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SOME GENERATOR FUNCTIONS FOR
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Abstract. In this paper, some generator functions for s -convex functions in the fourth sense
and some of their properties are studied. As application examples, some special mean relations
and the inequalities involving beta and digamma functions are obtained throught some of the
properties.

1. Introduction

Convex functions have a very special place in terms of their relation to the opti-
mization theory, algebra and analysis. Many extensions and generalizations have been
defined so far and still novel ones are still being exposed. For example, B-convexity,
B−1 -convexity, p -convexity, quasi- p -convexity, log- p -convexity and s-convexity (in
third and fourth senses) are novel ones [6, 18, 8, 3, 13, 2]. As far as we reviewed re-
lated literature, some of the novel types have been defined so as to state some inequali-
ties such as predominantly, the Hermite-Hadamard inequalities for these type functions
and there are few studies on the characterizations and examples of such type functions
([12, 16, 17, 6, 14, 1, 7, 9] and the references therein). In this paper, we address to
this issue for s-convex functions in the fourth sense. The generator functions for the s-
convex functions of the fourth sense are presented by means of the integral and double
integral and some properties are shown. Then we give some application examples as
inequalities involving digamma and beta functions and some mean relations.

2. Preliminaries

The most eminent characterization of convex function on real numbers is given by
inequality as follows:

Let f : A → R be real valued function. The function f is said to be convex if

f (λx+ μy) � λ f (x)+ μ f (y) (1)

for all x,y ∈ A and λ ,μ ∈ [0,1] with λ + μ = 1.
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For the sake of brevity and clarity, let us introduce some notions of s-convexity.
Let s be fixed number in (0,1] and a,b ∈ R . An s-convex combination of a and b is
λa+ μb such that λ s + μ s = 1 for λ ,μ ∈ [0,1] .

s-convexity is such a generalization of classical convexity that while the convexity
sets the relation (1) between the image of convex combinations of points and the con-
vex combinations of the image of points in a convex sets, s-convexity sets the similar
relation between mixture of convex and s-convex combinations of points and images.
The four types of s-convex functions are introduced with respect to usage of convex or
s-convex like combinations in their definitions. The first and third senses of s-convex
functions are given in [15] and [13], respectively, as follows, which are defined in a
s-convex subset of real numbers, i.e., a set containing all s-convex combinations of its
elements. In the case of s = 1, s-convex set is a convex set.

Let A be s-convex subset of real numbers and f : A → R be real valued function.
The function f is said to be s-convex in the first sense if

f (λx+ μy) � λ s f (x)+ μ s f (y)

and the function f is said to be s-convex in the third sense if

f (λx+ μy) � λ
1
s f (x)+ μ

1
s f (y)

for all x,y ∈ A and λ ,μ ∈ [0,1] with λ s + μ s = 1.
The second and fourth senses s-convex functions are defined on convex sets and

they are given in [5] and [8], respectively.
Let A be a convex subset of real numbers and f : A → R . The function f is said

to be s-convex in the second sense if

f (λx+ μy) � λ s f (x)+ μ s f (y)

and the function f is said to be s-convex in the fourth sense if

f (λx+ μy) � λ
1
s f (x)+ μ

1
s f (y)

for all x,y ∈ A and λ ,μ ∈ [0,1] with λ + μ = 1.
The class of s-convex functions in the fourth sense is denoted by K4

s . Although
they have similar definitions, they have certain distinctions. For example, while s-
convex functions in the second sense are positive valued, s-convex functions in the
fourth sense are negative valued functions. Some of their characterizations can be found
in [8] and [11].

In [10], it is shown that for a,b,c ∈ R− (negative real numbers) with c � 0,

ψ(x) =
{

a, if x = 0

bx
1
s + c, if x > 0

(2)

is an s-convex function in the fourth sense on (0,∞) . Under the extra condition a = c,
ψ is s-convex function in the fourth sense on [0,∞).
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3. Main results

In this section, we present three types of generator functions for s-convex func-
tions in the fourth sense and their properties, which are expressed via single integral or
double integral representations. Since some of the properties are based on the Hermite-
Hadamard inequality for the s-convex functions of the fourth sense, which is stated in
[14], let us give it as a lemma.

LEMMA 1. Let ψ : [a,b]→ R− be an s-convex function in the fourth sense, inte-
grable on [a,b] . Then the following inequality holds,

2
1
s −1ψ

(
a+b

2

)
� 1

b−a

b∫
a

ψ(x)dx � s
s+1

[ψ(a)+ ψ(b)] . (3)

In the following theorem, a generator function is defined for the class K4
s and some

properties of this generator function are given.

THEOREM 1. Let ψ be an integrable function on [a,b] and let G be defined as
follows:

G(t) :=
1

b−a

b∫
a

ψ
(

tx+(1− t)
a+b

2

)
dx (4)

for t ∈ [0,1] .
i) If ψ is an s-convex function in the fourth sense on interval [a,b] , then G is an

s-convex function in the fourth sense on [0,1] ,
ii) If ψ is an s-convex function in the fourth sense on interval [a,b] , then the

following inequality holds,

G(t) � 2
1
s −1ψ

(
a+b

2

)
. (5)

Proof. i) Let t1,t2 ∈ [0,1] and α,β � 0 with α + β = 1. By using ψ is an s-
convex function in the fourth sense on interval [a,b] , we get

G(αt1 + β t2)

=
1

b−a

b∫
a

ψ
(

(αt1 + β t2)x+(1−αt1−β t2)
a+b

2

)
dx

=
1

b−a

b∫
a

ψ
(

α
(

t1x+(1− t1)
a+b

2

)
+ β

(
t2x+(1− t2)

a+b
2

))
dx

� 1
b−a

b∫
a

[
α

1
s ψ
(

t1x+(1− t1)
a+b

2

)
+ β

1
s ψ
(

t2x+(1− t2)
a+b

2

)]
dx
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= α
1
s

1
b−a

b∫
a

ψ
(

t1x+(1− t1)
a+b

2

)
dx+ β

1
s

1
b−a

b∫
a

ψ
(

t2x+(1− t2)
a+b

2

)
dx

= α
1
s G(t1)+ β

1
s G(t2).

It shows that G is an s-convex function in the fourth sense on [a,b] .
ii) In the case of a t ∈ (0,1] , the following equality is obtained by taking u =

tx+(1− t) a+b
2

G(t) =
1

p−q

p∫
q

ψ(u)du

where p = tb+(1− t) a+b
2 and q = ta+(1− t) a+b

2 .
Applying inequality (3), we have

G(t) =
1

p−q

p∫
q

ψ(u)du

� 2
1
s −1ψ

(
p+q

2

)
= 2

1
s −1ψ

(
a+b

2

)
and the inequality (5) is obtained.

In the case of t = 0, since ψ
(

a+b
2

)
< 0 and 2

1
s −1 � 1, the inequality (5) is also

provided, i.e.;

G(0) = ψ
(

a+b
2

)
� 2

1
s −1ψ

(
a+b

2

)
. �

Using (2), hence letting ψ(x) = −x
1
s on [a,b] = [0,1] in Theorem 1, we have the

following corollary.

COROLLARY 1. The function

g(t) =

⎧⎨⎩ s

21+ 1
s (1+s)

(1−t)
1
s +1−(1+t)

1
s +1

t , t ∈ (0,1]

−2−
1
s , t = 0

is s-convex in the fourth sense.

THEOREM 2. Let the functions G1 and G2 be defined on [0,1] as follows:

G1(t) :=
1

b−a
t

1
s

b∫
a

ψ(x)dx+(1− t)
1
s ψ
(

a+b
2

)
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and

G2(t) :=
s

s+1

(
ψ
(

ta+(1− t)
a+b

2

)
+ ψ

(
tb+(1− t)

a+b
2

))
.

If ψ is an s-convex function in the fourth sense on [a,b] , then

G(t) � min(G1(t),G2(t)) (6)

for t ∈ [0,1] , where G(t) is defined as in Theorem 1.

Proof. In the case of t ∈ (0,1] , we have the following inequality,

G(t) =
1

p−q

p∫
q

ψ(u)du

� s
1+ s

(ψ(p)+ ψ(q))

=
s

1+ s

(
ψ
(

tb+(1− t)
a+b

2

)
+ ψ

(
ta+(1− t)

a+b
2

))
.

So, G(t) � G2(t).
For G1(t), since ψ is s-convex function in the fourth sense, we have

ψ
(

tx+(1− t)
a+b

2

)
� t

1
s ψ(x)+ (1− t)

1
s ψ
(

a+b
2

)
and integrating this inequality on [a,b] we get

G(t) � 1
b−a

t
1
s

b∫
a

ψ(x)dx+(1− t)
1
s ψ
(

a+b
2

)
.

So, G(t) � G1(t).
In the case of t = 0,

G(0) =
1

b−a

b∫
a

ψ
(

a+b
2

)
dx = ψ

(
a+b

2

)
so, G(0) = G1(0) and G2(0) = 2s

s+1ψ
(

a+b
2

)
. Since ψ

(
a+b
2

)
< 0 and 0 < 2s

s+1 < 1, we
get

G(0) = ψ
(

a+b
2

)
� 2s

s+1
ψ
(

a+b
2

)
.

Thus, G(t) � G2(t). �

THEOREM 3. Let ψ be an s-convex function in the fourth sense on [a,b] and let
G1,G2 be defined as in Theorem 2. If G̃(t) := max(G1(t),G2(t)) for t ∈ [0,1] , then

G̃(t) � s
s+1

(
t

1
s (ψ(a)+ ψ(b))+ (1− t)

1
s 2ψ

(
a+b

2

))
.
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Proof. By inequality (3) and since 0 < 2s
s+1 < 1, we can write the following in-

equalities,

1
b−a

t
1
s

b∫
a

ψ(x)dx � s
s+1

t
1
s (ψ(a)+ ψ(b)),

and

(1− t)
1
s ψ
(

a+b
2

)
� (1− t)

1
s

2s
s+1

ψ
(

a+b
2

)
for t ∈ (0,1) . So that

G1(t) =
1

b−a
t

1
s

b∫
a

ψ(x)dx+(1− t)
1
s ψ
(

a+b
2

)

� t
1
s

s
s+1

(ψ(a)+ ψ(b))+ (1− t)
1
s

2s
s+1

ψ
(

a+b
2

)
=

s
s+1

[
t

1
s (ψ(a)+ ψ(b))+ (1− t)

1
s 2ψ

(
a+b

2

)]
.

On the other hand, we have

G2(t) =
s

s+1

[
ψ
(

ta+(1− t)
a+b

2

)
+ ψ

(
tb+(1− t)

a+b
2

)]
� s

s+1

[
t

1
s ψ(a)+ (1− t)

1
s ψ
(

a+b
2

)
+ t

1
s ψ(b)+ (1− t)

1
s ψ
(

a+b
2

)]
=

s
s+1

[
t

1
s (ψ(a)+ ψ(b))+ (1− t)

1
s 2ψ

(
a+b

2

)]
.

Thus, we get G̃ � s
s+1

(
t

1
s (ψ(a)+ ψ(b))+ (1− t)

1
s 2ψ

(
a+b
2

))
. �

Another generator function can be given via integral representation as follows:

THEOREM 4. Let us define the following function on [0,1]

J(t) =
1

2(b−a)

∫ b

a

[
ψ
(

1+ t
2

a+
1− t

2
x

)
+ ψ

(
1+ t

2
b+

1− t
2

x

)]
dx.

J(t) is s-convex in the fourth sense.

Proof. Let α,β � 0 with α + β = 1 and t1,t2 ∈ [0,1] . Then

J (αt1 + β t2)

=
1

2(b−a)

∫ b

a

[
ψ
(

1+(αt1 + β t2)
2

a+
1− (αt1 + β t2)

2
x

)
+ ψ

(
1+(αt1 + β t2)

2
b+

1− (αt1 + β t2)
2

x

)]
dx
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=
1

2(b−a)

∫ b

a

[
ψ
(

α
(1+ t1)a+(1− t1)x

2
+ β

(1+ t2)a+(1− t2)x
2

)
+ ψ

(
α

(1+ t1)b+(1− t1)x
2

+ β
(1+ t2)b+(1− t2)x

2

)]
dx

� α
1
s

2(b−a)

∫ b

a

[
ψ
(

(1+ t1)a+(1− t1)x
2

)
+ ψ

(
(1+ t1)b+(1− t1)x

2

)]
dx

+
β

1
s

2(b−a)

∫ b

a

[
ψ
(

(1+ t2)a+(1− t2)x
2

)
+ ψ

(
(1+ t2)b+(1− t2)x

2

)]
dx

= α
1
s J (t1)+ β

1
s J (t2) . �

Letting [a,b] = [0,1] and ψ(x) =−x
1
s in Theorem 4, we have the following corol-

lary.

COROLLARY 2. The function

j(t) =

⎧⎨⎩ 1

2
1
s +1

s
(s+1)

(1−t)
1
s +1+2

1
s +1−(t+1)

1
s +1

t−1 , t ∈ [0,1)

− 1
2 , t = 1

is s-convex in the fourth sense.

In the following theorem, a new generator function for the class K4
s is given by a

double integral function and its properties are mentioned.

THEOREM 5. Let ψ be integrable function on [a,b] and

F(t) :=
1

(b−a)2

b∫
a

b∫
a

ψ (tx+(1− t)y)dxdy

for t ∈ [0,1] . If ψ is s-convex in the fourth sense on [a,b], then F is also s-convex in
the fourth sense.

Proof. Let t1, t2 ∈ [0,1] and α,β � 0 with α + β = 1. Then

F(αt1 + β t2) =
1

(b−a)2

b∫
a

b∫
a

ψ ((αt1 + β t2)x+(1−αt1−β t2)y)dxdy

=
1

(b−a)2

b∫
a

b∫
a

ψ (α (t1x+(1− t1)y)+ β (t2x+(1− t2)y)dxdy
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� α
1
s

1
(b−a)2

b∫
a

b∫
a

ψ (t1x+(1− t1)y)dxdy

+β
1
s

1
(b−a)2

b∫
a

b∫
a

ψ(t2x+(1− t2)y)dxdy

= α
1
s F(t1)+ β

1
s F(t2). �

Letting [a,b] = [0,1] and ψ(x) =−x
1
s in Theorem 5, we have the following corol-

lary.

COROLLARY 3. The function

f (t) =

{
s2

(2s+1)(s+1)
(1−t)

1
s +2+t

1
s +2−1

t(1−t) , t ∈ (0,1)
− s

s+1 , t = 0 or t = 1

is s-convex in the fourth sense.

THEOREM 6. Let ψ be an s-convex function in the fourth sense on [a,b]. Then
for t ∈ [0,1] , we have

i) 21− 1
s F(t) � 1

(b−a)2

b∫
a

b∫
a

ψ( x+y
2 )dxdy,

ii) F(t) � 2
1
s−1 max(G(t),G(1− t)),

iii) F(t) �
(
t

1
s +(1− t)

1
s

)
1

b−a

b∫
a

ψ(x)dx,

iv) F(t) � s2

(s+1)2
[ψ(a)+ ψ(ta+(1− t)b)+ψ(tb+(1− t)a)+ψ(b)].

Proof. i) From s-convexity in the fourth sense of ψ , we get

ψ(
x+ y

2
) � ψ(tx+(1− t)y)+ ψ(ty+(1− t)x)

2
1
s

for all t ∈ [0,1] and x,y ∈ [a,b] . Integrating this inequality on [a,b]2 , we get

b∫
a

b∫
a

ψ(
x+ y

2
)dxdy �

b∫
a

b∫
a

ψ(tx+(1− t)y)+ ψ(ty+(1− t)x)

2
1
s

dxdy

here
b∫

a

b∫
a

ψ(tx+(1− t)y)dxdy =
b∫

a

b∫
a

ψ(ty+(1− t)x)dxdy

which yields (i) .
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ii) For y ∈ [a,b] , let us define a function Gy(t) as follows,

Gy(t) :=
1

b−a

b∫
a

ψ(tx+(1− t)y)dx.

In the case of t ∈ (0,1] we take u = tx+(1− t)y , and we get

Gy(t) =
1

p−q

p∫
q

ψ(u)du

where p = tb+(1− t)y and q = ta+(1− t)y. Applying inequality (3), we get

1
p−q

p∫
q

ψ(v)dv � 2
1
s −1ψ

(
p+q

2

)
= 2

1
s −1ψ

(
t
a+b

2
+(1− t)y

)

and integrating this inequality on [a,b] with respect to y we obtain,

F(t) � 2
1
s −1G(1− t).

Since F(t) = F(1− t) we get (ii) .
In the case of t = 0 we have

F(0) =
1

b−a

b∫
a

ψ(y)dy

G(0) = ψ
(

a+b
2

)
and

ψ
(

a+b
2

)
2s−1 � ψ

(
a+b

2

)
2

1
s −1.

Applying inequality (3), we get

2
1
s −1ψ

(
a+b

2

)
= 2

1
s −1G(0) � 1

b−a

b∫
a

ψ(x) = F(0).

That is,
F(0) � 2

1
s −1G(0). (7)

2
1
s−1G(1) = 2

1
s −1 1

b−a

b∫
a

ψ(x)dx � 1
b−a

b∫
a

ψ(x)dx = G(1) = F(0).

So,
F(0) � 2

1
s −1G(1). (8)
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From inequalities (7) and (8), we get F(0) � 2
1
s −1 max(G(0),G(1)) .

iii) If we integrate the following inequality over [a,b]2 ,

ψ(tx+(1− t)y) � t
1
s f (x)+ (1− t)

1
s f (y),

we have

1
(b−a)2

b∫
a

b∫
a

ψ(tx+(1− t)y)dxdy �
(
t

1
s +(1− t)

1
s

) 1
b−a

b∫
a

ψ(x)dx.

That is

F(t) �
(
t

1
s +(1− t)

1
s

) 1
b−a

b∫
a

ψ(x)dx.

iv) Now observe that, in the notation above, we have

Gy(t) =
1

p−q

p∫
q

ψ(u)du � s
s+1

(ψ(ta+(1− t)y)+ ψ(tb+(1− t)y))

so that integrating this inequality on [a,b] , we get

1
b−a

b∫
a

⎛⎝ 1
p−q

p∫
q

f (u)du

⎞⎠dy

�
b∫

a

s
s+1

(ψ(ta+(1− t)y)+ ψ(tb+(1− t)y))
b−a

dy

� s
(s+1)(b−a)

⎡⎣ b∫
a

ψ(ta+(1− t)y)dy+
b∫

a

ψ(tb+(1− t)y)dy

⎤⎦.

As above we have

Gy(t) � s
s+1

(ψ(ta+(1− t)y)+ ψ(tb+(1− t)y))

for y ∈ [a,b] . From this inequality, we have the following inequalities:

Ga(1− t) � s
s+1

(ψ(a)+ ψ(ta+(1− t)b)),

Gb(1− t) � s
s+1

(ψ(b)+ ψ (tb+(1− t)a))

and adding them together we get (iv) . �
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4. Applications

We consider the applications of Theorem 1 and Theorem 6 to get some inequalities
related to the special means.

Let a,b, p be positive numbers with a �= b and p �= 1,

A(a,b) =
a+b

2
,

Lp(a,b) =

{
a, if a = b(

ap−bp

p(a−b)

)1/(p−1)
, if a �= b

,

are called arithmetic mean, Stolarsky mean (generalized logarithmic mean), respec-
tively.

PROPOSITION 1. Let a,b ∈ R+ with a < b and s ∈ (0,1] . For t ∈ [0,1], the
following inequality holds[

L s+1
s

(ta+(1− t) a+b
2 ,tb+(1− t) a+b

2 )
] 1

s � 2
1
s −1A

1
s (a,b). (9)

Proof. Let ψ(x) = −x
1
s with s ∈ (0,1] on [a,b] . Applying i) in Theorem 1, we

have
G(t) = − s

s+1
1

b−a
1
t

[
(tb+(1− t) a+b

2 )
1
s +1− (ta+(1− t) a+b

2 )
1
s +1
]

for t ∈ (0,1] . Since lim
t→0

G(t) = −( a+b
2

) 1
s , we can consider G(0) = −( a+b

2

) 1
s . Ex-

pressing G(t) as generalized logarithmic mean and applying (ii) in Theorem 1, we
have the inequality (9) for t ∈ (0,1]. For t = 0, from the definition of generalized log-
arithmic mean, [

L s
s+1

( a+b
2 , a+b

2 )
] 1

s = ( a+b
2 )

1
s � 2

1
s−1A

1
s (a,b)

is shown. Thus, inequality (9) holds for all t ∈ [0,1] . �
For t = 1 in Proposition 1, the following inequality is obtained:

COROLLARY 4. Let a,b ∈ R+ with a < b and s ∈ (0,1] . Then[
L s+1

s
(a,b)

] 1
s � 2

1
s−1A

1
s (a,b).

PROPOSITION 2. Let a,b,x be positive real numbers with a < b . For x � 3, the
following inequality holds

Ax−2(a,b)+A(ax−2,bx−2) � 4
x(b−a)2 (A(ax,bx)−Ax(a,b)) .
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Proof. Let ψ(x) = −x
1
s on [a,b] in Theorem 6 (iv). Then multiplying both sides

by s+1
s , we have

1
(b−a)2

s
(2s+1)

(a−at +bt)
1
s +2−a

1
s +2 +(b+at−bt)

1
s +2−b

1
s +2

t(1− t)

� −
(
a

1
s +(b+at−bt)

1
s +(a−at +bt)

1
s +b

1
s

)
for t ∈ [0,1] . Rewriting the inequality for t = 1

2 , we have

2

(
1
2
a+

1
2
b

) 1
s

+a
1
s +b

1
s �− s

(2s+1)(a−b)2

(
4a

1
s +2−8

(
1
2
a+

1
2
b

) 1
s +2

+4b
1
s +2

)
.

From the definition of arithmetic mean,

A
1
s (a,b)+A(a

1
s ,b

1
s ) � − 4s

(2s+1)(a−b)2
(
A(a

1
s +2b

1
s +2)−A

1
s +2(a,b)

)
is obtained. Making the substitution 1

s +2 = x and considering s ∈ (0,1] yields desired
result for x � 3. �

Also, the obtained results can be used to get an lower and upper bounds for special
functions.

PROPOSITION 3. For x � 3,

Ψ(x) � 2x−2−2−1− γ.

where Ψ(x) is digamma function, i.e.

Ψ(x) =
Γ′(x)
Γ(x)

for x > 0

and γ is Euler-Mascheroni constant, i.e. γ ≈ 0.5772156649 . . ..

Proof. Applying t ∈ [0,1] , a = 0 and b = 1, ψ(x) = −x
1
s in Theorem 1 (ii) and

using Corollary 1, we have

s

2
1
s +1(s+1)

(t +1)
1
s +1− (1− t)

1
s +1

t
� 1

2
.

The substitution r = 1−t
1+t gives

1− r
1
s +1

1− r
� s+1

2s
(1+ r)

1
s .
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t ∈ [0,1] implies r ∈ [0,1] . Integrating the expression with respect to r on [0,1] gives

1∫
0

1− r
1
s +1

1− r
dr � 2

1
s −2−1.

Using the following integral representation of digamma function

Ψ(r) =
1∫

0

1− tr−1

1− t
dt− γ

for r > 0, we have

Ψ(
1
s

+2)+ γ � 2
1
s −2−1.

The substitution x−2 = 1
s yields to the desired result. �

PROPOSITION 4. For x � 2,

B(3,x) � 3x3 +8x2−6x−4
x(3x−2)(x+2)(x+1)

.

Proof. Let us use ψ(x) =−x
1
s on [0,1] in Theorem 6 (iii). Using Corollary 3, we

have s
t (2s+1)(1− t)

(
(1− t)

1
s +2 + t

1
s +2−1

)
�
(
(1− t)

1
s + t

1
s

)
.

Multiplying both sides with t(1− t) then integrating on t yields

s
(2s+1)

(
2

s
s+3

−1

)
� s2

(2s+1)(s+1)
−B

(
3,1+

1
s

)
+

s
2s+1

− s
3s+1

.

Then substitution 1+ 1
s = x gives desired inequality for x � 2. �
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[12] I. IŞCAN, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math.
Stat., 43 (6), (2014), 935–942.

[13] S. KEMALI, S. SEZER, G. TINAZTEPE AND G. ADILOV, s -Convex functions in the third sense,
Korean J. Math., 29 (3), (2021), 593–602, https://doi.org/10.11568/kjm.2021.29.3.593 .

[14] S. KEMALI, Hermite-Hadamard type inequality for s -convex functions in the fourth Sense, Turk. J.
Math. Comput. Sci. 13 (2), (2021), 287–293.

[15] W. MATUSZEWSKA AND W. ORLICZ, A note on the theory of s -normed spaces of φ -integrable
functions, Studix Math., 21, (1961), 107–115.

[16] M. A. NOOR, K. I. NOOR, M. U. AWAN AND S. COSTACHE, Some integral inequalities for har-
monically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77 (1),
(2015), 5–16.

[17] M. A. NOOR, K. I. NOOR, M. U. AWAN AND J. LI, On Hermite-Hadamard Inequalities for h-
Preinvex Functions, Filomat, 28 (7), (2014), 1463–1474.

[18] S. SEZER, Z. EKEN, G. TINAZTEPE AND G. ADILOV, p-Convex functions and some of their proper-
ties, Numer. Funct. Anal. Optim., 42 (4), (2021), 443–459.

(Received February 12, 2022) Serap Kemali
Vocational School of Technical Science

Akdeniz University
Antalya, Turkey

e-mail: skemali@akdeniz.edu.tr

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com

https://doi.org/10.11568/kjm.2021.29.3.593

