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SOME REFINEMENTS OF YOUNG TYPE INEQUALITIES
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(Communicated by M. Krnić)

Abstract. In this paper, we study some improvements of Young type inequalities. We obtain
some reverse improvements of Young inequality. Among other results, we show a refined Young
inequality. For v ∈ [0,1] and a,b > 0 , then

a∇vb � MR
v (h)a�vb,

where Mv(t) = 1+v(1−v) (t−1)2
t and h = b

a . And we also obtain a new Young type inequality.
Furthermore, corresponding operator inequalities are also established.

1. Introduction

The weighted arithmetic-geometric mean inequality, which is also called Young
inequality, states that

(1− v)a+ vb � a1−vbv

for a,b � 0 and v ∈ [0,1].
The Heinz mean is defined by

Hv(a,b) =
a1−vbv +avb1−v

2

for a,b � 0 and v ∈ [0,1].
Recently, a number of refinements for Young inequality are studied. The refine-

ment in [4] of Young inequality was proved by Kittaneh and Manasrah, which can be
stated in the following form

va+(1− v)b � avb1−v +R(
√

a−
√

b)2, (1)

where R = max{v,1− v}.
In [9, 5], Zuo-Shi-Fujii and Liao-Wu-Zhao obtained respectively the refinement

and reverse refinement of Young inequality with Kantorovich constant K(h) = (h+1)2
4h ,

(h > 0). If v ∈ [0,1] and t > 0, then

Kr(t) � (1− v)+ vt
tv

� KR(t), (2)
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where r = min{v,1− v} and R = max{v,1− v}.
Dragomir established the following refinement of Young inequality in [1]

(1− v)+ vt
tv

� exp
(
v(1− v)

(t−1)2

t

)

for t > 0 and v ∈ [0,1].
Furuichi focused on the refinement for Young inequality by Dragomir and got the

following lemma.

LEMMA 1.1. [2] For t > 0 and v ∈ [0,1] ,

(1− v)+ vt
tv

� 1+ v(1− v)
(t−1)2

t
.

Recently, Ghazanfari, Malekinejad and Talebi in [3] gave a new inequality, which
can be stated that if a,b � 0 and v ∈ (0,1], then

(1− v2 + v3)a+(1− v2)b � vv−2avb1−v +(
√

a−
√

b)2. (3)

In [6], Ren proved a new Young type inequality

(1− vN+1 + vN+2)a+(1− v2)b � vvN−(N+1)avb1−v +(
√

a−
√

b)2, (4)

where v∈ (0,1] , N ∈N and a,b � 0. It’s obvious that (3) is a special case of inequality
(4) for N = 1, which implies that (4) is a generalization of (3).

In 2020, Yang and Li [8] studied an improvement of inequality (3), they obtained
the following inequality,

(1− vN1+1 + vN1+2)a+(1− vN2+2)b � v−(1−v)N1−vN2−1avb1−v +(
√

a−
√

b)2, (5)

where v ∈ (0,1] , N1,N2 ∈ N and a,b � 0. It’s obvious that (3) is a special case of
inequality (5) for N1 = 1, N2 = 0, which implies that (5) is a generalization of (3).
And they also gave an inequality for N1 = N2. As follows

(1− vN+1 + vN+2)a+(1− vN+2)b � v−N−1avb1−v +(
√

a−
√

b)2.

In this paper, our main task is to study improvements of Young type inequalities.
In Theorem 2.1, we obtain a tighter upper bound than that of inequality (2). Theo-
rem 2.12 is a new Young type inequality, which is another generalization of inequality
(3). In section 3, modified inequalities are used to establish corresponding operator
inequalities.

2. Main results

In this section, we present the numerical inequalities needed to prove the operator
versions. This section is divided into two subsections. In the first subsection, we refine
Young inequality based on the result of Furuichi. In the other subsection, we show a
new Young type inequality.
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2.1. Refined reverse Young inequalities

We now state and prove the main theorem, which will be frequently used in this
paper.

THEOREM 2.1. Suppose v ∈ [0,1] and t > 0 , then

(1− v)+ vt
tv

�
[
1+ v(1− v)

(t−1)2

t

]R
, (6)

where R = max{v,1− v}.

Proof. Consider the function

f (t) = log[(1− v)+ vt]− v logt−R log
[
1+ v(1− v)

(t−1)2

t

]
.

f ′(t) =
v

(1− v)+ vt
− v

t
− Rv(1− v)(1− 1

t2
)

1+ v(1− v) (t−1)2
t

=
v(1− v)(t−1)
[(1− v)+ vt]t

− Rv(1− v)(1− 1
t2

)

1+ v(1− v) (t−1)2
t

=
v(1− v)(t−1)[1+ v(1− v) (t−1)2

t ]−Rv(1− v)(1− 1
t2

)[(1− v)+ vt]t

[(1− v)+ vt]t[1+ v(1− v) (t−1)2
t ]

=
v(1− v)(t−1){1+ v(1− v)(t+ 1

t −2)−R( 1
t + 1

t2
)[(1− v)+ vt]t}

[(1− v)+ vt]t[1+ v(1− v) (t−1)2
t ]

.

Let

g(t) = 1+ v(1− v)
(
t +

1
t
−2

)
−R

(
1+

1
t

)
[(1− v)+ vt].

(i) If v ∈ [0, 1
2 ] , then R = 1− v and

g(t) = v(2v−1)+
(1− v)(2v−1)

t
� 0.

(ii) If v ∈ [ 1
2 ,1] , then R = v and

g(t) = v(1−2v)t +(1−2v)(1− v)� 0.

Hence, g(t) � 0 for v ∈ [0,1]. If t ∈ (0,1], f ′(t) � 0, f (t) is an increasing function
for t ∈ (0,1]. And if t ∈ [1,∞), f ′(t) � 0, f (t) is a decreasing function for t ∈ [1,∞).
When t = 1, f (t) attains the maximum value, f (1) = 0. Therefore,

(1− v)+ vt
tv

�
[
1+ v(1− v)

(t−1)2

t

]R
. �
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REMARK 2.2. It is easy to see that 1+v(1−v) (t−1)2
t � 1+ (t−1)2

4t = K(t). As we
noted in Introduction, the inequalities (2) are known. Therefore, when t > 0 and v ∈
[0,1] , inequality (6) of Theorem 2.1 gives a tighter upper bound than that of inequality
(2).

The following remark states some characterizations of 1+ v(1− v) (t−1)2
t , which

are similar to that of Kantorovich constant K(t) .

REMARK 2.3. Let Mv(t) = 1+v(1−v) (t−1)2
t for t > 0 and v ∈ [0,1] . By simple

calculation, we have

Mv(t) = 1+ v(1− v)
(t−1)2

t

= 1+ v(1− v)
(1− t)2

t

= 1+ v(1− v)
( 1

t −1)2

1
t

= Mv

(1
t

)
.

M′
v(t) = v(1− v)

(
1− 1

t2

)
,

then if t ∈ (0,1], M′
v(t) � 0 and if t ∈ [1,∞), M′

v(t) � 0. Therefore, Mv(t) has the
following properties:

(1) Mv(t) = Mv( 1
t ) .

(2) Mv(t) is decreasing for t ∈ (0,1] and Mv(t) is increasing for t ∈ [1,∞). And
Mv(1) = 1.

(3) Mv(t) = M1−v(t).

Therefore, we have
a∇vb � MR

v (h)a�vb (7)

for a,b > 0 and v ∈ [0,1] . According to inequality (7), we can also get geometric-
harmonic mean inequality and arithmetic-Heinz mean inequality, which is respectively
an improvement of previous corresponding inequality.

COROLLARY 2.4. Suppose a,b > 0 and v ∈ [0,1] , then

a�vb � MR
v (h)a!vb,

where R = max{v,1− v} and h = b
a .

Proof. Using inequality (7) and replacing a with 1
a and b with 1

b , we can get the
desired inequality. �
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COROLLARY 2.5. Suppose a,b > 0 and v ∈ [0,1] , then

a∇b � MR
v (h)Hv(a,b),

where R = max{v,1− v} and h = b
a .

Proof. Applying inequality (7) and Remark 2.3, we can get the desired inequal-
ity. �

The following theorem can be obtained by iteration of inequality (7).

THEOREM 2.6. Suppose a,b > 0 , v ∈ [0,1] and h =
√

b
a , then

(1− v)a+ vb− r(
√

a−
√

b)2 � MR′
r′ (h)a1−vbv, (8)

where Mv(h) = 1 + v(1−v)(h−1)2
h , r = min{v,1− v} , r′ = min{2r,1− 2r} and R′ =

max{2r,1−2r}.

Proof. (i) If v∈ [0, 1
2 ] , using inequality (7) and Remark 2.3, by simple calculation,

we can get

(1− v)a+ vb− v(
√

a−
√

b)2 =(1−2v)a+2v
√

ab

�MR′
2v(h)a1−vbv = MR′

1−2v(h)a1−vbv.

(ii) If v ∈ [ 1
2 ,1] , using inequality (7) and Remark 2.3, by simple calculation, we

have

(1− v)a+ vb− (1− v)(
√

a−
√

b)2 =(2v−1)b+2(1− v)
√

ab

�MR′
2v−1(h)a1−vbv = MR′

2−2v(h)a1−vbv.

To sum up, we get

(1− v)a+ vb− r(
√

a−
√

b)2 � MR′
r′ (h)a1−vbv. �

It is the most common method of reverse improvement of Young inequality that
geometric mean adds one term is larger than arithmetic mean. Can the form of inequal-
ity (8) be extended to n terms? To get the result we want, the following lemma is
needed.

LEMMA 2.7. [7] Let a,b > 0 and v ∈ [0,1]. Given N ∈ N, consider the integers
k j = [2 j−1v] and r j = [2 jv], j = 1,2, . . . ,N. Then

(1− v)a+ vb−
N

∑
j=1

(
(−1)r j2 j−1v+(−1)r j+1

[ r j +1
2

])

×
(

2 j√
a2 j−1−k j bk j − 2 j√

bkj+1a2 j−1−k j−1
)2

=([2Nv]+1−2Nv)
2N√

a2N−[2Nv]b[2Nv] + (2Nv− [2Nv])
2N√

b[2Nv]+1a2N−[2Nv]−1.
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THEOREM 2.8. Let a,b> 0 and v∈ [0,1]. Consider the integers k j = [2 j−1v] and
r j = [2 jv] for j = 1,2, . . . ,N, N ∈ N . Suppose aN = [2Nv]+1−2Nv and hN = 2N√ a

b ,
then

[
1+aN(1−aN)

(hN −1)2

hN

]RN
a1−vbv

+
N

∑
j=1

(
(−1)r j2 j−1v+(−1)r j+1

[ r j +1
2

])
(

2 j√
a2 j−1−k j bk j − 2 j√

bkj+1a2 j−1−k j−1)2

�(1− v)a+ vb.
(9)

where RN = max{aN,1−aN} .

Proof. Applying Lemma 2.7 and inequality (7), we have

(1− v)a+ vb−
N

∑
j=1

(
(−1)r j2 j−1v+(−1)r j+1

[ r j +1
2

])

× (
2 j√

a2 j−1−k j bk j − 2 j√
bkj+1a2 j−1−k j−1)2

=([2Nv]+1−2Nv)
2N√

a2N−[2Nv]b[2Nv] + (2Nv− [2Nv])
2N√

b[2Nv]+1a2N−[2Nv]−1

�
[
1+aN(1−aN)

(hN −1)2

hN

]RN
(

2N√
a2N−[2Nv]b[2Nv])[2

Nv]+1−2Nv

× (
2N√

b[2Nv]+1a2N−[2Nv]−1)2Nv−[2Nv]

=
[
1+aN(1−aN)

(hN −1)2

hN

]RN
a1−vbv.

Then, we get the desired inequality. �
Next, we will discuss the relationship between Young inequality and generalized

exponential function. Throughout this subsection, we use the generalized exponential
function defined by expr(x) = (1+ rx)

1
r for x > 0 and −1 � r � 1 with r �= 0 under

the assumption that 1+ rx � 0. To achieve further result, we need the following lemma
(Lemma 2.9).

LEMMA 2.9. [2] The function expr(x) defined for x > 0 and 0 < r � 1 or 0 �
x � 1 and −1 � r < 0, is monotone decreasing in r .

LEMMA 2.10. [2] For t > 0 , 0 � v � 1 and 0 < r � 1, then

(1− v)+ vt
tv

� expr

(
v(1− v)

(t−1)2

t

)
.

COROLLARY 2.11. For t > 0, 0 � v � 1 and 0 < r � 1, then

(1− v)+ vt
tv

�
(
expr(v(1− v)

(t−1)2

t
)
)R

,
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where R = max{v,1− v}.

Proof. Using Lemma 2.9 and Theorem 2.1, we have

(expr(v(1− v)
(t−1)2

t
))R �

(
exp1

(
v(1− v)

(t−1)2

t

))R

=
[
1+ v(1− v)

(t−1)2

t

]R

� (1− v)+ vt
tv

. �

It is not difficult to see that Corollary 2.11 is weaker than Theorem 2.1, while
Corollary 2.11 is stronger than Lemma 2.10.

2.2. Young type inequality

In this part, we will further generalize inequality (3) based on inequality (4) and
(5). We try to turn inequality (5) with two variables (N1, N2 ) into a new inequality with
one variable. The result is as follows.

THEOREM 2.12. Suppose that a,b � 0, N ∈ N and v ∈ (0,1], then

(1− vN+1 + vN+2)a+(1− vN+1)b � v−N−1+vavb1−v +(
√

a−
√

b)2. (10)

Proof. By simple calculation, we have

v−N−1+vavb1−v +(
√

a−
√

b)2− (1− vN+1 + vN+2)a− (1− vN+1)b

=v−N−1+vavb1−v−2
√

ab+(1− v)vN+1a+ vvNb

�v−N−1+vavb1−v−2
√

ab+(vN+1a)1−v(vNb)v

=v−N−1+vavb1−v−2
√

ab+ vN+1−va1−vbv

=(v
−N−1+v

2 a
v
2 b

1−v
2 − v

N+1−v
2 a

1−v
2 b

v
2 )2

�0.

Therefore

(1− vN+1 + vN+2)a+(1− vN+1)b � v−N−1+vavb1−v +(
√

a−
√

b)2. �

REMARK 2.13. It’s obvious that (3) is a special case of inequality (10) for N = 1,
which implies that (10) is a generalization of (3). And for any N , it’s not difficult to
find that both the left hand side and the right hand side in inequality (10) are greater
than or equal to the corresponding sides in inequalities (1) and (3) respectively, which
indicates that inequality (10) can be regarded as a new Young type inequality.

The following theorem presents a multiplicative refinement of inequality (10).
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THEOREM 2.14. Suppose that a,b � 0, N ∈ N and v ∈ (0,1], then

(1− vN+1 + vN+2)a+(1− vN+1)b � K−r(h)v−N−1+vavb1−v +(
√

a−
√

b)2, (11)

where r = min{v,1− v} and h = va
b .

Proof. By simple calculation and using the first inequality of (2), we have

K−r(h)v−N−1+vavb1−v +(
√

a−
√

b)2 − (1− vN+1 + vN+2)a− (1− vN+1)b

=K−r(h)v−N−1+vavb1−v−2
√

ab+(1− v)vN+1a+ vvNb

�K−r(h)v−N−1+vavb1−v−2
√

ab+Kr(h)(vN+1a)1−v(vNb)v

=K−r(h)v−N−1+vavb1−v−2
√

ab+Kr(h)vN+1−va1−vbv

=(K− r
2 (h)v

−N−1+v
2 a

v
2 b

1−v
2 −K

r
2 (h)v

N+1−v
2 a

1−v
2 b

v
2 )2

�0.

Then

(1− vN+1 + vN+2)a+(1− vN+1)b � K−r(h)v−N−1+vavb1−v +(
√

a−
√

b)2. �

3. Operator inequalities

Let B(H) denote the C∗ -algebra of all bounded linear operators on a complex
Hilbert space H . A self-adjoint operator A ∈ B(H) is called positive, and we write
A � 0 if 〈Ax,x〉 � 0 for all x ∈ H . The set of all positive operators is denoted by
B+(H). The set of all invertible operators in B+(H) is denoted by B++(H). We say
A � B if A−B � 0.

Let A,B ∈ B+(H) and v ∈ [0,1] . The weighted operator arithmetic mean and
geometric mean of A and B are respectively defined as

A∇vB = (1− v)A+ vB, A�vB = A
1
2 (A− 1

2 BA− 1
2 )vA

1
2 .

When v = 1
2 , A∇ 1

2
B and A� 1

2
B are called respectively operator arithmetic mean

and operator geometric mean, which are denoted by A∇B and A�B .

LEMMA 3.1. Let A ∈ B(H) be self-adjoint. If f and g are both continuous func-
tions with f (t) � g(t) for t ∈ Sp(A) (where Sp(A) denotes the spectrum of operator
A), then f (A) � g(A).

In this section by applying Lemma 3.1 and inequalities in section 2, we have the
following operator inequalities.

COROLLARY 3.2. If A,B ∈ B(H) , satisfy 0 < mI � A,B � MI , then

A∇vB � MR
v (h)A�vB,

where Mv(t) = 1+ v(1− v) (t−1)2
t , R = max{v,1− v} and h = M

m .
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Proof. Using inequality (6) and Remark 2.3, we have

1∇vt � MR
v (t)1�vt,

where t ∈ [ m
M , M

m ] . M
m � 1, Mv(t) is increasing for t � 1, then Mv(t) � Mv(h) for t ∈

[1, M
m ], where h = M

m ; m
M � 1, Mv(t) is decreasing for 0 < t � 1, then Mv(t) � Mv( 1

h )
for t ∈ [ m

M ,1] . Notice that Mv( 1
h ) = Mv(h), so

(1− v)+ vt � MR
v (h)tv.

Let X = A− 1
2 BA− 1

2 and Sp(X) ∈ [ m
M , M

m ] , we have

(1− v)I + vX � MR
v (h)Xv.

Multiplying both sides of the above inequality by A
1
2 , the desired inequality is

obtained. �

COROLLARY 3.3. If A,B ∈ B(H) , satisfy 0 < mI � A,B � MI and v ∈ [0,1] .
Consider the integers k j = [2 j−1v] and r j = [2 jv], j = 1,2, . . . ,N, N ∈ N. Let aN =
1+[2Nv]−2Nv, then

[
1+aN(1−aN)

(hN −1)2

hN

]RN
A�vB

+
N

∑
j=1

(
(−1)r j2 j−1v+(−1)r j+1

[ r j +1
2

])
(A� k j

2 j−1

B+A� k j+1

2 j−1

B−2A� 2k j+1

2 j

B)

�A∇vB,

where RN = max{aN,1−aN} and hN = 2N
√

M
m .

COROLLARY 3.4. If A,B ∈ B(H) , satisfy 0 < mI � A � m′I < vM′I � B � vMI
or 0 < vmI � B � vm′I < M′I � A � MI , v ∈ (0,1] and N ∈ N , then

(1− vN+1 + vN+2)A+(1− vN+1)B � K−r(h)v−N−1+vA�vB+2(A∇B−A�B),

where r = min{v,1− v} and h = m′
M′ .

Acknowledgement. This research is supported by High-quality Postgraduate Edu-
cation Courses in Henan Normal University (YJS2021KC01) and Postgraduate Educa-
tion Reform and Quality Improvement Project of Henan Province (2021SJGLX009Y).



1178 H. ZUO AND Y. LI

RE F ER EN C ES

[1] S. DRAGOMIR, A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas. Fis. nat. Ser. A. Math.,
111 (2017), 349–354.

[2] S. FURUICHI, Further improvement of Young inequality, Rev. R. Acad. Cienc. Exactas. Fis. nat. Ser.
A. Math., 113 (2019), 255–266.

[3] A. GHAZANFARI, S. MALEKINEJAD AND S. TALEBI, Some new inequalities involving Heinz opera-
tor means, J. Math. Anal., 7 (2016), 147–155.

[4] F. KITTANEH AND Y. MANASRAH, Reverse Young and Heinz inequalities for matrices, Linear Mul-
tilinear Algebra, 59 (2011) 1031–1037.

[5] W. LIAO, J. WU AND J. ZHAO, New versions of reverse Young and Heinz inequsalities with the
Kantorovich constant, Tanwanese J. Math., 19 (2015), 467–479.

[6] Y. REN, Some results of Young-type inequalities, Rev. R. Acad. Cienc. Exactas. Fis. nat. Ser. A. Math.,
114 (2020), 114–143.

[7] M. SABABHEH AND D. CHOI, A complete refinement of Young’s inequality, J. Math. Anal. Appl., 440
(2016), 379–393.

[8] C. YANG AND Y. LI, A new Young type inequality involoving Heinz mean, Filomat, 34: 11 (2020),
3639–3654.

[9] H. ZUO, G. SHI AND M. FUJII, Refined Young inequality with Kantorovich constant, J. Math. In-
equal., 5 (4) (2011), 551–556.

(Received January 10, 2022) Hongliang Zuo
College of Mathematics and Information Science

Henan Normal University
Xinxiang 453007, Henan, China
e-mail: zuohongliang@htu.cn

Yuwei Li
College of Mathematics and Information Science

Henan Normal University
Xinxiang 453007, Henan, China

e-mail: liyuwei202201@163.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


