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COMPACTNESS OF EXTREMALS FOR SINGULAR TRUDINGER-MOSER
INEQUALITIES ON THE WHOLE EUCLIDEAN SPACE

XIAOMENG L1, LIU YANG AND XIANFENG SU*

(Communicated by L. Liu)

Abstract. Let W (R") be the standard Sobolev space. For any 7 >0, 0 < 8 < I, Li and Yang
[16] proved the existence of extremals for a singular Trudinger-Moser inequality. Namely, the
supremum

sup
ueW L (RM), fan (|Vul"+7[u|")dx<1

© (00 (1 = B)lu] 7T)
/n \x\"ﬁ dx

can be attained by some function ug € WL (R™) with Jrn (|Vu|" +7|u|")dx = 1. Here ®(n,t) =
e — 2;5;5 ti/j!, and o, = na),:f(l"fl) with @, being the surface area of the (n— 1) -dimensional
unit sphere. In this note, we consider the compactness of the function family {ug}o-g<; and
prove that up to a subsequence, ug converges to some function ug in C L(R") when B — 0.
Moreover, uq is an extremal function of the supremum

_n_
sup D(n, o [u| T )dx.
UEWLH (RN, fn (Va2 )dx< 1/ R"

Let us explain the result in geometry. Denote ay(x) = ¥j_; dx 2 and wg(x) = x| 72 @y (x) as
the standard and conical metrics on R". Then the extremal family {ug}op~| of the following
singular Trudinger-Moser functionals

[, @001 = Bl vy

is compactness as 3 — 0. This extends earlier result of Wang and Yang [33] and complements
that of Li and Yang [16].

1. Introduction and main result

Let Q be a smooth domain in R”, WO1 ’"(Q) be the usual Sobole space, that is, the
completion of Cj'(€2) equipped with the norm

leellyyin gy = (/Q |Vu|"dx>
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Denote oy, = nw}if (1" 71), where @,_ is the surface area of the (n— 1)-dimensional
unit sphere. Then, the classical Trudinger-Moser inequality [2 1, 25, 26, 32, 38] asserts

sup T gy < oo (1)
ueW " (Q), | Vall,<1” €

for any o < oy, ; moreover, the inequality is sharp in the sense that supremum in (1)
will be infinity if o0 > a,. Here and in the sequel, || - ||s denotes the usual L*-norm
with respect to the Lebesgue measure.

An important question about (1) is whether extremal function exists or not. The
first result for the attainability was due to Carleson and Chang [6] when Q is a unit
disk in R”. Then Struwe [29] proved the same existence when the domain is close to a
disc in a measure sense. These results were extended by Flucher [11] for any bounded
smooth domain in R? and by Lin [19] to bounded smooth domain in R”".

When |Q| = +eo, the Trudinger-Moser inequality (1) is not available. It was ex-
tended for unbounded domains by Cao [5], do O [10], Panda [24], Ruf [27], Li and Ruf
[18]. Precisely, there holds for all o < o,

sup ‘D(n7a|u\"nj)dx < oo, (2)
UEW L (R, fon (Va1 R
where
. n—2 tj
Dd(n,t)=¢ —ZF 3)
j=0

The existence of extremal function for (2) was proved by Ruf [27] and Ishiwata [12]
for n =2 and oy < o < 4r for some constant ¢ > 0, by Ishiwata [12] for n > 3 and
0< o< a,,byLiand Ruf [18] for n > 3 and o = o, .

Another meaningful extension of (1) is to establish Trudinger-Moser type inequal-
ities in the presence of singular potentials. By a rearrangement argument, Adimurthi
and Sandeep [1] proved that forany 0 < 8 < 1,

O (1Bl 7T
sup / 7(1}6 < oo, (4)
ueW ™ (Q),|Vul<17 x|

Obviously, (4) reduces to (1) when B = 0. The existence of extremal function for (4)
was proved by Csato and Roy [7], Yang and Zhu [37], Iula and Mancini [13] in dimen-
sion two. Then, Csato, Roy and Nguyen [8] studied the existence of extremal function
for the general case n > 3. Applying rearrangement argument and Young inequality,
Adimurthi and Yang [3] extended (4) to the entire R” which can be described as follows

sup
ueWn(R?), fon (|Vul'+7(u")dx<1

[ el p

Je]P

for constants T > 0, 0 < 8 < 1. The author and Yang [16] proved the existence of
extremals for (5) by using blow-up analysis. Very recently, Wang and Yang [33] studied
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the compactness of extremals {ug}.p~; for (4) in dimension two and proved that ug
converges to some function «* in C!'(Q) as B — 0. Moreover, u* is an extremal of the
following supremum
2
sup / e dx.
ueW (@), ||Vl <1 7

For more works related to Trudinger-Moser inequality, we refer the reader to [14, 15,
20, 22,23, 30, 34, 36] and the references therein.

Denote ay(x) = dx;>4dxs>+---+dx,* be the Euclidean metric, g (x) = [x| —2B o
be the conical metric on R" for 0 < < 1. Then dve, = x| 7"Pdx and wg — @y in

C2.(R"\ {0}). Motivated by [16], a natural question is whether or not a maximizer se-
quence {u,; to< p<1 converges when the conical metric wg converges to the Euclidean
metric @y in C2.(R"\ {0}).

Define a singular Trudinger-Moser functional TMg : whn (R, wg) — R by

TMl;(u):/Rnd)(n,oc,,(l—ﬂ)\uhﬁ_l)deﬁ.

Then we rephrase the result in [16] as below: for any T >0, 0 < 8 < 1, there exists
some nonnegative decreasing radially symmetric function ug € W'"(IR") N C'(R") N
C'(R"\ {0}) satisfying [gn (|Vu|"+ T|u|")dx =1 and

TMpg (u/;) = ~sup Mg (). ©)
uEWL(R), fyn (|Vul"+tlu|")dx<1

In this paper, we establish the compactness of extremals analogous to the one
obtained in [33] in the case of the entire Euclidean space R” (n > 2). The main result
reads as follows.

THEOREM 1. Let wy = dx12 + dx22 4+ dx,,2 be the Euclidean metric, wg =
|x|~2B wy be the conical metric for any 0 < B < 1. Assume ug be a sequence of max-
imizers for the supremum in (6). Then up to a subsequence, there exists some function
uo satisfying ug — ug in C Y(R") and ug is an extremal function of the supremum

sup @(n, oy |u|7T)dx. (7)
UEW LN (RN, fon (| Va1 47 |u[m)dx< 1/ R"

Following Li-Ruf [18] and thereby following [17], we prove Theorem 1 via the
standard blowing up analysis procedure. See also [2, 6, 9] and the references therein.

Let us give the outline of the proof of Theorem 1. Let ug be the extremals for
the supremum in (6). According to [16], we see that ug is nonnegative decreasing and
radially symmetric. Besides, it is a solution of the equation (8) below. Assume ug is
not bounded in R", then we have

sup @(n, o |u| 7T )dx < Ont jono+3i] 3
UEW I (R, fian (|Vue] +t|u|t)dx<1 7 R” n
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where Ay is given as in (49). On the other hand, we can also get

sup (1, 0t |u| 7T )dx > Dl jono+SiT1 }

U€W L (R?), fron (|Vu| +lul?)dx< 1V R” n

The contradiction implies that ug must be uniformly bounded. Then applying the el-
liptic estimates (see [28, 31]) to (8), we get the desire result immediately.
Throughout this note, the norm of W' (R") is defined by ||ul[f},, , (&) = Jre (| V]

+ t|u|")dx. B, denotes the ball in R” with the radius r centered at the origin. The
constant C may be different from line to line. And we pass to subsequence freely.

2. The proof of Theorem 1

We prove Theorem 1 and divide the proof into several subsections.

2.1. The Euler-Lagrange equation of u
For simplicity, denote the n-Laplacian A,u = div(|Vu|""2Vu) forany u € W (R").

By simple calculation, one has

%‘D(mt) =d(n—1,1),

where ®(n,1) is defined as in (3). For 0 < 8 < 1, we write

STMg = sup

”er’"(Rn)vHMHWLn(Rn

_ =
/ D(n, o (1 ﬁﬁ)W )dx
(<1R! |x["

Thus (6) is equivalent to

/ D(n, 0 (1 — B)|ug| 1)

‘x‘"ﬁ x:STMl;.

According to [16], ug is nonnegative decreasing radially and symmetric. We now show
the Euler-Lagrange equation of ug . In a distrubutional sence, ug satisfies the following
Euler-Lagrange equation

S g @e-Len(1-Bug™h)
—Anug + T = y P in R",

ug>0 in R )

Hl/lﬁ le‘n(Rn) = 1,

Ap = Jpo ¥l 7Py T @ — 1,06, (1 = Bug T )d.

Since ug is bounded in W1 (R"), we can find some function uo such that up to a

subsequence as B — 0, ug — ug weakly in Wl (R, ug — ug strongly in L (R")
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forany s> 1, ug — uo almost everywhere in R". Also, ug is nonnegative decreasing
radially symmetric in R" and [{u||y1n(gn) < limsupg_q [lug|ly1nmny = 1.
To continue our investigation, we shall show

(1 )l
B—0JRrn ‘x‘"ﬁ

>dx:/ @ (n, o u| 7T )dx )
Rn

for u € WH(R") with [ty ey < 1.
In fact, we first note that for x € B,

(00 (1 = B)[ulr"T) _ D, 0] T)

0< -
b |x|B b ik

and %ﬁ;lnj) € L'(B,) forany u € W'(R"). By Lebesgue dominated convergence
X

theorem, we obtain

@1 )l
B—0./B, |X|nl3

) i = / ®(n, 0| 7T ). (10)
By
On the other hand, if x € R"\ By, then we have

0<

®(n, 0,1 — AT e
(1, 06,(1 = B)|u|7-T) < D, 0 u]T).
x|

Again, employing Lebesgue dominated convergence theorem, we deduce

lim
B—0

/ @(n,an(l—ﬁﬂ“"”l)dx:/ @(n, 0 |u| 7T )dx. (11
R"\B, [x[P RI\B,

Combining (10) and (11), we conclude (9) holds. Moreover, it is not difficult to see

Bl
[3_>0 Rn ‘x‘"ﬁ
12)

In view of (8), an important problem is whether A has a positive lower bound or

not. For this purpose, we have the following lemma.

®(n, 04 (1 — B ")
dx < liminfSTMﬁ = liminf
B—0 B—0 JRr |x|B

LEMMA 2. There holds
liminf lﬁ > 0.
B—0

Proof. Since t®(n—1,1) > ®(n,t) forr >0, we get

o @ 1ou(1 =Bl ")

B
d
wr P <[P *

Ag =

dx.

i O(n, 04 (1 Bluj )
> i F L
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Sending the limit B — 0 gives

1 n
liminfAg > — sup /®W%Mﬁbﬂ
p—0 <t/RY

On MGWIA'"(R")vHMHWl,n(Rn)

thanks to (9) and (12). [

Denote
cp =ug(0) = maxug (maximum point)

There are the following two possibilities to analysis: {cg}o<g<i is a bound sequence
or up to a subsequence cg — +oo as § — 0. We are now in a position to exclude the
blow-up phenomenon.

2.2. Blow-up analysis

In this subsection, we shall apply the blow-up method to describe asymptotic be-
havior of ug as § — 0. Itis useful to have the following lemma; it implies the concen-
tration phenomenon.

LEMMA 3. It holds |Vug|"dx — 0y in the sense of measure, where & denotes the
usual Dirac measure giving unit mass to the point 0. Consequently, uy = 0. Moreover,
ug — 0 strongly in LY(R") forall q > n.

Proof. Let us recall an elementary inequality. Namely,
(@(n,1))" < D(n,st) (13)

for s > 1, t > 0, which is due to Yang ([35], Lemma 2.1).
At first, we show that [Vug|"dx — d in the sense of measure. Suppose not. There
exists rg > 0 such that

limsup |Vug["dx <p < 1.

B—0 /By
Let ug(x) = ug(x) —ug(ro) for x € B, . Note that ug is decreasing radially sym-
metric. Then we have ug € WOL"(IB%rO) and [|Vaug|| (B, < M < 1. In addition, since
ug(r0)|IB,0| < f]BrO updx < 1/7, we find

" (ro) < . 14
g (ro) o (14)
Set .
1 L ®n—1,0,(1—-Bus™)
fp @) = uf T a—
p x|

We claim that, for some p > 1, there exists a constant C such that

/ fg(x)dng. (15)
By,
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Indeed, using (13) and Holder inequality, we get

_n_

P
n—1 n—1
1 ug P—Lou(l=B)pug)
/Bro f[; (X) X )Lg B, ‘x‘nﬁp X
mo\ o\
1 ug ®(n—1,0,(1=B)ppaug ")
<77 / ———dx / X
A\ JB, xBr By, |x|BP
o\ & AN
1 ul';l O (1=B)ppoug™
< — / By / IR Y (16)
Ag \ Jey Ix|mBr By, |x|BP

where 1/p;+1/p> =1. Assume € > 0, there is a constant C depending on n and &€
such that

uﬁﬁ (x)<(1 —|—8)ﬁl’§" (x) —i—Cuﬁj(ro) (17)
for all x € B,,. We can choose p > 1, p> > 1 sufficiently close to 1 and &€ >0

sufficiently small such that (1 —B)pp2(1+€)[|Vug ||£7(IB ) + Bp < 1. Combining (4),
0
(14) and (17), we have
/

Recall that ug — ug in L*(B,,) for any s > 1. Choosing positive numbers g; and >
with 1/q1+ 1/g2 =1 such that 1 < q; < 1/Bp, we have by Holder inequality

et%n(l—ﬁ)ppzu,';Tl
dx < C. (18)

"o |x|”ﬁ17

EJI. 1 1

ug 1 a P19 @
/ dx < / ——dx / u ' dx <C. (19)
By, ‘x‘"ﬁp By, |x|n/317111 By, B

Substitution of (18) and (19) into (16) leads to (15). Notice that u. is bounded in
L1(B,,) for all ¢ > 0. And from Lemma 2 and (15), we get Anug is bounded in
LP(B,,) for some p > 1. Thus elliptic estimate ([28], Theorems 6 and 8) implies
that ug is uniformly bounded in B, , . This contradicts that cg — o0 as § — 0.
Therefore, we arrive at [Vug|"dx — oy as f — 0.

We are now in a position to prove ug = 0. Suppose the assertion were false. It
follows from ||ug ||y 1ngn) =1 and [Vug|"dx — & that [lug||ps(rn) = 0p(1). Then we
have

/ updx < limsup u%dx =0
n ﬁﬁo Rn

and so duduce ug = 0. Choose L > 0 such that ug < 1 for |x| > L. Then one has for
any g > n,

qd:/ "d+/ qu/ " dx+ 05 (1) = 05 (1).
/nuﬁx wor B o xS [, e top(D) = op(1)



1186 X.L1,L. YANG AND X. SU

And the proof of the lemma is completed. [

Set

.
n—1 7

1 n—
rg = ll;’ cgle T B
Then we have the following:

oU-p) i1
LEMMA 4. For any o € (0,0), there holds rge " P —0as B —0. In

particular, rg — 0 as B —0.

Proof. For o € (0,0), we have after using the definition of rp , that

o0-p)f T _ it an<1g:)<1ﬁ>cg'“/ uﬁ’ld)(n—han(l—ﬁ)ugfl)dx
! xl"#

5
3

I P
_ o n i1 u”%ldD n—1,0,(1—=pB)us"!
i ol )P / p o (B )
B Br |x|n/3
(20)

We employ the radial lemma [4] to estimate

up O —Lon(1-Bup’) = afa-py o up
/ dx = Z - / dx
R\ Br |8 o ! R\Bg  |x["P

< C(R). Q1)

Since —a(1— &) (1~ B)cf T < —o(1— S)(1—BJuj T for x € R, we have by

Holder inequality that

/ _an(l_an)(l_ﬁ)cg% u571¢(n l’an(l_ﬁ)unil) X
Br ‘x‘nﬁ
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where p > 1 sufficiently close to 1 and 1/p+1/g=1. Observe that ¢ € (0, ;). An
obvious analog of (18) is

n

LoP(1=Blu!
 dx<C(R,p).
/ER ‘X‘npﬁ X ( p)

Since ug — 0 strongly in L*(Bg) for any s > 1, we have

_n_

[ ali-g)-pg 14 P on(l— Bl
Bg |x|nﬁ

dx =og(1). (22)
Substituting (21) and (22) into (20) and recalling cg — oo as B — 0, we conclude

o(1-B)] T _

lim rle 0.

B—0

In particular, rg = 0g(1) and this completes the proof of the lemma. [J

In order to continue blow-up analysis, we define

1

op = cI}luﬁ (rﬁx)

and
1 1

Vg = c[’;’l (up (réiﬁ x) —cp)-
We investigate the asymptotic behavior of ug as B — 0 near zero, namely
LEMMA 5. Up 1o a subsequence, ¢g — 1 in CL (R") and yg — yp in CL (R")

as B — 0, where
n—

1 oy n_
log| 1+ —; n—1
Olp £ ( nin-T i )

/ ety = 1.
n

Vo= —

and

Proof. A direct calculation gives that

e P
n_ 0 T d(n—1,00,(1 = Blul " (ry " x))
— An(x) = —rg Pop "+ PP T (23)
poTp an(l—ﬁ)cF

\x\"ﬁc%e

Since [¢g| < 1, rg = 0g(1) and cg — +oo, we obtain by using the elliptic estimate
([28, 31]) to (23) that ¢g — ¢ in CL.(R") with ¢y satisfies —A,¢p(x) =0 in R".
Then the Liouville-type theorem for n-harmonic function implies that ¢ = 1.
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Also it can be easily checked that yg(x) is a distribution solution of equation

— Ay (x) = —‘L’cﬁrﬁ(l)g_l +

(24)

Note that yg < 0 = maxg» Y. We have by elliptic estimates to (24) that yg — yp in
Clloc(Rn)' Since yp is decreasingly symmetric on R", it follows that yy is decreasingly
symmetric. To derive the equation of vy, we first estimate

nj 1 nj

s3 (on(1-B)) g~ (7 P x) si3 (o(1-B))icf !
O\ ,:O j‘ n X J:() j’ n _Oﬁ(l)

[x|B % (=PI \x\"ﬁea”(lfﬁ)“gj

By the mean value theorem, we also have

(g T =T =0 aplrp ) )

B

= (O /cp) T Yp(x)

n

oy (x) +op(1),

where g lies between u/;(r;}/ (1-p )x) and cg. We then obtain

{ — Ay (x) = % T in R7 05)
vo(0) = maxgn o = 0.
We take ywy(r) for wo(x) with r = |x| and rewrite (25) as
{ (=ryp(r)r1) = = temimnvolr), o6
¥o(0) =0.

By a standard uniqueness result of ordinary differential equations (see for example
[18]), the equation (26) is solved by

- 1 n
Yo(x) = —“—log (1+b,x/77)
with b, = 0n~"/"=1)  Thus we have

. - el
/ Ot Vo) gy — (un,l/ — —dr
R" 0 (14byre-T)"

P o 2
= 2L 1)/0 TreT @7
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Writing I, = (n—1) f° (lﬁ:—;’i)ndt and integrating by parts, we observe the following
recurrence relation
n—2 [ 3 1

I, = dt = —1I, .
by Jo (I+byty 10 5, " !

Iteration gives

1 Lo L
" b2—2/o (b2 o' oy e

Combining (27) and (28), we arrive at
/ Ot Vo ¥) gy — 1
and the lemma is proved. [

We proceed to analysis the convergence of ug as B — 0 away from zero. Similar
to [16] and [18], define

ug, = min{uﬁ, lcﬁ}
forO<1<1.

LEMMA 6. There holds

I / Vug ["dx = 1.
ﬁli% R"‘ ug,|"dx=1

Proof. For any R > 0, we multiply equation (8) by ug , and integrate over R" to
get

1 n
n _ n—1 -1 —nf -1 o _ n—1
/R" |Vug  "dx = —7 _ ug 1dx+Ag /R" |x| ug ug  ®(n—1,04(1 [3)ul3 )dx

WV

1 AT
?Lp_l/ \x\_"ﬁlcﬁuﬁ’lea"(l_ﬁ)uﬁ dx+og(1)
1/(1-PB)

= op) [ e OB gy,

Letting f — 0, we have

llmll’lf/ |Vuﬁl‘"dx> l/ eanﬁwo(x)dx'
B—0 JRr ’ B

R

Passing to the limit R — oo, we obtain

liminf / Vug x> 1. 29
B—0 Rn‘ ﬁ’l| ( )
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Similarly, inserting (ug — le)+ as a test function in equation (8), we get

/ |V(uﬁ—wﬁ)+|"dx
]Rn

_ 51/ (uﬁ—zc,;) uj 5T | B (1, 00 (1— By ") 1'/ 5 (g —1cp) dx

?L / u "(ug —1cp)” \x\_"ﬁea"(l_ﬁ)ugi dx+op(1)
w10

n

1 n
n—1 . 1-B n—T
— (1—1)(1“1‘0[3(1))/13 ‘y‘_nﬁea"(l_ﬁ)uﬁ (rﬁ y)—cﬁ )dy—l—Ol;(l).
R
Letting B — O first and then R — oo, we have
11m1nf/ IV(ug —1cg)"["dx>1—1. (30)

Note that
/ \Vu,;’l\"dx—l-/ IV (up — 1)t 'dx = / Vug|'dx=1+0p(1).  (31)
R" R" R"
Combining(29), (30) and (31), we immediately get the desire result. [

Rely on Lemma 6 and one can derive the following lemma.

LEMMA 7. There holds

n A
fim hmsup/ x| P, 0 (1 By T (x))dx = limsup —o-. (32
Rt g0 w/1°P) B0 cp T

Proof. Forany 1, 0 <1 < 1, we obtain

x| d(n Bl (x) = x| d(n —B)up ")dx
[P0t @) = [ o1~y )

+ x| P D(n, 0 (1= Bufy ")l

Mﬁ>lcﬁ
=:I1+1I.

Recall that forall t > 0

tn—2 tn—2
—®dn—1,1)— ———
TR T G Ay e 1}

®(n,t) =@ (n,t) —
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which together with the mean value theorem implies that
1< [ WP, on(1—Bug
< ou(1—P) / | P — 1, 9)uy ) dx
R" '
<an(1-P) [ 1 Pe(n—10(1— By D dx
R" :

-n = T % l_ﬁ ! —nf, n
< oz,,(l—B)/Rn x| ﬁCI)(man(l—ﬁ)ul;r)um'dx—k%/n x| P ufy dx,

n

where ¢ is between 0 and o, (1 — ﬁ)ulﬁ . Forany R >0 and ¢ > 1, we can choose

I <s<1/B with 1/s+1/t=1. Then Holder inequality together with the estimate
|ug,illn < l|uglln = 0p(1) gives that

1 1
—n n —nfBs N nqt ! _
/IBR |x| ﬁuﬁ‘{de < </BR x| P dx) ( . uﬁlfldx> =og(1). (34)

On the other hand, by the radial lemma [4], we have

-1

q
—nf nq n ng nBong .
/RH\ER g (wn ) sl /Rn\m | M = 0 (1) (35)
According to (34) and (35), we find

- \x\f"ﬁugﬁldx =op(1) (36)

for any ¢ > 1. By virtue of Lemma 6, we obtain
lim/ Vug |*+ tlug ,|"dx=1< 1.
tim [ (Vi of*+ Tl )

Let l <p<1/tand 1/p+1/p’=1. Using (36), Holder inequality, we have

n n

R” ‘x‘7"ﬁ®(n’a”(l _ﬁ)ugil )uﬁ;' dx

L
7

1

< (/ x| "B d(n, 00, (1 —ﬁ)puﬁf)dx) ! (/ \x\—"ﬁuﬁp dx) !
n k) Rn ’

— op(1). 37)

Inserting (36) and (37) into (33), we get

_ —np . i _
I_/uﬁ§16ﬁ R, (1= Bug ™ )dx = 0p(1). (38)
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In addition, we estimate

1 _n_ n_
1< 7/ | P (01— BJu " el
1 ug>icg

— .n—1

11 Cﬁ

l _n_ _n_
S — / |x|_”ﬁu§’lcb(n—l,an(l—B)ug’l)dx—koﬁ(l)
= n—1 Mﬁ>lcﬁ

1n-1¢c

Y
— Pt op(1). (39)
— .n—1

1n-1¢c
B

<

It then follows from (38) and (39) that

_n_ A«
lim / x| "B d(n, 00, (1 — ﬁ)uﬁ’l (x))dx < L,,liminf B
l}_>() n 1n—1 ﬁ—>0 Cl;j

Taking the limit as 1 — 1 we get

" )
tim [ (x| "Pd(n, 04 (1~ B)up T (x))dx < liminf - (40)
B—0JRn B—0 C/yjﬁ

We now verify that

= dx
n nﬁ_l xnﬁ
e B
O, (1~ By )
<
< /n <P dx+op(1)
and therefore
D(n, 0, (1 = Bug ")
limsup —2- < lim B~ 41)
p—0 cp T Bo0JR [x[P
By (40) and (41), we see that
D(n, 0 (1~ B " (x)) A
lim sup ! ; P dx = limsup —b—. (42)
g0 JR || B0 i

[n{
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On the other hand, a direct calculation shows that

(I)n,a,,l—ﬁ ”nnﬁ - ﬁ
J o ; 15 g gyl B PN T ay 4 op(R)
B /(1) x{" e
A’ﬁ _n_
_ E / ea”"*llVO(y)dy‘FOﬁ(R) —|—Oﬁ(R)
T \JBg
B
Ap
5

where 0g(R) — 0 as § — 0 for any fixed R > 0. Hence the desired result (32) follows
by virtue of the above two equalities. [

From Lemma 7 just proved, we obtain successively the following corollary.

COROLLARY 8. Forany 0 < = we have

n—1’

y
lim — = H-oo.
B—0 Cg

Proof. We suppose by contradiction that Ag/ c[’? — 0 as B — 0. Using (9) and
(12), we then get

/ D(n, 0| 7T )dx < sup D(n, o |u| ™1 )dx
K uEW L (R, 11 gy <17 R
<liminf | 7P ®(n, 0 (1 - Bluy " )dx
B0 Jrn
A
< limsup E
—0 n—1
B g
=0

for any fixed u € W' (R") with ||| [y 10 () = 1. This is impossible and we obtain the
assertion. [J

1

To continue our program, we shall now discuss the convergence of cg_l ug under
the assumption cg — +-oo.
1
LEMMA 9. The family cl’i’l ug — Go weakly in Wl(l)’cq (R") forany 1 < q <n, and
1

cl”{l ug — Go in Gy .(R"\{0}). Here Gy is a Green’s function and satisfies

—AGo+ TG =8 (43)

in a distributional sense, where & is the usual Dirac measure centered at 0.
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Proof. For simplicity, denote

L
I

2p(x) = Ag |~ "ﬁcﬁuﬁ O(n—1,05(1—Bulr ).

B

We remark first of all that gg(x) converges weakly to &. That is, for any 1(x) €
Cy (R™), we have

tim [ (s () =(0). (44)

To see this, we split the integral

n(x)gp(ridx = [

Mﬁ SlCﬁ

5 nmm@mHﬂpwnw@ww. (45)

In view of Corollary 8, we obtain

_n_

unt d) —1Lo(1=Bui™)
/ Nn(x)gp(x)dx < b (supn / b P i
ugslieg A« uﬁ<lcﬁ ‘X‘"ﬁ

@001 B )

_ﬁ
/l sup\n P dx+og(1)
= Oﬁ (46)

By Lemma 4, one can easily see that B 1/ C {ug > 1cg} for B sufficiently small.
"B

Then we have

n(x)gp(x)dx =n(0)(1+o0p(1)) (/ eo‘"ﬁllfo()f)dx—Foﬁ(R)) .

Bg

/{“/3 >1ep 0B 1/(1-p)
B
On the other hand, we obtain

N (x)gp(x)dx <
/{“ﬁ>wﬁ}\BR,1/<lﬁ) ’
s

It then follows that

lim n(x)gp (x)dx = 1(0). 47
B—0Jug>1cg
Inserting (46) and (47) into (45), letting B — O then R — +oo, we see (44) holds.
Multiplying both sides of the equation (8) by cg, one has

1 _n_
1 cpuy ' ®(n—1,00(1—Bug")
_ T n—1 _ B B

An(Cﬁ uﬁ) + Tepug = lp |x|”ﬁ . (48)
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1
According to (44), gg(x) = lﬁ_l|x|’”ﬁcl;u§’l ®D(n—1,0,(1—B)u ug 1) is bounded in

Ll .(R"). Proceeding as in the proof of ([18], Proposition 3.7), one sees that CI3 'ug

is bounded in W (R") for any 1 < g < n. Hence, we have g luﬁ — Go weakly

loc

in V[/kl)’cq(R”) Applying standard elliptic estimates to (48), we get that cﬁ ”13 — Gy
in CllOC (R™\{0}). Now (44) implies that gg — & in the sense of measure, where &
denotes the Dirac measure centered at 0. In view of (48), Gy is a distributional solution
to (43). This ends the proof of the lemma. [

For the Green function Gy, we have
1
Go(x) = —a—log |x|" + Ao+ p(x); (49)

here, Ay is a constant, p(x) € C!(R"\{0}) satisfying p(x) = O(|x|"log" |x|) as |x| —
0. The proof is similar to ([18], Lemma 3.8). We omit the details but refer the reader
to [18].

To proceed further, we need the following version of Carleson-Chang’s upper
bound estimate. The difference is that a singular term |x]| ~B s involved in our case.

LEMMA 10. Let wg € Wol’"(IB,) with [ [Vwg|"dx <1, wg — 0 weakly in
WOl "(B,) as B — 0, wg is nonnegative and radially symmetric. Then we have

n
n—1I

limsup | || "™ P _ ax < Ol noZicit (50)
ﬁ—>0 B, n

Proof Since wyg is radially symmetric, we write wg (|x|) = wg(x). Let

n—1 1
vp(x) = (1=B) = wp(|x|"F).
Then [p |Vvg|"dx = [5 |Vwg|"dx. Furthermore, one can check that Hv,;HWOu.(Bl)H =
[wg HWI""(IBI) < 1. Without loss of generality, we can assume that up to a subsequence,
0
vg — v« weakly in Wol""(IBl), vg — v strongly in LP (B ) forany p > 1, and vg — v,
almost everywhere in B . Itis clear to see wg — 0 almost everywhere in B, and hence

it follows v, = 0 almost everywhere in B;. By a change of variable r = s'/(1=B)  we
obtain

T 1 T
/ ‘x‘—nﬁ (ean(l_ﬁ)wﬁ Y _ l)dx _ (anl/ tn—l—nﬁ (ean(l_ﬁ)wﬁ ) l)dl
B, 0

Ont (1 a1 en(-Bywy 2T (0-8))
= K} e —1)ds
1=BJo ( )
1 Oy ”'(x)
= — e "B —1)dx.
B IBI( )
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Applying the result of Carleson and Chang [6], we have

_n_

n—1
limsup | |x|™"P (ea"(l_ﬁ)wﬁ @ _ 1)dx

B—0 /By
. 1 w,—p yn-11  @Wy—1 sn-11
< lim —— =M1k = B T, (29
p—0l—B n n

This proves (50) for r = 1.
Set wg (x) = wg(rx) for any x € B;. We can computer

/ Vg (x)"dx = / (Vv (x)"dx
B, B,

and

_n_ _n_
n— n—

1 —n—1
/ x| P (ea"(l_ﬁ)wﬁ —1)dx= r"_"ﬁ/ |x| 7P (ea"(l_ﬁ)wﬁ —1)dx.
B, B,
Let B — 0 and by virtue of (51), the estimate (50) follows at once. [J

Now we will apply Lemma 10 to derive an upper bound of the integral
/ D (1, o 1] T ) dix.
]Rn

LEMMA 11. There holds

Wy, — n—11
sup / O oalu" V) < Fm etk (52)
”EWl’n(Rn)vHMHWLn(Rn)gl

where Ay is given as in (49).
Proof. Let v be the unit outward normal to dBg. By equation (48), we see that

L., (9Gol"+iGol")ax
RM\Bj

n n

e le cgj L(D(n—Lan(l—ﬁ)uEfl)
= — GolVGa" 2224 +_/ T
/ms T I vl A o

We estimate the right two terms in the equation. The first term can be calculated by

dx.

—/ GO|VG0\"*2@ds: —Go(6)/ A,Godx
3]35 av Bs

— Go(8) — 1Go(5) /B G dx
)
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since Gy is a distributional solution of equation (43). A straightforward calculation on
the second term reads

i/ MLICD(n—Lan(l—ﬁ)ul’;’l)
Ag Jrn\Bs p x|

With the aid of (49), we then have

1
Vug|* + tlug|")dx = / VGo|" + 1|Go|")dx + 1)
Lo (Pl gl = — ([ (VG + el +o5()

— .@Qils

B

= (Gul)-6u(3) [ - op(h)

o
™=

1 n 1
= <a—n10gg—|—Ao+Ol;(1)+05(l)>,

\‘:

3}
==

where 05(1) — 0 as § — 0. Set

n—1 ._ n
Kg = /185 |Vug|"dx
= 1_/R"\IB‘;(Wuﬁ‘n_FW%)dx_T/IBg updx

1 1
—— <1log—+Ao+oﬁ(1) +05(1)) +op(1).
Cn71 oy 6

B

Denote sg = supyg, up = up(8) and up = (up —sg)". Obviously, ug € Wol’"(IB%g).
L

Moreover, we have [g_|Viig|"dx < K‘g_l. Since s5 = ¢ "' (supy, Go +op(1)), we

get

1 n

0 (1= Blug™ < on(l —B)(up +ug(8))T

< (1= BT+ " en(1— )iy up(5) +op(1)
< ou(1= By "+ " on(1- B)Go(8) +o(1)

< on(1-B)iy ' /g +n(1 —ﬁ)log% + (11— B)Ag+o(1).
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where o(1) — 0 as B — O first and next 6 — 0. For any fixed R > 0, we have

Ber/(l,ﬁ) C Bs for B small. As a consequence, we have
B

n

op(1—-B)u~ 1 |

e B —
— —dx
/IB |x|B

w/1°P)

L (1=B)ag" /i

< 5—n(1—[3)ean(l—l3)Ao+o(l)/ P dx+op(1)
xn

BR,;?/u—m

on(1-Byag " /xg _ |

_ §-n(1=B) you(1=B)Ag+o(1)
1) e /IB ) L dx+og(1)
o l/(1=B)
B
oc,,(l—/i)ﬁ"%l/K
< 6‘"(1—l3)ean(l—l3)Ao+0(1)/ ¢ il P (9).
Bs x]"P g

where 0g(8) — 0 as B — 0 for any fixed 6 > 0. It follows by Lemma 10 that

) ) O(n )Mﬁ — 1 C()n_l oA JrZn—l 1
lim hmsup P dx < et 21 T, (53)
Rt g0 1/1 B) x| n

In view of (9), (32) and (42), we obtain (52). The proof is complete. [

2.3. Exclusion of blow-up phenomenon

Completion of the proof of Theorem 1. According to [18], there exists a function
sequence ¢(x) such that

[, @l oulg(x)|7)dx > AL et T,

Hence, we have

o, ]
sup D(n, 0 u(x) |77 )dx > ':l Leonfot STt

uewl.n(Rn)7 HuHWl.n(Rn)gl R

which contradicts with (53) and implies that ug must be uniformly bounded. Then
applying elliptic to the equation (8), we conclude that ug converges in C'(R") to a
maximizer of the supremum (7). Thus this completes the proof of Theorem 1. [l
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