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COMPACTNESS OF EXTREMALS FOR SINGULAR TRUDINGER–MOSER

INEQUALITIES ON THE WHOLE EUCLIDEAN SPACE

XIAOMENG LI, LIU YANG AND XIANFENG SU ∗

Abstract. Let W 1,n(Rn) be the standard Sobolev space. For any τ > 0 , 0 < β < 1 , Li and Yang
[16] proved the existence of extremals for a singular Trudinger-Moser inequality. Namely, the
supremum

sup
u∈W 1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn(1−β)|u| n
n−1 )

|x|nβ dx

can be attained by some function uβ ∈W 1,n(Rn) with
∫
Rn (|∇u|n +τ |u|n)dx = 1 . Here Φ(n,t) =

et −∑n−2
j=0 t j/ j! , and αn = nω1/(n−1)

n−1 with ωn−1 being the surface area of the (n−1) -dimensional
unit sphere. In this note, we consider the compactness of the function family {uβ }0<β<1 and
prove that up to a subsequence, uβ converges to some function u0 in C1(Rn) when β → 0 .
Moreover, u0 is an extremal function of the supremum

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn|u|
n

n−1 )dx.

Let us explain the result in geometry. Denote ω0(x) = ∑n
j=1 dxj

2 and ωβ (x) = |x|−2β ω0(x) as
the standard and conical metrics on R

n . Then the extremal family {uβ }0<β<1 of the following
singular Trudinger-Moser functionals

∫
Rn

Φ(n,αn(1−β)|u| n
n−1 )dvωβ

is compactness as β → 0 . This extends earlier result of Wang and Yang [33] and complements
that of Li and Yang [16].
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