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Abstract. Let W 1,n(Rn) be the standard Sobolev space. For any τ > 0 , 0 < β < 1 , Li and Yang
[16] proved the existence of extremals for a singular Trudinger-Moser inequality. Namely, the
supremum

sup
u∈W 1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn(1−β)|u| n
n−1 )

|x|nβ dx

can be attained by some function uβ ∈W 1,n(Rn) with
∫
Rn (|∇u|n +τ |u|n)dx = 1 . Here Φ(n,t) =

et −∑n−2
j=0 t j/ j! , and αn = nω1/(n−1)

n−1 with ωn−1 being the surface area of the (n−1) -dimensional
unit sphere. In this note, we consider the compactness of the function family {uβ }0<β<1 and
prove that up to a subsequence, uβ converges to some function u0 in C1(Rn) when β → 0 .
Moreover, u0 is an extremal function of the supremum

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn|u|
n

n−1 )dx.

Let us explain the result in geometry. Denote ω0(x) = ∑n
j=1 dxj

2 and ωβ (x) = |x|−2β ω0(x) as
the standard and conical metrics on R

n . Then the extremal family {uβ }0<β<1 of the following
singular Trudinger-Moser functionals∫

Rn
Φ(n,αn(1−β)|u| n

n−1 )dvωβ

is compactness as β → 0 . This extends earlier result of Wang and Yang [33] and complements
that of Li and Yang [16].

1. Introduction and main result

Let Ω be a smooth domain in R
n , W 1,n

0 (Ω) be the usual Sobole space, that is, the
completion of C∞

0 (Ω) equipped with the norm

‖u‖
W1,n

0 (Ω) =
(∫

Ω
|∇u|ndx

) 1
n

.
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Denote αn = nω1/(n−1)
n−1 , where ωn−1 is the surface area of the (n− 1)-dimensional

unit sphere. Then, the classical Trudinger-Moser inequality [21, 25, 26, 32, 38] asserts

sup
u∈W1,n

0 (Ω),‖∇u‖n�1

∫
Ω

eα |u|
n

n−1 dx < ∞ (1)

for any α � αn ; moreover, the inequality is sharp in the sense that supremum in (1)
will be infinity if α > αn . Here and in the sequel, ‖ · ‖s denotes the usual Ls -norm
with respect to the Lebesgue measure.

An important question about (1) is whether extremal function exists or not. The
first result for the attainability was due to Carleson and Chang [6] when Ω is a unit
disk in R

n . Then Struwe [29] proved the same existence when the domain is close to a
disc in a measure sense. These results were extended by Flucher [11] for any bounded
smooth domain in R

2 and by Lin [19] to bounded smooth domain in R
n .

When |Ω| = +∞ , the Trudinger-Moser inequality (1) is not available. It was ex-
tended for unbounded domains by Cao [5], do Ó [10], Panda [24], Ruf [27], Li and Ruf
[18]. Precisely, there holds for all α � αn ,

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+|u|n)dx�1

∫
Rn

Φ(n,α|u| n
n−1 )dx < ∞, (2)

where

Φ(n,t) = et −
n−2

∑
j=0

t j

j!
. (3)

The existence of extremal function for (2) was proved by Ruf [27] and Ishiwata [12]
for n = 2 and α0 � α � 4π for some constant α0 > 0, by Ishiwata [12] for n � 3 and
0 < α < αn , by Li and Ruf [18] for n � 3 and α = αn .

Another meaningful extension of (1) is to establish Trudinger-Moser type inequal-
ities in the presence of singular potentials. By a rearrangement argument, Adimurthi
and Sandeep [1] proved that for any 0 < β < 1,

sup
u∈W1,n

0 (Ω),‖∇u‖n�1

∫
Ω

eαn(1−β )|u|
n

n−1

|x|nβ dx < ∞. (4)

Obviously, (4) reduces to (1) when β = 0. The existence of extremal function for (4)
was proved by Csato and Roy [7], Yang and Zhu [37], Iula and Mancini [13] in dimen-
sion two. Then, Csato, Roy and Nguyen [8] studied the existence of extremal function
for the general case n � 3. Applying rearrangement argument and Young inequality,
Adimurthi and Yang [3] extended (4) to the entire R

n which can be described as follows

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx < ∞ (5)

for constants τ > 0, 0 � β < 1. The author and Yang [16] proved the existence of
extremals for (5) by using blow-up analysis. Very recently, Wang and Yang [33] studied
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the compactness of extremals {uβ}0<β<1 for (4) in dimension two and proved that uβ
converges to some function u∗ in C1(Ω) as β → 0. Moreover, u∗ is an extremal of the
following supremum

sup
u∈W1,2

0 (Ω),‖∇u‖2�1

∫
Ω

e4πu2
dx.

For more works related to Trudinger-Moser inequality, we refer the reader to [14, 15,
20, 22, 23, 30, 34, 36] and the references therein.

Denote ω0(x)= dx1
2+dx2

2+ · · ·+dxn
2 be the Euclidean metric, ωβ (x)= |x|−2β ω0

be the conical metric on R
n for 0 < β < 1. Then dvωβ = |x|−nβ dx and ωβ → ω0 in

C2
loc(R

n \{0}) . Motivated by [16], a natural question is whether or not a maximizer se-
quence {uβ}0<β<1 converges when the conical metric ωβ converges to the Euclidean
metric ω0 in C2

loc(R
n \ {0}) .

Define a singular Trudinger-Moser functional TMβ : W 1,n(Rn,ωβ ) �→ R by

TMβ (u) =
∫

Rn
Φ(n,αn(1−β )|u| n

n−1 )dvωβ .

Then we rephrase the result in [16] as below: for any τ > 0, 0 < β < 1, there exists
some nonnegative decreasing radially symmetric function uβ ∈ W 1,n(Rn)∩C0(Rn)∩
C1(Rn \ {0}) satisfying

∫
Rn(|∇u|n + τ|u|n)dx = 1 and

TMβ (uβ ) = sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

TMβ (u). (6)

In this paper, we establish the compactness of extremals analogous to the one
obtained in [33] in the case of the entire Euclidean space R

n (n > 2) . The main result
reads as follows.

THEOREM 1. Let ω0 = dx1
2 + dx2

2 + · · ·+ dxn
2 be the Euclidean metric, ωβ =

|x|−2β ω0 be the conical metric for any 0 < β < 1 . Assume uβ be a sequence of max-
imizers for the supremum in (6). Then up to a subsequence, there exists some function
u0 satisfying uβ → u0 in C1(Rn) and u0 is an extremal function of the supremum

sup
u∈W 1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn|u| n
n−1 )dx. (7)

Following Li-Ruf [18] and thereby following [17], we prove Theorem 1 via the
standard blowing up analysis procedure. See also [2, 6, 9] and the references therein.

Let us give the outline of the proof of Theorem 1. Let uβ be the extremals for
the supremum in (6). According to [16], we see that uβ is nonnegative decreasing and
radially symmetric. Besides, it is a solution of the equation (8) below. Assume uβ is
not bounded in R

n , then we have

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn|u| n
n−1 )dx � ωn−1

n
eαnA0+∑n−1

k=1
1
k ,
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where A0 is given as in (49). On the other hand, we can also get

sup
u∈W1,n(Rn),

∫
Rn (|∇u|n+τ|u|n)dx�1

∫
Rn

Φ(n,αn|u| n
n−1 )dx >

ωn−1

n
eαnA0+∑n−1

k=1
1
k .

The contradiction implies that uβ must be uniformly bounded. Then applying the el-
liptic estimates (see [28, 31]) to (8), we get the desire result immediately.

Throughout this note, the norm of W 1,n(Rn) is defined by ‖u‖n
W1,n(Rn) =

∫
Rn(|∇u|n

+ τ|u|n)dx . Br denotes the ball in R
n with the radius r centered at the origin. The

constant C may be different from line to line. And we pass to subsequence freely.

2. The proof of Theorem 1

We prove Theorem 1 and divide the proof into several subsections.

2.1. The Euler-Lagrange equation of uβ

For simplicity, denote the n -Laplacian Δnu = div(|∇u|n−2∇u) for any u∈W 1,n(Rn) .
By simple calculation, one has

d
dt

Φ(n,t) = Φ(n−1,t),

where Φ(n, t) is defined as in (3). For 0 < β < 1, we write

STMβ = sup
u∈W 1,n(Rn),‖u‖W1,n(Rn)�1

∫
Rn

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx.

Thus (6) is equivalent to

∫
Rn

Φ(n,αn(1−β )|uβ |
n

n−1 )
|x|nβ dx = STMβ .

According to [16], uβ is nonnegative decreasing radially and symmetric. We now show
the Euler-Lagrange equation of uβ . In a distrubutional sence, uβ satisfies the following
Euler-Lagrange equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δnuβ + τun−1
β =

u
1

n−1
β
λβ

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ in R
n,

uβ > 0 in R
n,

‖uβ‖W1,n(Rn) = 1,

λβ =
∫
Rn |x|−nβ u

n
n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )dx.

(8)

Since uβ is bounded in W 1,n(Rn) , we can find some function u0 such that up to a
subsequence as β → 0, uβ ⇀ u0 weakly in W 1,n(Rn) , uβ → u0 strongly in Ls

loc(R
n)
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for any s > 1, uβ → u0 almost everywhere in R
n . Also, u0 is nonnegative decreasing

radially symmetric in R
n and ‖u0‖W1,n(Rn) � limsupβ→0 ‖uβ‖W1,n(Rn) = 1.

To continue our investigation, we shall show

lim
β→0

∫
Rn

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx =
∫

Rn
Φ(n,αn|u| n

n−1 )dx (9)

for u ∈W 1,n(Rn) with ‖u‖W1,n(Rn) � 1.
In fact, we first note that for x ∈ B1 ,

0 � Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ � Φ(n,αn|u| n
n−1 )

|x| n
2

and Φ(n,αn|u|
n

n−1 )

|x| n2
∈ L1(B1) for any u∈W 1,n(Rn) . By Lebesgue dominated convergence

theorem, we obtain

lim
β→0

∫
B1

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx =
∫

B1

Φ(n,αn|u| n
n−1 )dx. (10)

On the other hand, if x ∈ R
n \B1 , then we have

0 � Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ � Φ(n,αn|u| n
n−1 ).

Again, employing Lebesgue dominated convergence theorem, we deduce

lim
β→0

∫
Rn\B1

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx =
∫

Rn\B1

Φ(n,αn|u| n
n−1 )dx. (11)

Combining (10) and (11), we conclude (9) holds. Moreover, it is not difficult to see

lim
β→0

∫
Rn

Φ(n,αn(1−β )|u| n
n−1 )

|x|nβ dx � liminf
β→0

STMβ = liminf
β→0

∫
Rn

Φ(n,αn(1−β )u
n

n−1
β )

|x|nβ dx.

(12)
In view of (8), an important problem is whether λβ has a positive lower bound or

not. For this purpose, we have the following lemma.

LEMMA 2. There holds
liminf

β→0
λβ > 0.

Proof. Since tΦ(n−1,t) � Φ(n,t) for t � 0, we get

λβ =
∫

Rn
u

n
n−1
β

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ dx

� 1
αn(1−β )

∫
Rn

Φ(n,αn(1−β )u
n

n−1
β )

|x|nβ dx.
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Sending the limit β → 0 gives

liminf
β→0

λβ � 1
αn

sup
u∈W1,n(Rn),‖u‖W1,n(Rn)�1

∫
Rn

Φ(n,αn|u| n
n−1 ) > 0,

thanks to (9) and (12). �

Denote
cβ = uβ (0) = max

Rn
uβ (maximum point)

There are the following two possibilities to analysis: {cβ}0<β<1 is a bound sequence
or up to a subsequence cβ → +∞ as β → 0. We are now in a position to exclude the
blow-up phenomenon.

2.2. Blow-up analysis

In this subsection, we shall apply the blow-up method to describe asymptotic be-
havior of uβ as β → 0. It is useful to have the following lemma; it implies the concen-
tration phenomenon.

LEMMA 3. It holds |∇uβ |ndx ⇀ δ0 in the sense of measure, where δ0 denotes the
usual Dirac measure giving unit mass to the point 0 . Consequently, u0 ≡ 0 . Moreover,
uβ → 0 strongly in Lq(Rn) for all q � n.

Proof. Let us recall an elementary inequality. Namely,

(Φ(n,t))s � Φ(n,st) (13)

for s � 1, t � 0, which is due to Yang ([35], Lemma 2.1).
At first, we show that |∇uβ |ndx ⇀ δ0 in the sense of measure. Suppose not. There

exists r0 > 0 such that

limsup
β→0

∫
Br0

|∇uβ |ndx � μ < 1.

Let ũβ (x) = uβ (x)− uβ (r0) for x ∈ Br0 . Note that uβ is decreasing radially sym-

metric. Then we have ũβ ∈W 1,n
0 (Br0) and ‖∇ũβ‖Ln(Br0 ) � μ < 1. In addition, since

un
β (r0)|Br0 | �

∫
Br0

un
β dx � 1/τ , we find

un
β (r0) � n

ωn−1τrn
0
. (14)

Set

fβ (x) =
1

λβ
u

1
n−1
β

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ .

We claim that, for some p > 1, there exists a constant C such that∫
Br0

f p
β (x)dx � C. (15)
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Indeed, using (13) and Hölder inequality, we get

∫
Br0

f p
β (x)dx � 1

λ p
β

∫
Br0

u
p

n−1
β Φ(n−1,αn(1−β )pu

n
n−1
β )

|x|nβ p
dx

� 1
λ p

β

⎛⎜⎝∫
Br0

u
pp1
n−1
β

|x|nβ p
dx

⎞⎟⎠
1
p1
⎛⎝∫

Br0

Φ(n−1,αn(1−β )pp2u
n

n−1
β )

|x|nβ p
dx

⎞⎠
1
p2

� 1
λ p

β

⎛⎜⎝∫
Br0

u
pp1
n−1
β

|x|nβ p
dx

⎞⎟⎠
1
p1
⎛⎜⎝∫

Br0

e
αn(1−β )pp2u

n
n−1
β

|x|nβ p
dx

⎞⎟⎠
1
p2

, (16)

where 1/p1 +1/p2 = 1. Assume ε > 0, there is a constant C depending on n and ε
such that

u
n

n−1
β (x) � (1+ ε)ũ

n
n−1
β (x)+Cu

n
n−1
β (r0) (17)

for all x ∈ Br0 . We can choose p > 1, p2 > 1 sufficiently close to 1 and ε > 0

sufficiently small such that (1−β )pp2(1+ ε)‖∇ũβ‖
n

n−1
Ln(Br0 ) + β p < 1. Combining (4),

(14) and (17), we have ∫
Br0

e
αn(1−β )pp2u

n
n−1
β

|x|nβ p
dx � C. (18)

Recall that uβ → u0 in Ls(Br0) for any s > 1. Choosing positive numbers q1 and q2

with 1/q1 +1/q2 = 1 such that 1 < q1 < 1/β p , we have by Hölder inequality

∫
Br0

u
pp1
n−1
β

|x|nβ p
dx �

(∫
Br0

1

|x|nβ pq1
dx

) 1
q1
(∫

Br0

u
pp1q2
n−1

β dx

) 1
q2

� C. (19)

Substitution of (18) and (19) into (16) leads to (15). Notice that uε is bounded in
Lq(Br0) for all q > 0. And from Lemma 2 and (15), we get Δnuβ is bounded in
Lp(Br0) for some p > 1. Thus elliptic estimate ([28], Theorems 6 and 8) implies
that uβ is uniformly bounded in Br0/2 . This contradicts that cβ → +∞ as β → 0.
Therefore, we arrive at |∇uβ |ndx ⇀ δ0 as β → 0.

We are now in a position to prove u0 ≡ 0. Suppose the assertion were false. It
follows from ‖uβ‖W1,n(Rn) = 1 and |∇uβ |ndx ⇀ δ0 that ‖uβ‖Ln(Rn) = oβ (1) . Then we
have ∫

Rn
un

0dx � limsup
β→0

∫
Rn

un
β dx = 0

and so duduce u0 ≡ 0. Choose L > 0 such that uβ < 1 for |x| > L . Then one has for
any q � n ,∫

Rn
uq

β dx =
∫
|x|>L

uq
β dx+

∫
|x|�L

uq
β dx �

∫
Rn

un
β dx+oβ(1) = oβ (1).



1186 X. LI, L. YANG AND X. SU

And the proof of the lemma is completed. �

Set

rβ = λ
1
n

β c
− 1

n−1
β e

− αn(1−β)
n c

n
n−1
β .

Then we have the following:

LEMMA 4. For any σ ∈ (0,αn) , there holds rβ e
σ(1−β)

n c
n

n−1
β → 0 as β → 0 . In

particular, rβ → 0 as β → 0 .

Proof. For σ ∈ (0,αn) , we have after using the definition of rβ , that

rn
β e

σ(1−β )c
n

n−1
β = c

− n
n−1

β e
−αn(1− σ

αn
)(1−β )c

n
n−1
β

∫
Rn

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx

= c
− n

n−1
β e

−αn(1− σ
αn

)(1−β )c
n

n−1
β

∫
Rn\BR

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx

+c
− n

n−1
β e

−αn(1− σ
αn

)(1−β )c
n

n−1
β

∫
BR

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx.

(20)

We employ the radial lemma [4] to estimate

∫
Rn\BR

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx =
∞

∑
j=n−2

α j
n(1−β ) j

j!

∫
Rn\BR

u
n

n−1 (1+ j)
β

|x|nβ dx

� C(R). (21)

Since −αn(1− σ
αn

)(1− β )c
n

n−1
β � −αn(1− σ

αn
)(1− β )u

n
n−1
β for x ∈ R

n , we have by
Hölder inequality that

∫
BR

e
−αn(1− σ

αn
)(1−β )c

n
n−1
β

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx

�
∫

BR

u
n

n−1
β e

σ(1−β )u
n

n−1
β

|x|nβ dx

�

⎛⎜⎝∫
BR

e
σ p(1−β )u

n
n−1
β

|x|npβ dx

⎞⎟⎠
1
p (∫

BR

u
nq

n−1
β dx

) 1
q

,
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where p > 1 sufficiently close to 1 and 1/p+1/q = 1. Observe that σ ∈ (0,αn) . An
obvious analog of (18) is

∫
BR

e
σ p(1−β )u

n
n−1
β

|x|npβ dx � C(R, p).

Since uβ → 0 strongly in Ls(BR) for any s > 1, we have

∫
BR

e
−αn(1− σ

αn
)(1−β )c

n
n−1
β

u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx = oβ (1). (22)

Substituting (21) and (22) into (20) and recalling cβ → +∞ as β → 0, we conclude

lim
β→0

rn
β e

σ(1−β )c
n

n−1
β = 0.

In particular, rβ = oβ (1) and this completes the proof of the lemma. �

In order to continue blow-up analysis, we define

φβ = c−1
β uβ (r

1
1−β
β x)

and

ψβ = c
1

n−1
β (uβ (r

1
1−β
β x)− cβ ).

We investigate the asymptotic behavior of uβ as β → 0 near zero, namely

LEMMA 5. Up to a subsequence, φβ → 1 in C1
loc(R

n) and ψβ → ψ0 in C1
loc(R

n)
as β → 0 , where

ψ0 = −n−1
αn

log

(
1+

αn

n
n

n−1
|x| n

n−1

)
and ∫

Rn
eαn

n
n−1 ψ0dx = 1.

Proof. A direct calculation gives that

−Δnφβ (x) = −τr
n

1−β
β φn−1

β +
φ

1
n−1

β Φ(n−1,αn(1−β )u
n

n−1
β (r

1
1−β
β x))

|x|nβ cn
β e

αn(1−β )c
n

n−1
β

. (23)

Since |φβ | � 1, rβ = oβ (1) and cβ → +∞ , we obtain by using the elliptic estimate
([28, 31]) to (23) that φβ → φ0 in C1

loc(R
n) with φ0 satisfies −Δnφ0(x) = 0 in R

n .
Then the Liouville-type theorem for n-harmonic function implies that φ0 ≡ 1.



1188 X. LI, L. YANG AND X. SU

Also it can be easily checked that ψβ (x) is a distribution solution of equation

−Δnψβ (x) = −τcn
β r

n
1−β
β φn−1

β +
φ

1
n−1

β Φ(n−1,αn(1−β )u
n

n−1
β (r

1
1−β
β x))

|x|nβ e
αn(1−β )c

n
n−1
β

. (24)

Note that ψβ � 0 = maxRn ψβ . We have by elliptic estimates to (24) that ψβ → ψ0 in
C1

loc(R
n) . Since ψβ is decreasingly symmetric on R

n , it follows that ψ0 is decreasingly
symmetric. To derive the equation of ψ0 , we first estimate

0 �
∑n−3

j=0

(αn(1−β )) ju
n j

n−1
β (r

1
1−β
β x)

j!

|x|nβ eαn(1−β )c
n

n−1
β

�
∑n−3

j=0

(αn(1−β )) jc
n j

n−1
β

j!

|x|nβ eαn(1−β )c
n

n−1
β

= oβ (1).

By the mean value theorem, we also have

u
n

n−1
β (r

1
1−β
β x)− c

n
n−1
β =

n
n−1

ϑ
1

n−1
β (uβ (r

1
1−β
β x)− cβ )

=
n

n−1
(ϑβ /cβ )

1
n−1 ψβ (x)

=
n

n−1
ψ0(x)+oβ (1),

where ϑβ lies between uβ (r1/(1−β )
β x) and cβ . We then obtain{−Δnψ0(x) = eαn

n
n−1 ψ0(x) in R

n,

ψ0(0) = maxRn ψ0 = 0.
(25)

We take ψ0(r) for ψ0(x) with r = |x| and rewrite (25) as{(
(−rψ ′

0(r))
n−1
)′ = rn−1eαn

n
n−1 ψ0(r),

ψ0(0) = 0.
(26)

By a standard uniqueness result of ordinary differential equations (see for example
[18]), the equation (26) is solved by

ψ0(x) = −n−1
αn

log
(
1+bn|x| n

n−1

)
with bn = αnn−n/(n−1) . Thus we have∫

Rn
eαn

n
n−1 ψ0(x)dx = ωn−1

∫ ∞

0

rn−1

(1+bnr
n

n−1 )n
dr

=
ωn−1

n
(n−1)

∫ ∞

0

tn−2

(1+bnt)n dt. (27)
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Writing In = (n− 1)
∫ ∞
0

tn−2

(1+bnt)n
dt and integrating by parts, we observe the following

recurrence relation

In =
n−2
bn

∫ ∞

0

tn−3

(1+bnt)n−1 dt =
1
bn

In−1.

Iteration gives

In =
1

bn−2
n

I2 =
1

bn−2
n

∫ ∞

0

1
(1+bnt)2 dt =

1

bn−1
n

=
nn

αn−1
n

. (28)

Combining (27) and (28), we arrive at∫
Rn

eαn
n

n−1 ψ0(x)dx = 1,

and the lemma is proved. �

We proceed to analysis the convergence of uβ as β → 0 away from zero. Similar
to [16] and [18], define

uβ ,ι = min{uβ , ιcβ}
for 0 < ι < 1.

LEMMA 6. There holds

lim
β→0

∫
Rn

|∇uβ ,ι |ndx = ι.

Proof. For any R > 0, we multiply equation (8) by uβ ,ι and integrate over R
n to

get∫
Rn

|∇uβ ,ι |ndx = −τ
∫

Rn
un−1

β uβ ,ιdx+λ−1
β

∫
Rn

|x|−nβ u
1

n−1
β uβ ,ιΦ(n−1,αn(1−β )u

n
n−1
β )dx

� λ−1
β

∫
B

Rr
1/(1−β)
β

|x|−nβ ιcβ u
1

n−1
β e

αn(1−β )u
n

n−1
β dx+oβ (1)

= ι(1+oβ(1))
∫

BR

|y|−nβ e
αn(1−β )(u

n
n−1
β (r

1
1−β
β y)−c

n
n−1
β )

dy+oβ(1).

Letting β → 0, we have

liminf
β→0

∫
Rn

|∇uβ ,ι |ndx � ι
∫

BR

eαn
n

n−1 ψ0(x)dx.

Passing to the limit R → ∞ , we obtain

liminf
β→0

∫
Rn

|∇uβ ,ι |ndx � ι. (29)
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Similarly, inserting (uβ − ιcβ )+ as a test function in equation (8), we get

∫
Rn

|∇(uβ−ιcβ )+|ndx

= λ−1
β

∫
Rn

(uβ−ιcβ )+u
1

n−1
β |x|−nβ Φ(n−1,αn(1−β )u

n
n−1
β )dx−τ

∫
Rn

un−1
β (uβ−ιcβ )+dx

� λ−1
β

∫
B

Rr
1/(1−β)
β

u
1

1−n
β (uβ − ιcβ )+|x|−nβ e

αn(1−β )u
n

n−1
β dx+oβ(1)

= (1− ι)(1+oβ(1))
∫

BR

|y|−nβ e
αn(1−β )u

n
n−1
β (r

1
1−β
β y)−c

n
n−1
β )

dy+oβ(1).

Letting β → 0 first and then R → ∞ , we have

liminf
β→0

∫
Rn

|∇(uβ − ιcβ )+|ndx � 1− ι. (30)

Note that∫
Rn

|∇uβ ,ι |ndx+
∫

Rn
|∇(uβ − ιcβ )+|ndx =

∫
Rn

|∇uβ |ndx = 1+oβ(1). (31)

Combining(29), (30) and (31), we immediately get the desire result. �

Rely on Lemma 6 and one can derive the following lemma.

LEMMA 7. There holds

lim
R→+∞

limsup
β→0

∫
B

Rr
1/(1−β)
β

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β (x))dx = limsup

β→0

λβ

c
n

n−1
β

. (32)

Proof. For any ι , 0 < ι < 1, we obtain∫
Rn

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β (x)) =

∫
uβ �ιcβ

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β )dx

+
∫

uβ >ιcβ
|x|−nβ Φ(n,αn(1−β )u

n
n−1
β )dx

=: I + II.

Recall that for all t � 0,

Φ(n, t) = Φ′(n,t)− tn−2

(n−2)!
= Φ(n−1, t)− tn−2

(n−2)!
,
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which together with the mean value theorem implies that

I �
∫

Rn
|x|−nβ Φ(n,αn(1−β )u

n
n−1
β ,ι )dx

� αn(1−β )
∫

Rn
|x|−nβ Φ(n−1,ϑ)u

n
n−1
β ,ι dx

� αn(1−β )
∫

Rn
|x|−nβ Φ(n−1,αn(1−β )u

n
n−1
β ,ι )u

n
n−1
β ,ι dx

� αn(1−β )
∫

Rn
|x|−nβ Φ(n,αn(1−β )u

n
n−1
β ,ι )u

n
n−1
β ,ι dx+

(αn(1−β ))n−1

(n−2)!

∫
Rn

|x|−nβ un
β ,ιdx,

(33)

where ϑ is between 0 and αn(1−β )u
n

n−1
β ,ι . For any R > 0 and q � 1, we can choose

1 < s < 1/β with 1/s + 1/t = 1. Then Hölder inequality together with the estimate
‖uβ ,ι‖n � ‖uβ‖n = oβ (1) gives that

∫
BR

|x|−nβ unq
β ,ιdx �

(∫
BR

|x|−nβ sdx

) 1
s
(∫

BR

unqt
β ,ιdx

) 1
t

= oβ (1). (34)

On the other hand, by the radial lemma [4], we have∫
Rn\BR

|x|−nβ unq
β ,ιdx �

(
n

ωn−1

)q

‖uβ‖nq
n

∫
Rn\BR

|x|−nβ−nqdx = oβ (1). (35)

According to (34) and (35), we find∫
Rn

|x|−nβ unq
β ,ιdx = oβ (1) (36)

for any q � 1. By virtue of Lemma 6, we obtain

lim
β→0

∫
Rn

(|∇uβ ,ι |n + τ|uβ ,ι |n)dx = ι < 1.

Let 1 < p < 1/ι and 1/p+1/p′ = 1. Using (36), Hölder inequality, we have∫
Rn

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β ,ι )u

n
n−1
β ,ι dx

�
(∫

Rn
|x|−nβ Φ(n,αn(1−β )pu

n
n−1
β ,ι )dx

) 1
p
(∫

Rn
|x|−nβ u

n
n−1 p′
β ,ι dx

) 1
p′

= oβ (1). (37)

Inserting (36) and (37) into (33), we get

I =
∫

uβ �ιcβ
|x|−nβ Φ(n,αn(1−β )u

n
n−1
β )dx = oβ (1). (38)
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In addition, we estimate

II � 1

ι
n

n−1 c
n

n−1
β

∫
uβ >ιcβ

|x|−nβ u
n

n−1
β Φ(n,αn(1−β )u

n
n−1
β )dx

� 1

ι
n

n−1 c
n

n−1
β

∫
uβ >ιcβ

|x|−nβ u
n

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )dx+oβ(1)

�
λβ

ι
n

n−1 c
n

n−1
β

+oβ (1). (39)

It then follows from (38) and (39) that

lim
β→0

∫
Rn

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β (x))dx � 1

ι
n

n−1
liminf

β→0

λβ

c
n

n−1
β

.

Taking the limit as ι → 1 we get

lim
β→0

∫
Rn

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β (x))dx � liminf

β→0

λβ

c
n

n−1
β

. (40)

We now verify that

λβ

c
n

n−1
β

=
∫

Rn

u
n

n−1
β

c
n

n−1
β

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ dx

=
∫

Rn

u
n

n−1
β

c
n

n−1
β

Φ(n,αn(1−β )u
n

n−1
β )+

(
αn(1−β )u

n
n−1
β

)n−2

(n−2)!

|x|nβ dx

�
∫

Rn

Φ(n,αn(1−β )u
n

n−1
β )

|x|nβ dx+oβ(1)

and therefore

limsup
β→0

λβ

c
n

n−1
β

� lim
β→0

∫
Rn

Φ(n,αn(1−β )u
n

n−1
β )

|x|nβ dx. (41)

By (40) and (41), we see that

limsup
β→0

∫
Rn

Φ(n,αn(1−β )u
n

n−1
β (x))

|x|nβ dx = limsup
β→0

λβ

c
n

n−1
β

. (42)
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On the other hand, a direct calculation shows that

∫
B

Rr
1/(1−β)
β

Φ(n,αn(1−β )u
n

n−1
β )

|x|nβ dx =
∫

BR

rn
β |y|−nβ e

αn(1−β )u
n

n−1
β (r

1
1−β
β y)

dy+oβ(R)

=
λβ

c
n

n−1
β

(∫
BR

eαn
n

n−1 ψ0(y)dy+oβ(R)
)

+oβ (R)

=
λβ

c
n

n−1
β

(1+oβ(R))+oβ (R),

where oβ (R)→ 0 as β → 0 for any fixed R > 0. Hence the desired result (32) follows
by virtue of the above two equalities. �

From Lemma 7 just proved, we obtain successively the following corollary.

COROLLARY 8. For any θ < n
n−1 , we have

lim
β→0

λβ

cθ
β

= +∞.

Proof. We suppose by contradiction that λβ /c
n

n−1
β → 0 as β → 0. Using (9) and

(12), we then get∫
Rn

Φ(n,αn|u| n
n−1 )dx � sup

u∈W1,n(Rn),‖u‖
W1,n(Rn)�1

∫
Rn

Φ(n,αn|u| n
n−1 )dx

� liminf
β→0

∫
Rn

|x|−nβ Φ(n,αn(1−β )u
n

n−1
β )dx

� limsup
β→0

λβ

c
n

n−1
β

= 0

for any fixed u ∈W 1,n(Rn) with ‖u‖W1,n(Rn) = 1. This is impossible and we obtain the
assertion. �

To continue our program, we shall now discuss the convergence of c
1

n−1
β uβ under

the assumption cβ → +∞ .

LEMMA 9. The family c
1

n−1
β uβ ⇀ G0 weakly in W 1,q

loc (Rn) for any 1 < q < n, and

c
1

n−1
β uβ → G0 in C1

loc(R
n \ {0}) . Here G0 is a Green’s function and satisfies

−ΔnG0 + τGn−1
0 = δ0 (43)

in a distributional sense, where δ0 is the usual Dirac measure centered at 0 .
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Proof. For simplicity, denote

gβ (x) = λ−1
β |x|−nβ cβ u

1
n−1
β Φ(n−1,αn(1−β )u

n
n−1
β ).

We remark first of all that gβ (x) converges weakly to δ0 . That is, for any η(x) ∈
C∞

0 (Rn) , we have

lim
β→0

∫
Rn

η(x)gβ (x)dx = η(0). (44)

To see this, we split the integral∫
Rn

η(x)gβ (x)dx =
∫

uβ �ιcβ
η(x)gβ (x)dx+

∫
uβ >ιcβ

η(x)gβ (x)dx. (45)

In view of Corollary 8, we obtain

∫
uβ �ιcβ

η(x)gβ (x)dx �
cβ

λβ

(
sup
Rn

|η(x)|
)∫

uβ �ιcβ

u
1

n−1
β Φ(n−1,αn(1−β )u

n
n−1
β )

|x|nβ dx

�
cβ

λβ

(
sup
Rn

|η(x)|
)⎛⎜⎝∫

Rn

u
1

n−1
β ,ι Φ(n,αn(1−β )u

n
n−1
β ,ι )

|x|nβ dx+oβ (1)

⎞⎟⎠
= oβ (1). (46)

By Lemma 4, one can easily see that B
Rr1/(1−β)

β
⊂ {uβ > ιcβ} for β sufficiently small.

Then we have∫
{uβ >ιcβ }

⋂
B

Rr
1/(1−β)
β

η(x)gβ (x)dx = η(0)(1+oβ(1))
(∫

BR

eαn
n

n−1 ψ0(x)dx+oβ (R)
)

.

On the other hand, we obtain∫
{uβ >ιcβ }\B

Rr
1/(1−β)
β

η(x)gβ (x)dx � 1
ι

(
sup
Rn

|η(x)|
)(

1−
∫

BR

eαn
n

n−1 ψ0(x)dx+oβ(R)
)

.

It then follows that

lim
β→0

∫
uβ >ιcβ

η(x)gβ (x)dx = η(0). (47)

Inserting (46) and (47) into (45), letting β → 0 then R → +∞ , we see (44) holds.
Multiplying both sides of the equation (8) by cβ , one has

−Δn(c
1

n−1
β uβ )+ τcβun−1

β =
cβ u

1
n−1
β

λβ

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ . (48)
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According to (44), gβ (x) = λ−1
β |x|−nβ cβ u

1
n−1
β Φ(n− 1,αn(1−β )u

n
n−1
β ) is bounded in

L1
loc(R

n) . Proceeding as in the proof of ([18], Proposition 3.7), one sees that c
1

n−1
β uβ

is bounded in W 1,q
loc (Rn) for any 1 < q < n . Hence, we have c

1
n−1
β uβ ⇀ G0 weakly

in W 1,q
loc (Rn) . Applying standard elliptic estimates to (48), we get that c

1
n−1
β uβ → G0

in C1
loc(R

n\{0}) . Now (44) implies that gβ ⇀ δ0 in the sense of measure, where δ0

denotes the Dirac measure centered at 0. In view of (48), G0 is a distributional solution
to (43). This ends the proof of the lemma. �

For the Green function G0 , we have

G0(x) = − 1
αn

log |x|n +A0 + ρ(x); (49)

here, A0 is a constant, ρ(x) ∈C1(Rn\{0}) satisfying ρ(x) = O(|x|n logn |x|) as |x| →
0. The proof is similar to ([18], Lemma 3.8). We omit the details but refer the reader
to [18].

To proceed further, we need the following version of Carleson-Chang’s upper
bound estimate. The difference is that a singular term |x|−nβ is involved in our case.

LEMMA 10. Let wβ ∈ W 1,n
0 (Br) with

∫
Br
|∇wβ |ndx � 1 , wβ ⇀ 0 weakly in

W 1,n
0 (Br) as β → 0 , wβ is nonnegative and radially symmetric. Then we have

limsup
β→0

∫
Br

|x|−nβ (eαn(1−β )w
n

n−1
β −1)dx � ωn−1

n
rneΣn−1

k=1
1
k . (50)

Proof Since wβ is radially symmetric, we write wβ (|x|) = wβ (x) . Let

vβ (x) = (1−β )
n−1
n wβ (|x| 1

1−β ).

Then
∫
B1

|∇vβ |ndx =
∫
B1
|∇wβ |ndx . Furthermore, one can check that ‖vβ‖W1,n

0 (B1)
‖ =

‖wβ‖W1,n
0 (B1)

� 1. Without loss of generality, we can assume that up to a subsequence,

vβ ⇀ v∗ weakly in W 1,n
0 (B1) , vβ → v∗ strongly in Lp(B1) for any p > 1, and vβ → v∗

almost everywhere in B1 . It is clear to see wβ → 0 almost everywhere in B1 and hence

it follows v∗ = 0 almost everywhere in B1 . By a change of variable t = s1/(1−β ) , we
obtain∫

B1

|x|−nβ (eαn(1−β )w
n

n−1
β (x) −1)dx = ωn−1

∫ 1

0
tn−1−nβ (eαn(1−β )w

n
n−1
β (t) −1)dt

=
ωn−1

1−β

∫ 1

0
sn−1(eαn(1−β )w

n
n−1
β (s1/(1−β))−1)ds

=
1

1−β

∫
B1

(eαnv
n

n−1
β (x)−1)dx.
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Applying the result of Carleson and Chang [6], we have

limsup
β→0

∫
B1

|x|−nβ (eαn(1−β )w
n

n−1
β (x) −1)dx

� lim
β→0

1
1−β

ωn−1

n
eΣn−1

k=1
1
k =

ωn−1

n
eΣn−1

k=1
1
k . (51)

This proves (50) for r = 1.
Set wβ (x) = wβ (rx) for any x ∈ B1 . We can computer∫

Br

|∇wβ (x)|ndx =
∫

B1

|∇wβ (x)|ndx

and ∫
Br

|x|−nβ (eαn(1−β )w
n

n−1
β −1)dx = rn−nβ

∫
B1

|x|−nβ (eαn(1−β )w
n

n−1
β −1)dx.

Let β → 0 and by virtue of (51), the estimate (50) follows at once. �

Now we will apply Lemma 10 to derive an upper bound of the integral∫
Rn

Φ(n,αn|u| n
n−1 )dx.

LEMMA 11. There holds

sup
u∈W1,n(Rn),‖u‖W1,n(Rn)�1

∫
Rn

Φ(n,αn|u|n/(n−1))dx � ωn−1

n
eαnA0+∑n−1

k=1
1
k , (52)

where A0 is given as in (49).

Proof. Let ν be the unit outward normal to ∂Bδ . By equation (48), we see that∫
Rn\Bδ

(|∇G0|n + τ|G0|n)dx

= −
∫

∂Bδ
G0|∇G0|n−2 ∂G0

∂ν
ds+

c
n

n−1
β

λβ

∫
Rn\Bδ

u
n

n−1
β

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ dx.

We estimate the right two terms in the equation. The first term can be calculated by

−
∫

∂Bδ
G0|∇G0|n−2 ∂G0

∂ν
ds = −G0(δ )

∫
Bδ

ΔnG0dx

= G0(δ )− τG0(δ )
∫

Bδ
Gn−1

0 dx
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since G0 is a distributional solution of equation (43). A straightforward calculation on
the second term reads

c
n

n−1
β

λβ

∫
Rn\Bδ

u
n

n−1
β

Φ(n−1,αn(1−β )u
n

n−1
β )

|x|nβ dx = oβ (1).

With the aid of (49), we then have

∫
Rn\Bδ

(|∇uβ |n + τ|uβ |n)dx =
1

c
n

n−1
β

(∫
Rn\Bδ

(|∇G0|n + τ|G0|n)dx+oβ (1)
)

=
1

c
n

n−1
β

(
G0(δ )− τG0(δ )

∫
Bδ

Gn−1
0 dx+oβ(1)

)

=
1

c
n

n−1
β

(
n

αn
log

1
δ

+A0 +oβ (1)+oδ (1)
)

,

where oδ (1) → 0 as δ → 0. Set

κn−1
β :=

∫
Bδ

|∇uβ |ndx

= 1−
∫

Rn\Bδ
(|∇uβ |n + τun

β )dx− τ
∫

Bδ
un

β dx

= 1− 1

c
n

n−1
β

(
n

αn
log

1
δ

+A0 +oβ (1)+oδ(1)
)

+oβ (1).

Denote sβ = sup∂Bδ
uβ = uβ (δ ) and ũβ = (uβ − sβ )+ . Obviously, ũβ ∈ W 1,n

0 (Bδ ) .

Moreover, we have
∫
Bδ

|∇ũβ |ndx � κn−1
β . Since sβ = c

− 1
n−1

β (sup∂Bδ
G0 + oβ (1)) , we

get

αn(1−β )u
n

n−1
β � αn(1−β )(ũβ +uβ (δ ))

n
n−1

� αn(1−β )ũ
n

n−1
β +

n
n−1

αn(1−β )ũ
1

n−1
β uβ (δ )+oβ (1)

� αn(1−β )ũ
n

n−1
β +

n
n−1

αn(1−β )G0(δ )+o(1)

� αn(1−β )ũ
n

n−1
β /κβ +n(1−β ) log

1
δ

+ αn(1−β )A0 +o(1).
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where o(1) → 0 as β → 0 first and next δ → 0. For any fixed R > 0, we have
B

Rr1/(1−β)
β

⊂ Bδ for β small. As a consequence, we have

∫
B

Rr
1/(1−β)
β

e
αn(1−β )u

n
n−1
β −1

|x|nβ dx

� δ−n(1−β )eαn(1−β )A0+o(1)
∫

B
Rr

1/(1−β)
β

e
αn(1−β )ũ

n
n−1
β /κβ

|x|nβ dx+oβ(1)

= δ−n(1−β )eαn(1−β )A0+o(1)
∫

B
Rr

1/(1−β)
β

e
αn(1−β )ũ

n
n−1
β /κβ −1

|x|nβ dx+oβ (1)

� δ−n(1−β )eαn(1−β )A0+o(1)
∫

Bδ

e
αn(1−β )ũ

n
n−1
β /κβ −1

|x|nβ dx+oβ (δ ).

where oβ (δ ) → 0 as β → 0 for any fixed δ > 0. It follows by Lemma 10 that

lim
R→+∞

limsup
β→0

∫
B

Rr
1/(1−β)
β

e
αn(1−β )u

n
n−1
β −1

|x|nβ dx � ωn−1

n
eαnA0+∑n−1

k=1
1
k . (53)

In view of (9), (32) and (42), we obtain (52). The proof is complete. �

2.3. Exclusion of blow-up phenomenon

Completion of the proof of Theorem 1. According to [18], there exists a function
sequence φ(x) such that∫

Rn
Φ(n,αn|φ(x)| n

n−1 )dx >
ωn−1

n
eαnA0+∑n−1

k=1
1
k .

Hence, we have

sup
u∈W 1,n(Rn),‖u‖W1,n(Rn)�1

∫
Rn

Φ(n,αn|u(x)| n
n−1 )dx >

ωn−1

n
eαnA0+∑n−1

k=1
1
k .

which contradicts with (53) and implies that uβ must be uniformly bounded. Then
applying elliptic to the equation (8), we conclude that uβ converges in C1(Rn) to a
maximizer of the supremum (7). Thus this completes the proof of Theorem 1. �
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