbs−asb1−s

(1−2s)(loga− logb)
=

1
1−2s

∫ 1−s

s
avb1−vdv

for a,b > 0, and 0 � s < 1
2 . When s = 0, it is the logarithmic mean. So we can call it

the generalized logarithmic mean. And we also have lims→ 1
2
Ls(a,b) = a

1
2 b

1
2 .

THEOREM 2.2. For Heinz mean and the generalized logarithmic mean, we have

(i) If 0 � s < 1/2, and |1−2t|< 1−2s
2 , then Ht(a,b) � Ls(a,b).

(ii) If |1−2t|< |1−2s|, then Ht(a,b) � Hs(a,b).

(iii) If 0 � s < t < 1/2, or 1 � s > t > 1/2, then Lt(a,b) � Ls(a,b).

Proof. By definition, Ht(a,b) � Ls(a,b) if

[yi, j] =
[
Ht(λi,λ j)
Ls(λi,λ j)

]
i, j=1,...,n

is positive semidefinite. Set λi = exi and λ j = exj , with xi,x j ∈ R. Then

yi, j = (1−2s)
( xi−x j

2 )(e(1−2t)
xi−x j

2 + e(1−2t)
x j−xi

2 )

e(1−2s)
xi−x j

2 − e(1−2s)
x j−xi

2

Thus the matrix [yi, j] is congruent to one with entries

β ( xi−x j
2 )cosh(α( xi−x j

2 ))

sinh(β ( xi−x j
2 ))

,

where α = 1− 2t , β = 1− 2s. Hence [yi, j] is positive semidefinite if and only if the

function β xcoshαx
sinhβ x is positive definite, which by lemma 2.1 is correct.

Similarly, we have Ht(a,b)�Hs(a,b) if coshαx
coshβ x is positive definite, and Lt(a,b)�

Ls(a,b) if sinhαx
sinhβ x is positive definite. �

THEOREM 2.3. Let A,B be any positive matrices. Then for any matrix X and for
0 � s < 1/2 and |1−2t|< (1−2s)/2, we have

∣∣∣∣∣∣A1−tXBt +AtXB1−t
∣∣∣∣∣∣ � 2

1−2s

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1−s

s
AvXB1−vdv

∣∣∣∣
∣∣∣∣
∣∣∣∣. (2.3)
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Proof. Firstly, we assume A = B. Since |||·||| is unitarily invariant, we may suppose
A is diagonal with entries λ1, . . . ,λn. Then we have

A1−tXAt +AtXA1−t = Y ◦ (
∫ 1−s

s
AvXA1−vdv),

where Y is the matrix with entries

yi, j =
λ t

i λ 1−t
j + λ 1−t

i λ t
j

λ 1−s
i λ s

j−λ s
i λ 1−s

j
logλi−logλ j

=
2Ht(λi,λ j)

(1−2s)Ls(λi,λ j)
.

A well-known result related to the Schur multiplier norm [6, Theorem 5.5.18, 5.5.19]
says that if Y is any positive semidefinite matrix, then for all matrix X ,

|||Y ◦X ||| � max
i

yii|||X ||| (2.4)

for every unitarily invariant norm. By Theorem 2.2, Y is positive semidefinite. Apply-
ing (2.4), we have

∣∣∣∣∣∣A1−tXAt +AtXA1−t
∣∣∣∣∣∣ � 2

1−2s

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1−s

s
AvXA1−vdv

∣∣∣∣
∣∣∣∣
∣∣∣∣. (2.5)

Now replacing A and X in the inequality (2.5) by the 2 by 2 matrices

(
A 0
0 B

)
and(

0 X
0 0

)
. This gives the desired inequality (2.3). �

When s = 0, we get Drissi’s result (1.3). Moreover, when s = 0,t = 1/2, we get
the first inequality of (1.2).

THEOREM 2.4. Let A,B be any positive matrices. Then for any matrix X and for
0 � s < 1/2, we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1−s

s
AvXB1−vdv

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1−2s

2

∣∣∣∣∣∣A1−sXBs +AsXB1−s
∣∣∣∣∣∣. (2.6)

Proof. Suppose A is diagonal with entries λ1, . . . ,λn. Then we have

∫ 1−s

s
AvXA1−vdv = Y ◦ (A1−sXAs +AsXA1−s),

where Y is the matrix with entries

yi, j =

λ 1−s
i λ s

j−λ s
i λ 1−s

j
logλi−logλ j

λ s
i λ 1−s

j + λ 1−s
i λ s

j

=
(1−2s)Ls(λi,λ j)

2Hs(λi,λ j)
.
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By a similar argument as in the proof of Theorem 2.2, we know that Y is positive
definite if and only if

β
2

sinhβx
βxcoshβx

=
β
2

tanhβx
βx

is positive definite for β = 1−2s > 0, because tanhx/x is positive definite (see Bhatia
[1, 5.2.11]). Thus Applying (2.4) we have

∣∣∣∣
∣∣∣∣
∣∣∣∣
∫ 1−s

s
AvXA1−vdv

∣∣∣∣
∣∣∣∣
∣∣∣∣ � 1−2s

2

∣∣∣∣∣∣A1−sXAs +AsXA1−s
∣∣∣∣∣∣. (2.7)

Hence the desired result follows. �

When s = 0, we get the second inequality of (1.2).

THEOREM 2.5. Let A,B be any positive matrices. Then for any matrix X and for
|1−2t|< |1−2s| with 1−2t,1−2s the same sign, we have

∣∣∣∣∣∣A1−tXBt −AtXB1−t
∣∣∣∣∣∣ �

∣∣∣∣ 1−2t
1−2s

∣∣∣∣ ∣∣∣∣∣∣A1−sXBs−AsXB1−s
∣∣∣∣∣∣. (2.8)

Proof. Suppose A is diagonal with entries λ1, . . . ,λn. Then we have

A1−tXAt −AtXA1−t = Y ◦ (A1−sXAs−AsXA1−s),

where Y is the matrix with entries

yi, j =
λ 1−t

i λ t
j −λ t

i λ 1−t
j

λ 1−s
i λ s

j −λ s
i λ 1−s

j

.

Put λi = exi and λ j = exj , with xi,x j ∈ R. Then Y is congruent to the matrix with
entries

sinh(α xi−x j
2 )

sinh(β xi−x j
2 )

,

where α = 1−2t,β = 1−2s. Since (sinhαx)/(sinhβx) is positive for |β | > |α| > 0
with α,β the same sign, it follows that Y is positive definite. Applying the inequality
(2.4), we have

∣∣∣∣∣∣A1−tXAt −AtXA1−t
∣∣∣∣∣∣ �

∣∣∣∣ 1−2t
1−2s

∣∣∣∣
∣∣∣∣∣∣A1−sXAs−AsXA1−s

∣∣∣∣∣∣. (2.9)

Hence the desired result follows. �

Set s = 0 and s = 1, and combine the conclusions, we have the following inequal-
ity proved by Bhatia-Davis [3],
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COROLLARY 2.6. Let A,B be any positive matrices. Then for any matrix X and
for 0 � t � 1 we have

∣∣∣∣∣∣A1−tXBt −AtXB1−t
∣∣∣∣∣∣ � |1−2t||||AX −XB|||. (2.10)
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