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STRONG DEVIATION THEOREMS FOR

GENERAL INFORMATION SOURCES

SHU CHEN, WEI-CAI PENG ∗ AND ZHONG-ZHI WANG

(Communicated by Z. S. Szewczak)

Abstract. In this paper, we first introduce some new concepts of generalized likelihood ratio,
upper/lower generalized divergence rate and upper/lower generalized relative entropy, as a mea-
sure of randomness to characterize the deviation between generalized information sources and
memoryless (i.e., independent) sources. Then, by adopting pure analysis method on studying
probability limit theory, a class of strong limit theorems and strong deviation theorems for gen-
eralized information sources and generalized information source entropy density are established.
The outcomes extend some existing results of [10] and [21].

1. Introduction

Since [17] established the pioneeringwork in information theory field, many schol-
ars have achieved a series of in-depth and fruitful research on the theoretical and ap-
plication basis of information theory, and achieved rich results. Many studies, such
as [7], [9], devoted to studying the more general and abstract mathematical model of
the axiomatic system of information theory, and obtained more general results to the
basic theory of information. In the United States, a group of excellent engineers and
technicians are committed to the realization of effective information processing and re-
liable transmission, and have made outstanding contributions to the transformation of
information theory into information technology.

However, most of the above literature are based on the assumption that the source
is stable (or ergodic). [6] successfully introduced the concept of upper/lower probabil-
ity limit, which provided a new idea for the study of general information sources and
called this method spectral information method. Han and his collaborators discussed
the coding theorem, information distortion rate and hypothesis test of general (gener-
alized) sources and achieved a lot of meaningful results. His systematic achievements
are summarized in [6].
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An important problem in information theory is the limit property of sample en-
tropy. In the literature [17], discussed the asymptotic equipartition property (AEP) of
independent identically distributed processes and discussed the case of stationary er-
godic processes. [12] and [3] proved the AEP of ergodic sources on a finite alphabet
set, this is the famous Shannon-McMillan-Breiman theorem. [4] made the extension
to the case of countable set. [13], [16] and [8] obtained the L1 convergence of con-
tinuous ergodic sources. [2] and [14] obtained almost everywhere convergence of real
valued ergodic processes. [1] skillfully adopted the sandwich method to give a gen-
eral asymptotic equipartition property. [11], [10], [5], [15], [19], [18] and [20], by
using analysis method, discussed AEP and strong deviation theorem for homogeneous
Markov chains, non-homogeneous hidden Markov chains, tree-indexed Markov chains
and Markov chains in random environment.

As mentioned in the introduction of [6], it is difficult to obtain significant results
without appropriate restrictions on the sources. Motivated by the work of [6], [11],
this paper establishes some new deviation theorems for general information sources,
which generalizes the results of [10] and [21]. It is worth pointing out that we have no
restrictions on the information sources.

The rest of this paper is organized as follows. Section 2 gives some basic con-
cepts and definitions. In Section 3, a kind of limit properties and strong deviation limit
theorems for generalized sources are established.

2. Preliminaries

In this section, we give some definitions and notations which will be used hence-
forward. We start by introducing the notations. Throughout this paper, all random vari-

ables are defined on a fixed probability space (Ω,F ,μ) . Let Ξ = {ξ n = (ξ (n)
1 , · · · ,

ξ (n)
n )}n∈N+ be a general information source, where {ξ (n)

i ,1 � i � n} is a random
variable over the n -th Cartesian product X n of an arbitrary discrete source alphabet
X = {a1,a2, · · ·} and N

+ is the set of all positive integers.
Assume that the joint distribution of ξ n are

pn(x
(n)
1 , · · · ,x(n)

n )

=μ(ξ (n)
1 = x(n)

1 , · · · ,ξ (n)
n = x(n)

n ) > 0, x(n)
i ∈ X , i = 1,2, · · · ,n. (1)

In general, the information sources satisfy the consistency condition

ξ (n)
i = ξ (m)

i , ∀ i = 1,2, . . . ,m,

for arbitrary m < n and m,n ∈ N
+ and are usually called the stochastic processes.

But, the general sources considered here are not required to satisfy the consistency
condition, they contain various sources, it contains all of non-stationary and/or non-
ergodic sources.

Further, suppose that the marginal distribution of ξ (n)
i is

pni(x
(n)
i ) = μ(ξ (n)

i = x(n)
i ), i = 1,2, · · · ,n.
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and denote

qn(x
(n)
1 , · · · ,x(n)

n ) =
n

∏
i=1

pni(x
(n)
i ),x(n)

i ∈ X , n ∈ N
+.

By the Kolomogrov measure extension theorem, there exists a probability measure (de-
noted by μ̃ ) on (Ω,F ) such that

μ̃(ξ (n)
1 = x(n)

1 , · · · ,ξ (n)
n = x(n)

n ) = qn(x
(n)
1 , · · · ,x(n)

n ), (2)

i.e. Ξ = {ξ n}n∈N+ , for fixed n , are independent under probability measure μ̃ .

DEFINITION 1. Let μ and μ̃ be defined as in (1) and (2), respectively. Let ξ n =
(ξ (n)

1 , · · · ,ξ (n)
n )n∈N+ be a random vector, qn(ξ n) and pn(ξ n) be distribution functions

of ξ n , define

h
μ̃
μ(ω) := limsup

n

1
n

log
qn(ξ n)
pn(ξ n)

(3)

and

hμ̃
μ(ω) := liminf

n

1
n

log
qn(ξ n)
pn(ξ n)

(4)

h
μ̃
μ(ω) and hμ̃

μ(ω) are called the upper and lower generalized divergence-density rate
of probability measure μ relative to μ̃ , respectively.

DEFINITION 2. Let D(pn||qn) = E log
[

pn(ξ n)
qn(ξ n)

]
, define

D(μ ||μ̃) := liminf
n

1
n
D(pn||qn), (5)

and

D(μ ||μ̃) := limsup
n

1
n
D(pn||qn). (6)

D(μ‖μ̃) and D(μ‖μ̃) are called the sup-divergence rate and the inf-divergence rate of
μ respect to μ̃ , respectively.

Let Ξ = {ξ n = (ξ (n)
1 , · · ·ξ (n)

n )}n∈N+ be a general information source. Denote

ξ̃ (n)
i = log 1

pni(ξ
(n)
i )

, 1 � i � n , n ∈ N
+ . For every n, i (1 � i � n) , defining,

Ln(ω) :=
pn(ξ n)

n
∏
i=1

pni(ξ
(n)
i )

,

G(n)
i (r) := Eerξ̃ (n)

i = ∑
x
(n)
i ∈X

[
pni(x

(n)
i )

]1−r
(r > 0)
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be the likelihood ratio and the generating function of r.v. ξ̃ (n)
i , respectively.

Hereafter in this context, log means the natural logarithm unless stated otherwise.
We will use the convention that 0 log0 = 0, which is easily justified by continuity since
x logx → 0 as x → 0.

LEMMA 1. ([1]) Let {ξn}n∈N+ be a sequence of nonegative r.v.′s with Eξn � 1 ,
then

limsup
n

1
n

logξn � 0 a.s.

3. Main results and proofs

With the preliminaries accounted for, the main results may now be established.

THEOREM 1. Let Ξ = {ξ n = (ξ (n)
1 , · · ·ξ (n)

n )}n∈N+ , hμ̃
μ(ω), Ln(ω), G(n)

i (r) be
given as above. Let

D :=
{

ω : hμ̃
μ(ω) > −∞

}
. (7)

If there exists a positive constant r0 , such that G(n)
i (r0) < ∞ , 1 � i � n, n ∈ N

+ and

limsup
n

1
n

n

∑
i=1

G(n)
i (r0) = G(r0) < ∞, (8)

then

liminf
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� 0 a.s. ω ∈ D (9)

and

limsup
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� α(hμ̃

μ(ω)) a.s. ω ∈ D (10)

where H(ξ (n)
i ) = Eξ̃ (n)

i is the entropy of r.v. ξ (n)
i , and

α(x) = inf
r
{g(r,x),0 < r < r0}, x � 0 (11)

g(r,x) =
2re−2G(r0)
(r0 − r)2 − x

r
, x � 0 (12)

and

α(0) = 0 � α(x) � g

(
r0
√−x

1−√−x
,0

)
=

[
2e−2G(r0)+1

r0

]√−x(1+
√−x).
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Proof. For r ∈ (−∞,r0] , define

G(n)
i (r,ξ (n)

i ) :=
1

G(n)
i (r)

[
pni(ξ

(n)
i )

]1−r
.

It can be checked that Gi(r,x) is a probability mass function on X . Put

rn(x
(n)
1 , · · · ,x(n)

n ) :=
n

∏
i=1

G(n)
i (r,x(n)

i ) =
n

∏
i=i

1

G(n)
i (r)

[
pni(x

(n)
i )

]1−r
,

and

Λ(1)
n (r,ω) :=

rn(ξ
(n)
1 , · · · ,ξ (n)

n )

pn(ξ
(n)
1 , · · · ,ξ (n)

n )
, n ∈ N

+.

Note that

Eμ Λ(1)
n (r,ω) =Σ

x
(n)
1 ,···,x(n)

n

rn(x
(n)
1 , · · · ,x(n)

n )

pn(x
(n)
1 , · · · ,x(n)

n )
· pn(x

(n)
1 , · · · ,x(n)

n )

=Σ
x
(n)
1 ,···,x(n)

n
rn(x

(n)
1 , · · · ,x(n)

n )

�1.

Obviously, Lemma 1 implies that

limsup
n

1
n

logΛ(1)
n (r,ω) � 0 a.s.

Noting

logΛ(1)
n (r,ω) =

n

∑
i=1

rξ̃ (n)
i −

n

∑
i=1

logG(n)
i (r)− logLn(ω),

thus,

limsup
n

1
n

[
n

∑
i=1

rξ̃ (n)
i −

n

∑
i=1

logG(n)
i (r)− logLn(ω)

]
� 0 a.s. (13)

Letting r = 0 in (13) , we have

h∗(ω) := liminf
n

1
n

logLn(ω) � 0 a.s.

Hence

h
μ̃
μ(ω) = limsup

n

1
n

log
1

Ln(ω)
� 0 a.s.
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By formulas (4) , (7) and (13) , the properties of superior limit and the inequality
1− 1

x � logx � x−1 (x > 0), we have

limsup
n

r
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� limsup

n

1
n

n

∑
i=1

[
logG(n)

i (r)− rH(ξ (n)
i )

]
−hμ̃

μ(ω)

� limsup
n

1
n

n

∑
i=1

[
G(n)

i (r)−1− rH(ξ (n)
i )

]
−hμ̃

μ(ω)

= limsup
n

1
n

n

∑
i=1

E(erξ̃ (n)
i −1− rξ̃ (n)

i )−hμ̃
μ(ω) a.s. ω ∈ D . (14)

Using the inequality 0 � ex −1− x � 1
2 (x)2e|x| , we have by (14) that

limsup
n

r
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� r2

2
limsup

n

1
n

n

∑
i=1

E

[
(ξ̃ (n)

i )2e|rξ̃ (n)
i |

]
−hμ̃

μ(ω) a.s. ω ∈ D . (15)

Since

sup
{

x(r0+r)(logx)2,0 � x � 1
}

� 4e−2

(r0 + r)2 , r < 0 and r 	= −r0 (16)

and

sup
{

x(r0−r)(logx)2,0 � x � 1
}

� 4e−2

(r0 − r)2 , 0 < r < r0. (17)

Let r < 0 and r 	= −r0 in (15) , we have by (16) and (17)

r liminf
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
�r2

2
limsup

n

1
n

n

∑
i=1

∑
x
(n)
i ∈X

pni(x
(n)
i )er log pni(x

(n)
i )

[
log pni(x

(n)
i )

]2−hμ̃
μ(ω)

=
r2

2
limsup

n

1
n

n

∑
i=1

∑
x
(n)
i ∈X

[
pni(x

(n)
i )

]1−r0 [
pni(x

(n)
i )

]r0+r [
log pni(x

(n)
i )

]2−hμ̃
μ(ω)

�2r2e−2G(r0)
(r+ r0)2 −hμ̃

μ(ω) a.s. ω ∈ D . (18)

By formulas (4) , (8) and (18) , we have

liminf
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� 2re−2G(r0)

(r+ r0)2 − hμ̃
μ(ω)
r

a.s. ω ∈ D . (19)
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Taking r →−∞ in (19) , we have 2re−2G(r0)
(r+r0)2

− hμ̃
μ (ω)
r → 0, thus (9) follows

Similarly, put 0 < r < r0 in (15) , we have by (10) and (17)

limsup
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� r

2
limsup

n

1
n

n

∑
i=1

∑
x
(n)
i ∈X

pni(x
(n)
i )e−r log pni(x

(n)
i )

[
log pni(x

(n)
i )

]2− hμ̃
μ(ω)
r

=
r
2

limsup
n

1
n

n

∑
i=1

∑
x
(n)
i ∈X

[
pni(x

(n)
i )

]1−r0 [
pni(x

(n)
i )

]r0−r [
log pni(x

(n)
i )

]2 − hμ̃
μ(ω)
r

�2re−2G(r0)
(r− r0)2 − hμ̃

μ(ω)
r

=g(r,hμ̃
μ(ω))

�α(hμ̃
μ(ω)), a.s. ω ∈ D .

From (11) and (12) , we have for every x � 0,

0 � α(x) � g

(
r0
√−x

1+
√−x

,x

)
=

[
2e−2G(r0)+1

r0

]√−x(1+
√−x).

and

α(0) � lim
x→0

g

(
r0
√−x

1+
√−x

,x

)
= 0.

hence

α(0) = 0.

The proof is completed. �
Consider an independent and identically distributed information source ξ = {ξi}∞

i=1
with source alphabet X and Shannon entropy H(ξ ) . The asymptotic equipartition
property (AEP) is the assertion that

−1
n

log p(ξ1,ξ2, · · · ,ξn) → H(ξ )

either in a sense of L1 convergence, convergence in probability or with probability one
as n approaches to ∞ . The AEP is fundamental to information theory and is called the
Shannon-McMillan theorem in information theory.

Let Ξ = {ξ n = (ξ (n)
1 , · · · ,ξ (n)

n )}n∈N+ be a general information sources. Denote

pn(x
(n)
1 , · · · ,x(n)

n ) = μ(ξ (n)
1 = x(n)

1 , · · · ,ξ (n)
n = x(n)

n ) . Let

fn(ω) := −1
n

log pn(ξ n), (20)

which is called the generalized information source entropy density of pn(ξ
(n)
1 , · · · ,ξ (n)

n ) .
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THEOREM 2. Under the conditions of Theorem 1, we have

liminf
n

[
fn(ω)− 1

n
H(ξ n)

]
� hμ̃

μ(ω)+D(μ ||μ̃) a.s. ω ∈ D .

and

limsup
n

[
fn(ω)− 1

n
H(ξ n)

]
� h

μ̃
μ(ω)+ α(hμ̃

μ(ω))+D(μ ||μ̃), a.s. ω ∈ D .

where H(ξ n) = E

[
− log pn(ξ

(n)
1 , · · · ,ξ (n)

n )
]

is the joint entropy of random vector ξ n .

Proof. From (5) , (9) and (20) , we have

liminf
n

[
fn(ω)− 1

n
H(ξ n)

]
� liminf

n

1
n

log
1

Ln(ω)
+ liminf

n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
+ liminf

n

1
n

[
n

∑
i=1

H(ξ (n)
i )−H(ξ n)

]
�hμ̃

μ(ω)+D(μ ||μ̃) a.s. ω ∈ D .

Analogously, we have by formulas (6) , (10) and (20)

limsup
n

[
fn(ω)− 1

n
H(ξ n)

]
� limsup

n

1
n

log
1

Ln(ω)
+ limsup

n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
+ limsup

n

1
n

[
n

∑
i=1

H(ξ (n)
i )−H(ξ n)

]
�h

μ̃
μ(ω)+ α(hμ̃

μ(ω))+D(μ ||μ̃) a.s. ω ∈ D ,

which implies Theorem 2 holds. �

COROLLARY 1. Put μ = μ̃ , i.e. {ξ (n)
i , 1 � i � n}n∈N+ are independent for every

fixed n. If there exists a positive constant r0 such that (10) holds, then

limsup
n

[
fn(ω)− 1

n
H(ξ n)

]
= 0 a.s. ω ∈ D .

Proof. Noticing that in this case, we have D(μ ||μ̃) = D(μ ||μ̃) = 0, hμ̃
μ(ω) =

h
μ̃
μ(ω) ≡ 0, D = Ω and α(0) = 0. Corollary 1 follows immediately. �

In the remainder of this section we make the restriction that the source alphabet
X is finite, i.e. X =

{
a1,a2, · · · ,a|X |

}
, where | · | denotes cardinality operator.
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COROLLARY 2. Under the conditions of Theorem 2, we have

liminf
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� 0 a.s. ω ∈ D

and

limsup
n

1
n

n

∑
i=1

[
ξ̃ (n)

i −H(ξ (n)
i )

]
� β (hμ̃

μ(ω)) a.s. ω ∈ D

liminf
n

[
fn(ω)− 1

n
H(ξ n)

]
� hμ̃

μ(ω)+D(μ ||μ̃) a.s. ω ∈ D (21)

and

limsup
n

[
fn(ω)− 1

n
H(ξ n)

]
� h

μ̃
μ(ω)+ β (hμ̃

μ(ω))+D(μ ||μ̃) a.s. ω ∈ D (22)

where

β (x) = inf
r
{h(r,x),0 < r < 1} , x � 0

h(r,x) =
2e−2|X |r
(1− r)2 − x

r
� 2

√
−2e−2|X |x

(1− r)2 , x � 0

and

0 = β (0) � β (x) � h
( √−x

1+
√−x

,x
)

= (2e−2|X |+1)
√−x(1+

√−x). (23)

Proof. Let r0 = 1, note that G(r0) = G(1) � |X | . The assertion follows directly
from Theorem 1. �

LEMMA 2. Let Ξ be a generalized information source, then
{− 1

n log pn(ξ n)
}

n∈N+

are uniformly integrable.

Proof. For each nonnegative integer k define the sets

Bk(1,n) :=
{

ω : −1
n

log pn(ξ n) ∈ [k,k+1)
}

and hence if ω ∈ Bk(1,n) we have

k � −1
n

log pn(ξ n) < k+1



1160 S. CHEN, W. PENG AND Z. WANG

or

e−n(k+1) < pn(ξ n) � e−nk.

Thus for any k , we have

∑
ω∈Bk(1,n)

[
− 1

n
log pn(ξ n)

]
<(k+1)μ(Bk(1,n))

=(k+1) ∑
ω∈Bk(1,n)

e−nk

�(k+1)e−nk|X |n.
There are at most |X |n possible n -tuples corresponding to thin cylinders in Bk(1,n)
and each probability less than e−nk .

To prove uniform integrability we must show uniform convergence to 0 as k → ∞
of the integral

EAk(1,n) := ∑
ω∈

{
− 1

n pn(x
(n)
1 ,···,x(n)

n )�k
}−1

n
pn(x

(n)
1 , · · · ,x(n)

n ) · pn(x
(n)
1 , · · · ,x(n)

n )

=
∞

∑
i=0

∑
ω∈Bk+i(1,n)

−1
n

pn(x
(n)
1 , · · · ,x(n)

n ) · log pn(x
(n)
1 , · · · ,x(n)

n )

�
∞

∑
i=0

(k+ i+1)|X |ne−n(k+i)e−n(k+i)

�
∞

∑
i=0

(k+ i+1)e−n(2k+2i−log|X |).

Notice that, taking k large enough so that 2k > log |X | , then the exponential term is
bound above by the special case n = 1 and we have the bound

EAk(1,n) �
∞

∑
i=0

(k+ i+1)e−(2k+2i−log|X |)

a bound which is finite and independent of i and n . Taking k → ∞ , the sum can

easily be shown to go to zero so that prove
{
− 1

n log pn(ξ (n))
}

n∈N+
are uniformly inte-

grable. �

COROLLARY 3. Let hμ̃
μ(ω) and h∗(ω) be defined as above, then

liminf
n

[
fn(ω)− 1

n
H(ξ n)

]
� hμ̃

μ(ω)+E(h∗(ω)) a.s. ω ∈ D . (24)

and

limsup
n

[
fn(ω)− 1

n
H(ξ n)

]
� (2e−2|X |+1)

√
−hμ̃

μ(ω)
[
1+

√
−hμ̃

μ(ω)
]

+E(−hμ̃
μ(ω)) a.s. ω ∈ D . (25)



STRONG DEVIATION THEOREMS FOR GENERAL INFORMATION SOURCES 1161

Proof. Since
{

logLn(ω)
n ,n � 1

}
are uniformly integrable, by the Fatou Lemma,

we have

D(pn ‖ qn) = liminf
n

E(logLn(ω)) � E(h∗(ω)), (26)

D(pn ‖ qn) = limsup
n

E(logLn(ω)) � E(hμ̃
μ(ω)), (27)

then (24) follows from (21) , (23) and (26) , and (25) follows from (22) , (23) and
(27) . �

COROLLARY 4. If

hμ̃
μ(ω) = 0 a.s.,

then

lim
n

[
fn(ω)− 1

n
H(ξ n)

]
= 0 a.s. (28)

Proof. In this case, μ(D) = 1, E(−hμ̃
μ(ω)) = 0, and h∗(ω) � 0 a.s. , (28) fol-

lows from (24) and (25) . �
Next, we adopt the method presented above to get some upper bounds on the

generalized divergence-density rate.

THEOREM 3. Let ak ∈ X , Sn(ak,ω) be the number of occurrences of ak in se-

quence (ξ (n)
1 , · · · ,ξ (n)

n ) , c be a constant with (0 � c � 1) . Let

S∗(ak,ω) :=

{
ω : liminf

n→∞

1
n

[
Sn(ak,ω)−

n

∑
i=1

pni(ak)

]
� c

}
and

S∗(c) :=
|X |⋃
k=1

S∗(ak,ω),

then

h
μ̃
μ(ω) � c− (1+ c) log(1+ c) a.s. ω ∈ S∗(c).

Proof. Let t be a positive constant, define

Λ(2)
n (t,ω) :=

tSn(ak,ω)
n
∏
i=1

pni(ak)
1+(t−1)pni(ak)

pn(x
(n)
1 , · · · ,x(n)

n )
. (29)
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Note that

EΛ(2)
n (t,ω)

=Σ
x(n)
1 ,···,x(n)

n

tSn(ak,ω) ∏n
i=1

pni(ak)
1+(t−1)pni(ak)

pn(x
(n)
1 , · · · ,x(n)

n )
· pn(x

(n)
1 , · · · ,x(n)

n )

=Σ
x
(n)
1 ,···,x(n)

n
tSn(ak,ω)

n

∏
i=1

pni(ak)
1+(t−1)pni(ak)

=Σ
x
(n)
1 ,···,x(n)

n

n

∏
i=1

pni(ak) · t1{ak}(x(n)
i )

1+(t−1)pni(ak)

and

∑
x
(n)
i

pni(x
(n)
i ) · t1{ak}(x(n)

i )

= ∑
x(n)
i ={ak}

pni(x
(n)
i ) · t1{ak}(x(n)

i ) + ∑
x(n)
i 	={ak}

pni(x
(n)
i ) · t1{ak}(x(n)

i )

= pni(ak) · t +(1− pni(ak))
= 1+(t−1)pni(ak).

Hence EΛ(2)
n (t,ω) � 1, then by Lemma 1, we have

limsup
n

1
n

logΛ(2)
n (t,ω) � 0 a.s. (30)

From (29) and (30) , we have

liminf
n→∞

{
1
n

logLn(ω)+
1
n

n

∑
i=1

log [1+(t−1)pni(ak)]− 1
n
Sn(ak,ω) log t

}
� 0,

thus

−h
μ̃
μ(ω) = liminf

n→∞

1
n

logLn(ω)

� liminf
n→∞

{
1
n
Sn(ak,ω) log t− 1

n

n

∑
i=1

log [1+(t−1)pni(ak)]

}
. (31)
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Let t > 1, (31) and the inequality log(1+ x) � x(x � 0) imply that

−h
μ̃
μ(ω) � log t · liminf

n→∞

1
n

[
Sn(ak,ω)−

n

∑
i=1

pni(x
(n)
i )

]

− logt · liminf
n→∞

1
n

n

∑
i=1

{
log [1+(t−1)pni(ak)]

logt
− pni(ak)

}

� log t · liminf
n→∞

1
n

[
Sn(ak,ω) logt −

n

∑
i=1

pni(ak)

]

− logt · liminf
n→∞

1
n

n

∑
i=1

{
log [1+(t−1)pni(ak)]

logt
− pni(ak)

}

� log t

{
c− limsup

n→∞

1
n

n

∑
i=1

[
(t−1)pni(ak)

logt
− pni(ak)

]}
� (1+ c) logt +1− t a.s. ω ∈ S∗(c),

thus

h
μ̃
μ(ω) � t−1− (1+ c) logt a.s. ω ∈ S∗(c).

We can find that, for any c > 0, g(t) = (1+ c) logt +1− t attains the maximum value
g(1+ c) = (1+ c) log(1+ c)− c at t = 1+ c . Therefore, we have for c > 0

h
μ̃
μ(ω) � c− (1+ c) log(1+ c) a.s. ω ∈ S∗(c) �

THEOREM 4. Under of the conditions of Theorem 3, let

S∗(ak,c) =

{
ω : limsup

n

1
n

[
Sn(ak,ω)−

n

∑
i=1

pni(ak)

]
� −c

}
(32)

and

S∗(c) =
|X |⋃
k=1

S∗(ak,c),

then, if 0 � c < 1 we have

h
μ̃
μ(ω) � (c−1) log(1− c)− c a.s. ω ∈ S∗(c).

If c = 1 , we have

h
μ̃
μ(ω) � −1 a.s. ω ∈ S∗(1).



1164 S. CHEN, W. PENG AND Z. WANG

Proof. Put 0 < t < 1, by (31) , (32) and the inequality log(1+x) � x (−1 < x �
0) , we have

− 1
logt

·hμ̃
μ(ω) � limsup

n

1
n

[
Sn(ak,ω)−

n

∑
i=1

pni(x
(n)
i )

]

− limsup
n

1
n

n

∑
i=1

⎧⎨⎩ log
[
1+(t−1)pni(x

(n)
i )

]
logt

− pni(x
(n)
i )

⎫⎬⎭
� limsup

n

1
n

[
Sn(ak,ω)−

n

∑
i=1

pni(x
(n)
i )

]

− liminf
n

1
n

n

∑
i=1

[
(t−1)pni(x

(n)
i )

logt
− pni(x

(n)
i )

]

� −c+1− t−1
logt

a.s. ω ∈ S∗(c).

Thus

h
μ̃
μ(ω) � (c−1) logt + t−1 a.s. ω ∈ S∗(c).

It is easy to see that g(t) = (1− c) logt + t−1 (0 < t � 1) attains the maximum g(1−
c) = (c−1) log(1− c)− c on (0,1] . If 0 < c < 1, we have

h
μ̃
μ(ω) � (c−1) log(1− c)− c a.s. ω ∈ S∗(c).

Similarly, if c = 1, we have

h
μ̃
μ(ω) � −1 a.s. ω ∈ S∗(1).

The proof is completed. �

THEOREM 5. Assume that (p1, · · · , p|X |) with pi > 0 and ∑|X |
i=1 pi = 1 is a dis-

tribution on X . Denote pmax = max{p1, · · · , p|X |} and pmin = min{p1, · · · , p|X |} .
Let X0 = {ai : pi = pmin,ai ∈ X } , X1 = {ai : pi = pmax,ai ∈ X } . Let ai ∈ X ,

Sn(ai,ω) be the number of occurrences of ai in segement (ξ (n)
1 , · · · ,ξ (n)

n ) . If

limsup
n→∞

Sn(ai,ω)
n

� pi, f or all ai ∈ X −X0 a.s.

or

limsup
n→∞

Sn(ai,ω)
n

� pi, f or all ai ∈ X −X1 a.s.

then

limsup
n→∞

fn(ω) � H(p1, · · · , p|X |) a.s.
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Proof. Set

Λ(3)
n (ω) =

∏n
i ∑|X |

k=1 pk1{ξ (n)
i =ak}

pn(ξ n)
.

It is not hard to verify that EΛ(3)
n = 1, so we have limsup

n

1
n logΛ(3)

n (ω) � 0 a.s.

Note that

1
n

logΛ(3)(ω) = ∑
i:ai∈X −X0

Sn(ai,ω)
n

log pi + ∑
i:ai∈X −X0

(
1− Sn(ai,ω)

n

)
log pmin

− 1
n

log pn(ξ n),

thus

limsup
n

fn(ω) � limsup
n

∑
i:ai∈X −X0

Sn(ai,ω)
n

log
pmin

pi
− log pmin a.s.

limsup
n

fn(ω) � ∑
i:ai∈X −X0

log
pmin

pi
limsup

n

Sn(ai,ω)
n

− log pmin a.s.

limsup
n

fn(ω) � ∑
i:ai∈X −X0

pi log
pmin

pi
− log pmin a.s.

limsup
n

fn(ω) � −
|X |
∑
i=1

pi log pi a.s.

i.e.

limsup
n

fn(ω) � H(p1, · · · , p|X |) a.s.

Notice that

1
n

logΛ(3)(ω) = ∑
i:ai∈X −X1

Sn(ai,ω)
n

log pi + ∑
i:ai∈X −X1

(
1− Sn(ai,ω)

n

)
log pmax

− 1
n

log pn(ξ n).

Similarly, we have

limsup
n

fn(ω) � limsup
n

∑
i:ai∈X −X1

Sn(ai,ω)
n

log
pmax

pi
− log pmax a.s.

limsup
n

fn(ω) � ∑
i:ai∈X −X1

log
pmax

pi
limsup

n

Sn(ai,ω)
n

− log pmax a.s.

limsup
n

fn(ω) � ∑
i:ai∈X −X1

pi log
pmax

pi
− log pmax a.s.
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thus

limsup
n

fn(ω) � −
|X |
∑
i=1

pi log pi a.s.

Therefore, Theorem 5 follows, i.e.

limsup
n

fn(ω) � H(p1, · · · , p|X |) a.s. �

COROLLARY 5. limsupn fn � log |X | a.s.

Proof. Let

Λ(4)(ω) :=
1

|X |n
pn(ξ n)

.

Obviously,

EΛ(4)(ω) = ∑
x(n)
1 ∈X

· · · ∑
x(n)
n ∈X

1
|X |n

pn(x
(n)
1 , · · · ,x(n)

n )
· pn(x

(n)
1 , · · · ,x(n)

n )

=
1

|X |n · |X |n

= 1,

hence

limsup
n

1
n

Λ(4)(ω) � 0 a.s.

which indicates that

limsup
n

1
n

[− log |X |n − log pn(ξ n)] � 0 a.s.

i.e.
limsup

n
fn � log |X | a.s. �
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