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ON BOUNDEDNESS AND COMPACTNESS OF DISCRETE HARDY

OPERATOR IN DISCRETE WEIGHTED VARIABLE LEBESGUE SPACES

ROVSHAN A. BANDALIYEV ∗ AND DUNYA R. ALIYEVA

(Communicated by M. Krnić)

Abstract. In this paper, the authors establish a two-weight boundedness criterion of discrete
Hardy operator and its dual operator in the scale of discrete weighted variable Lebesgue spaces.
Moreover, we study the problem of compactness of the discrete Hardy operator in discrete
weighted variable Lebesgue spaces. We also study a similar problem for the dual operator of
discrete Hardy operator.

1. Introduction

In the literature many authors including G. H. Hardy, J. E. Littlewood and G. Polya
[17] consider the following standard form of discrete Hardy’s inequality in discrete

Lebesgue space with constant exponent. Let p > 1, p′ =
p

p−1
and let {xk}∞

k=1 be an

arbitrary sequence of non-negative real numbers. Then

(
∞

∑
n=1

(
1
n

n

∑
k=1

xk

)p) 1
p

� p′
(

∞

∑
n=1

xp
k

) 1
p

. (1)

The constant p′ in (1) is sharp. The first result towards a weight characterization of
(1) was proved by K. F. Andersen and H. P. Heinig in [1]. Moreover, a sufficient
condition for the weight estimate to hold was proved by H. P. Heinig in [18]. A full
weight characterization of discrete Hardy inequality was proved by G. Bennett in [6]–
[8] and M.S. Braverman and V. D. Stepanov in [9]. It is well known that an essential
development for Hardy-type inequalities in the discrete case is given by C. A. Okpoti,
L.-E. Persson, and A. Wedestig in [30] and [31]. There has been a similar development
for Hardy-type inequalities in the discrete case given by A. A. Kalybay, R. Oinarov and
A. M. Temirkhanova [19] and A. A. Kalybay, L.-E. Persson and A. M. Temirkhanova
[20]. For a history of Hardy type inequalities on the cones of monotone functions and
sequences and for references to related results we refer to the monograph of A. Kufner,
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L. Maligranda and L.-E. Persson [22], and to the papers of M. L. Gol’dman [15] and A.
Gogatishvili and V. D. Stepanov [14].

It is well known that the variable discrete Lebesgue space was first studied by W.
Orlicz [32] in 1931. In [32], Hölder’s inequality for variable discrete Lebesgue space
was proved. W. Orlicz also considered the variable Lebesgue space on the real line,
and proved the Hölder inequality in this setting. However, this paper is essentially the
only contribution of Orlicz to the study of the variable Lebesgue spaces (see also [25]
and [26]). The next step in the development of the variable Lebesgue spaces came two
decades later in the work of Nakano [27] and [28]. In particular, the variable Lebesgue
spaces were objects of interest during the last two decades (see, [10] and [12]). The
study of these spaces has been stimulated by problems of elasticity, fluid dynamics, cal-
culus of variations and differential equations with non-standard growth conditions (see,
[10] and [12]). Different characterization of the mapping properties such as bounded-
ness and compactness of Hardy operator in the variable Lebesgue spaces were studied
in [2]–[5], [11], [13], [21], [23], [24], etc.

In this paper a criterion for boundedness and compactness of discrete Hardy op-
erator and its dual operator defined on discrete weighted variable Lebesgue spaces are
established.

The remainder of the paper is structured as follows. Section 2 contains some
preliminaries along with the standard ingredients used in the proofs. We also recall
standard results from the theory of discrete variable Lebesgue spaces. Our principal
assertions are formulated and proven in Section 3. We establish necessary and sufficient
conditions on weight functions for the boundedness and compactness of discrete Hardy
operator in discrete weighted variable Lebesgue spaces in Section 3.

2. Preliminaries

Let N be the set of natural number and let p = {pn}∞
n=1 be a sequence of real num-

bers such that 1 � p � pn � p < ∞, where p = inf
n�1

pn and p = sup
n�1

pn. The conjugate

exponent function of pn is defined as
1
pn

+
1
p′n

= 1 for all n ∈ N. Denote by χA the

characteristic function of A ⊂ N. Throughout this paper p′ = p
p−1 . Let w = {wn}∞

n=1

be a sequence of positive numbers, i.e., w is a weight function defined on N.

DEFINITION 1. The discrete weighted Lebesgue space with variable exponents
�pn
wn(N) is the set of sequences x = {xn}∞

n=1 such that for some λ0 > 0

∞

∑
k=1

( |xn|
λ0

wk

)pk

< ∞.

We observe that the expression

‖x‖�
pn
wn(N) = ‖xw‖�pn(N) = inf

{
λ > 0 :

∞

∑
k=1

( |xn|
λ

wk

)pk

� 1

}
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defines the Luxemburg norm in �pn
wn(N).

The space �pn
wn(N) is a Banach space (see, [10], [12] and 29]).

For constant exponent sequence the space �pn
wn(N) coincides with classical discrete

weighted Lebesgue space.

LEMMA 1. [30] Let Ak =
k
∑

n=1
v−p′
n , A0 = 0 and let vn > 0 for all n ∈ N. Then

the following statements holds:
(a) If 0 < b < 1, then

bAb−1
k v−p′

k � Ab
k −Ab

k−1 � bAb−1
k−1 v−p′

k for all k ∈ N.

(b) If b < 0 or b � 1, then

bAb−1
k−1 v−p′

k � Ab
k −Ab

k−1 � bAb−1
k v−p′

k for all k ∈ N.

For further convenience, we give proofs of the Lemma.

Proof. Let f (x) = xb and let 0 < b < 1. Then by mean value theorem, we have

bxb−1(x− y) � xb − yb � byb−1(x− y), 0 < y < x. (2)

Applying inequality (2), one has

Ab−1
k (Ak −Ak−1) � 1

b

(
Ab

k −Ab
k−1

)
� Ab−1

k−1 (Ak −Ak−1) .

So, one has

Ab−1
k v−p′

k � 1
b

(
Ab

k −Ab
k−1

)
� Ab−1

k−1 v−p′
k .

It is obvious that
n

∑
k=1

Ab−1
k v−p′

k � 1
b

Ab
n. (3)

In the similar way we can prove statements (b). Therefore we omit the proof. �

We need the following Lemma.

LEMMA 2. Let 1 � pn � qn � q < ∞. Suppose v = {vn}∞
n=1 is a sequence of

positive numbers.
Then �pn

vn (N) ↪→ �qn
vn (N) and

‖x‖
�
qn
vn (N)

� ‖x‖
�
pn
vn (N)

.
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Proof. Let x = {xn}∞
n=1 ∈ �pn

vn (N). It is obvious that( |xn|
λ

vn

)pn

�
∞

∑
n=1

( |xn|
λ

vn

)pn

� 1 for all n ∈ N.

It is well known that an exponential function f (t) = at is decreasing function for 0 <

a < 1. Then

( |xn|
λ

vn

)qn

�
( |xn|

λ
vn

)pn

. Therefore, we have

∞

∑
n=1

( |xn|
λ

vn

)qn

�
∞

∑
n=1

( |xn|
λ

vn

)pn

� 1.

So, ‖x‖
�
qn
vn (N)

� λ . Choosing λ = ‖x‖
�
pn
vn (N)

, one has

‖x‖
�
qn
vn (N)

� ‖x‖
�
pn
vn (N)

.

This completes the proof of lemma. �

We need the following Theorem.

THEOREM 1. [29] Let 1 � pn � qn � q < ∞,
1
rn

=
1
pn

− 1
qn

, Ω1 = {n ∈ N :

pn < qn} and Ω2 = {n ∈ N : pn = qn}. Suppose v = {vn}∞
n=1 and w = {wn}∞

n=1 are
the weight sequences satisfying condition∥∥∥ v

w

∥∥∥
�rn (N)

< ∞.

Then �qn
wn(N) ↪→ �pn

vn (N) and

‖x‖
�
pn
vn (N)

�
(
A+B+‖χΩ2

‖
�∞(N)

) 1
p
∥∥∥ v

w

∥∥∥
�rn (N)

‖x‖
�
qn
wn (N)

.

Here A = sup
n∈Ω1

pn

qn
, B = sup

n∈Ω1

qn− pn

qn
and

∥∥∥ v
w

∥∥∥
�rn (N)

=
∥∥∥ v

w

∥∥∥
�rn (Ω1)

+
∥∥∥ v

w

∥∥∥
�∞(Ω2)

.

We give the characterization of relatively compact sets in �pn(N).

THEOREM 2. [16] Let 1 � pn � p < ∞ and let A ⊂ �pn(N). Then, the set A ={
ai
}

i∈I is precompact in �pn(N) if and only if the following conditions are satisfied
(i) A is bounded, i.e. ∃M>0 ∀ai∈A

∥∥ai
∥∥

�pn (N) � M;

(ii) ∀ε>0 ∃K∈N ∀ai∈A

∥∥ai
∥∥

�pn (n>K+1)
< ε.
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3. Main results

Now we give the main results of this paper.
Let {xn}∞

n=1 ∈ �pn
vn (N) be an arbitrary sequence of real numbers. Suppose that

Hn =
1
n

n

∑
k=1

xk and H�
n =

∞

∑
k=n

xk

k
.

THEOREM 3. Let {pn}∞
n=1 and {qn}∞

n=1 be sequences of real numbers such that

1 < p � qn � q < ∞ and let
1
rn

=
1
p
− 1

pn
for all n ∈ N and ‖1‖

�rn (N) < ∞. Suppose

{ωn}∞
n=1 and {vn}∞

n=1 are sequences of positive numbers. Then the inequality

‖Hn‖
�
qn
ωn (N)

� C‖x‖
�
pn
vn (N)

(4)

holds if and only if

D = sup
k�1

(
k

∑
n=1

v
−p′
n

) 1
q p′

∥∥∥∥∥∥∥∥∥

(
n
∑

m=1
v
−p′
m

) 1
p′ q′

n

∥∥∥∥∥∥∥∥∥
�
qn
ωn (n�k)

< ∞. (5)

Moreover, if C > 0 is the best possible constant in (4), then

(
p−1

p+q−1

) 1
p

D � C �
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

D.

Proof. Sufficiency. Let hn =

(
n

∑
k=1

v
−p′
k

) 1
q p′

and let h0 = 0. Applying Hölder

inequality and Minkowski inequality, we have

‖Hn‖
�
qn
ωn (N)

=

∥∥∥∥∥1
n

n

∑
k=1

xk

∥∥∥∥∥
�
qn
ωn (N)

=

∥∥∥∥∥1
n

n

∑
k=1

xkvkhk (vkhk)
−1

∥∥∥∥∥
�
qn
ωn (N)

�

∥∥∥∥∥∥
1
n

(
n

∑
k=1

(|xk| vk)
p h

p
k

) 1
p
(

n

∑
k=1

(vkhk)
−p′
) 1

p′
∥∥∥∥∥∥

�
qn
ωn (N)

=

∥∥∥∥∥∥
1
n

(
n

∑
k=1

(|xk| vk)
p h

p
k

) 1
p
(

n

∑
k=1

h
−p′
k v

−p′
k

) 1
p′
∥∥∥∥∥∥

�
qn
ωn (N)
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=

∥∥∥∥∥∥∥∥
⎛
⎝ n

∑
k=1

1
np (|xk| vk)

p h
p
k

(
n

∑
k=1

h
−p′
k v

−p′
k

) p

p′
⎞
⎠

1
p

∥∥∥∥∥∥∥∥
�
qn(N)
ωn

=

∥∥∥∥∥∥
∞

∑
k=1

1
np (|xk| vk)

p h
p
k χEn

(k)

(
n

∑
k=1

h
−p′
k v

−p′
k

) p

p′
∥∥∥∥∥∥

1
p

�

qn
p

ωn (N)

�

⎛
⎜⎜⎜⎜⎝

∞

∑
k=1

∥∥∥∥∥∥
1
np (|xk| vk)

p h
p
k χEn

(k)

(
n

∑
k=1

h
−p′
k v

−p′
k

) p

p′
∥∥∥∥∥∥

�

qn
p

ωn (N)

⎞
⎟⎟⎟⎟⎠

1
p

=

⎛
⎜⎜⎜⎜⎝

∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥
1
np

(
n

∑
k=1

h
−p′
k v

−p′
k

) p

p′
∥∥∥∥∥∥

�

qn
p

ωn (n�k)

⎞
⎟⎟⎟⎟⎠

1
p

=

⎛
⎜⎜⎝ ∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥
1
n

(
n

∑
k=1

h
−p′
k v

−p′
k

) 1
p′
∥∥∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎟⎟⎠

1
p

.

Let b = 1− 1
q
. It follows from (3) that

⎛
⎜⎜⎝ ∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥
1
n

(
n

∑
k=1

h
−p′
k v

−p′
k

) 1
p′
∥∥∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎟⎟⎠

1
p

=

⎛
⎜⎜⎜⎝

∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥∥
1
n

⎛
⎝ n

∑
k=1

(
k

∑
l=1

v
−p′
l

)− 1
q

v
−p′
k

⎞
⎠

1
p′
∥∥∥∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎟⎟⎟⎠

1
p

=

⎛
⎜⎜⎜⎜⎝

∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥∥∥
1
n

⎛
⎜⎝ n

∑
k=1

(
k

∑
l=1

v
−p′
l

)(1− 1
q

)
−1

v
−p′
k

⎞
⎟⎠

1
p′
∥∥∥∥∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎟⎟⎟⎟⎠

1
p



DISCRETE HARDY OPERATOR IN DISCRETE WEIGHTED VARIABLE LEBESGUE SPACES 1221

� 1(
1− 1

q

) 1
p′

⎛
⎜⎜⎜⎜⎝

∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥∥∥∥∥
1
n

(
n

∑
k=1

v
−p′
k

) 1− 1
q

p′

∥∥∥∥∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎟⎟⎟⎟⎠

1
p

=
(
q′
) 1

p′

⎛
⎝ ∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥1
n

(hn)q−1
∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎠

1
p

. (6)

By condition (5) and Theorem 1, we have

⎛
⎝ ∞

∑
k=1

(|xk| vk)
p h

p
k

∥∥∥∥1
n

(hn)
q−1
∥∥∥∥

p

�
qn
ωn (n�k)

⎞
⎠

1
p

� D‖x‖
�
p
vn(N) � D

(
1+

p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

‖x‖�
pn
vn (N). (7)

So, combining inequalities (6) and (7), we have∥∥∥∥∥1
n

n

∑
k=1

xk

∥∥∥∥∥
�
qn
ωn (N)

�
(
q′
) 1

p′ D

(
1+

p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

‖x‖�
pn
vn (N).

So, (4) holds and C � (q′)
1
p′ D

(
1+

p−p
p +

∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

.

Necessity. Let (4) be provided and for fixed natural number N we choose the
following test sequence as

xk =

⎧⎨
⎩h

−1− q
p−1

N v
−p′
k k = 1, . . . ,N

h
−1− q

p−1

k v
−p′
k k = N +1, . . .

For the left hand side of (4) we have that

‖Hn‖
�
qn
ωn (N)

=

∥∥∥∥∥1
n

n

∑
k=1

xk

∥∥∥∥∥
�
qn
ωn (N)

�
∥∥∥∥∥1

n

n

∑
k=1

xk

∥∥∥∥∥
�
qn
ωn (n�N)

=

∥∥∥∥∥1
n

(
N

∑
k=1

h
−1− q

p−1

N v
−p′
k +

n

∑
k=N+1

h
−1− q

p−1

k v
−p′
k

)∥∥∥∥∥
�
qn
ωn (n�N)

�
∥∥∥∥∥1

n

(
h

q−1
N +h

−1− q
p−1

n

n

∑
k=N+1

v
−p′
k

)∥∥∥∥∥
�
qn
ωn (n�N)
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=

∥∥∥∥∥1
n

(
h

q−1
N +h

−1− q
p−1

n

(
h

pq
p−1
n −h

pq
p−1

N

))∥∥∥∥∥
�
qn
ωn (n�N)

=

∥∥∥∥∥1
n

(
h

q−1
N +h

q−1
n −h

−1− pq
p−1

n h
pq

p−1

N

)∥∥∥∥∥
�
qn
ωn (n�N)

�
∥∥∥∥∥1

n

(
h

q−1
N +h

q−1
n −h

−1− pq
p−1

N h
pq

p−1

N

)∥∥∥∥∥
�
qn
ωn (n�N)

=
∥∥∥∥1

n

(
h

q−1
N +h

q−1
n −h

q−1
N

)∥∥∥∥
�
qn
ωn (n�N)

=

∥∥∥∥∥h
q−1
n

n

∥∥∥∥∥
�
qn
ωn (n�N)

.

For the right-hand side of (4), by applying Lemma 1 we have

‖x‖
�
pn
vn (N)

� ‖x‖
�
p
vn (N)

=

(
∞

∑
k=1

(|xk| vk)
p

) 1
p

=

(
N

∑
k=1

(|xk| vk)
p +

∞

∑
k=N+1

(|xk| vk)
p

) 1
p

=

(
N

∑
k=1

h
−p−q p′
N v

−p′
k +

∞

∑
k=N+1

h
−p−q p′
k v

−p′
k

) 1
p

=

(
h
−p
N +

∞

∑
k=N+1

h
−p−q p′
k v

−p′
k

) 1
p

=

⎛
⎜⎝h

−p
N +

∞

∑
k=N+1

(
k

∑
m=1

v
−p′
m

)− p−1
q −1

v
−p′
k

⎞
⎟⎠

1
p

�
(

h
−p
N +

q

p−1

(
∞

∑
k=N+1

[
h
−p
k−1−h

−p
k

])) 1
p

�
(

h
−p
N +

q

p−1
h
−p
N

) 1
p

=

(
p+q−1

p−1

) 1
p

h−1
N

So (4) implies that

∥∥∥∥∥h
q−1
n

n

∥∥∥∥∥
�
qn
ωn (n�N)

� C

(
p+q−1

p−1

) 1
p

h−1
N .

Thus, we have (
p−1

p+q−1

) 1
p

hN

∥∥∥∥∥h
q−1
n

n

∥∥∥∥∥
�
qn
ωn (n�N)

� C.
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By (4) we find that (1) holds and

(
p−1

p+q−1

) 1
p

D � C.

This completes the proof of theorem. �

For the adjoint discrete Hardy operator the following theorem holds.

THEOREM 4. Let {pn}∞
n=1 and {qn}∞

n=1 be sequences of real numbers such that

1 < p � qn � q < ∞ and let
1
rn

=
1
p
− 1

pn
for all n ∈ N and ‖1‖

�rn (N) < ∞. Suppose

{ωn}∞
n=1 and {vn}∞

n=1 are sequences of positive real numbers. Let {xn}∞
n=1 ∈ �pn

vn (N)
be an arbitrary sequence of real numbers. Then the inequality

‖H�
n‖

�
qn
ωn (N)

� C‖x‖
�
pn
vn (N)

(8)

holds if and only if

D� = sup
k�1

⎛
⎝ ∞

∑
n=k

v
−p′
n

np′

⎞
⎠

1
q p′
∥∥∥∥∥∥∥
⎛
⎝ ∞

∑
m=n

v
−p′
m

mp′

⎞
⎠

1
p′ q′
∥∥∥∥∥∥∥

�
qn
ωn (n�k)

< ∞.

Moreover, if C > 0 is the best possible constant in (8), then

(
p−1

p+q−1

) 1
p

D� � C �
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

D�.

COROLLARY 1. Let pn = p = const, qn = q = const for all n ∈ N and 1 < p �
q < ∞. Suppose {ωn}∞

n=1 and {vn}∞
n=1 are sequences of nonnegative numbers. Let

{xn}∞
n=1 ∈ �p

vn(N) be an arbitrary sequence of real numbers. Then condition (5) is
equivalent to condition

M = sup
k�1

(
k

∑
n=1

v−p′
n

) 1
p′
(

∞

∑
n=k

(ωn

n

)q
) 1

q

< ∞.

Moreover,

M � D � q
1
q M.

COROLLARY 2. Let pn = p = const, qn = q = const for all n ∈ N and 1 < p �
q < ∞. Suppose {ωn}∞

n=1 and {vn}∞
n=1 are sequences of nonnegative numbers. Let
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{xn}∞
n=1 ∈ �p

vn(N) be an arbitrary sequence of real numbers. Then condition (8) is
equivalent to condition

M� = sup
k�1

(
∞

∑
n=k

v−p′
n

np′

) 1
p′
(

k

∑
n=1

ωn

) 1
q

< ∞.

Moreover,

M� � D� � q
1
q M�.

COROLLARY 3. Let {pn}∞
n=1 and {qn}∞

n=1 be sequences of real numbers such

that 1 < p � qn � q < ∞ and let
1
rn

=
1
p
− 1

pn
for all n ∈ N and ‖1‖

�rn (N) < ∞. Sup-

pose ωn = nα and vn = 1 for all n ∈ N and α <
1
p
− 1

q
. Let {xn}∞

n=1 ∈ �p(N) be an

arbitrary sequence of real numbers.
Then the inequality (4) holds.
Moreover, if C > 0 is the best possible constant in (4), then

(
p−1

p+q−1

) 1
p

sup
k�1

k
1

p′ q

∥∥∥∥∥∥n
q−1
q p′ +α−1

∥∥∥∥∥∥
�qn (n�k)

� C

�
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p
(

1+
p

q−α pq−1

) 1
q

.

Now we give a compactness result of discrete Hardy operator from �pn
vn (N) into

�qn
wn(N).

THEOREM 5. Let {pn}∞
n=1 and {qn}∞

n=1 be sequences of real numbers such that

1 < p � qn � q < ∞ and let
1
rn

=
1
p
− 1

pn
for all n ∈ N and ‖1‖

�rn (N) < ∞. Suppose

{ωn}∞
n=1 and {vn}∞

n=1 are sequences of positive real numbers. Then Hn is compact
from �pn

vn (N) into �qn
wn(N) if and only if

lim
k→∞

(
k

∑
n=1

v
−p′
n

) 1
q p′

∥∥∥∥∥∥∥∥∥∥

(
n
∑

m=1
v
−p′
m

) q−1
q p′

n

∥∥∥∥∥∥∥∥∥∥
�
qn
ωn (n�k)

= 0. (9)

Proof. Sufficiency. Let the condition (9) be provided. Then the condition (5) of
Theorem 1 is valid. Therefore, by Theorem 1, the operator Hn is bounded from �pn

vn (N)
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into �qn
wn(N). Assume that A = { f m}m∈I ⊂ �pn

vn (N) and M = sup
m�1

‖ fm‖
�
pn
vn (N)

. Let us

show that the set
{

w
1
qn Hn fm

}
is precompact in �qn(N). By Theorem 1,

∥∥∥w 1
qn Hn fm

∥∥∥
�qn (N)

= ‖Hn fm‖
�
qn
ωn (N)

� C ‖ fm‖
�
pn
vn (N)

� CM.

So the set
{

w
1
qn Hn fm

}
is uniformly bounded in �qn(N).

For r > 1 we set wr = {wr,i}∞
i=1 , wr,i =

{
0, if 1 � i � r−1,

wi, if i � r.
Let

Ar = sup
k�r

(
k

∑
n=1

v
−p′
n

) 1
q p′

∥∥∥∥∥∥∥∥∥
w

1
qn
n

(
n
∑

m=1
v
−p′
m

) 1
q′ p′

n

∥∥∥∥∥∥∥∥∥
�qn (n�k)

= sup
k�r

Fk.

Then, by Theorem 1, we have

sup
‖ fm‖

�
pn
vn (N)

�M

∥∥∥∥w 1
qn
n Hn fm

∥∥∥∥
�qn (n�r)

= sup
‖ fm‖

�
pn
vn (N)

�M

∥∥∥∥w 1
qn
r,n Hn fm

∥∥∥∥
�qn (n�1)

� M
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

Ar. (10)

So, by (10), we get

lim
r→∞

⎛
⎝ sup

‖ fm‖�
pn
vn (N)�M

∥∥∥∥w 1
qn
r,n Hn fm

∥∥∥∥
�qn (n�r)

⎞
⎠

� M
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

lim
r→∞

Ar

= M
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

lim
r→∞

sup
k�r

Fk

= M
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

limr→∞Fr

= M
(
q′
) 1

p′
(

1+
p− p

p
+
∥∥∥χΩ2

∥∥∥
�∞(N)

) 1
p

lim
r→∞

Fr = 0.



1226 R. A. BANDALIYEV AND D. R. ALIYEVA

Necessity. Let the operator Hn be compact from �pn
vn (N) into �qn

wn(N) . For r � 1
we introduce the following sequence fr =

{
fr, j
}∞

j=1 ,

fr, j =

{
v
−p′
j , if 1 � j � r,

0, if j > r.

Let gr =

⎧⎪⎨
⎪⎩

fr, j
‖ fr‖

�
p j
v j

(N)

⎫⎪⎬
⎪⎭

∞

j=1

. It is obvious that ‖gr‖
�
p j
v j

(N)
= 1. Since the operator Hn is

compact from �pn
vn (N) into �qn

wn(N), it implies that the set

{
wnHnϕ , ‖ϕ‖

�
pn
vn

(N)=1

}
is

precompact in �qn(N). Thus, by the criteria on precompactness of the sets in �qn(N),
we have

lim
r→∞

⎛
⎜⎝ sup

‖ϕ‖
�
pn
vn

(N)=1
‖wn Hnϕ‖

�qn (n�r)

⎞
⎟⎠= 0. (11)

By Lemma 2, we have

sup
‖ϕ‖

�
pn
vn (N)

=1
‖wn Hnϕ‖

�qn (n�r)
� ‖wn Hngr‖

�qn (n�r)
=

∥∥∥∥∥∥∥∥
wn

n

n
∑
j=1

fr, j

‖ fr‖
�
p j
v j

(N)

∥∥∥∥∥∥∥∥
�qn (n�r)

�

∥∥∥∥∥∥∥∥
wn

n

n
∑
j=1

fr, j

‖ fr‖
�
p
vn (N)

∥∥∥∥∥∥∥∥
�qn (n�r)

=

∥∥∥∥∥∥∥∥∥∥∥∥∥
wn

n

⎛
⎜⎜⎜⎜⎜⎝

(
n
∑
j=1

v
−p′
j

)
(

r
∑
j=1

v
−p′
j

) 1
p

⎞
⎟⎟⎟⎟⎟⎠

1
q
⎛
⎜⎜⎜⎜⎜⎝

(
n
∑
j=1

v
−p′
j

)
(

r
∑
j=1

v
−p′
j

) 1
p

⎞
⎟⎟⎟⎟⎟⎠

q−1
q

∥∥∥∥∥∥∥∥∥∥∥∥∥
�qn (n�r)

�

⎛
⎜⎜⎜⎜⎜⎝

(
r
∑
j=1

v
−p′
j

)
(

r
∑
j=1

v
−p′
j

) 1
p

⎞
⎟⎟⎟⎟⎟⎠

1
q

∥∥∥∥∥∥∥∥∥∥∥∥
wn

n

⎛
⎜⎜⎜⎜⎜⎝

(
n
∑
j=1

v
−p′
j

)
(

n
∑
j=1

v
−p′
j

) 1
p

⎞
⎟⎟⎟⎟⎟⎠

1
q′
∥∥∥∥∥∥∥∥∥∥∥∥

�qn (n�r)

=

(
r

∑
j=1

v
−p′
j

) 1
q p′

∥∥∥∥∥∥∥∥∥∥∥

(
n
∑
j=1

v
−p′
j

) 1
q′ p′

n

∥∥∥∥∥∥∥∥∥∥∥
�
qn
wn (n�r)

. (12)
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So, by (11) and (12) we have the condition (9).
This completes the proof. �

THEOREM 6. Let {pn}∞
n=1 and {qn}∞

n=1 be sequences of real numbers such that

1 < p � qn � q < ∞ and let
1
rn

=
1
p
− 1

pn
for all n ∈ N and ‖1‖

�rn (N) < ∞. Suppose

{ωn}∞
n=1 and {vn}∞

n=1 are sequences of positive real numbers. Then H�
n is compact

from �pn
vn (N) into �

qn
wn(N) if and only if

lim
k→∞

⎛
⎝ ∞

∑
n=k

v
−p′
n

np′

⎞
⎠

1
q p′
∥∥∥∥∥∥∥
⎛
⎝ ∞

∑
m=n

v
−p′
m

mp′

⎞
⎠

1
p′ q′
∥∥∥∥∥∥∥

�
qn
ωn (n�k)

= 0. (13)
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