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Abstract. If μ is a positive Borel measure on the interval [0,1) , we let Hμ be the Hankel
matrix Hμ = (μn,k)n,k�0 with entries μn,k = μn+k and μn =

∫
[0,1) t

ndμ(t) . Using Hμ , Ye and
Zhou first defined the Derivative-Hilbert operator as

DH μ ( f )(z) =
∞

∑
n=0

(
∞

∑
k=0

μn,kak

)
(n+1)zn, z ∈ D,

where f (z) = ∑∞
n=0 anzn is an analytic function in D . In this paper, we characterize the measure

μ for which DH μ is a bounded (resp., compact) operator from Besov space Bp into Bloch
space B with 1 < p < ∞ .

1. Introduction

If μ is a positive Borel measure on the interval [0,1) , we let Hμ be the Hankel
matrix Hμ = (μn,k)n,k�0 with entries μn,k = μn+k and μn =

∫
[0,1) t

ndμ(t) . For any
analytic functions f (z) = ∑∞

n=0 anzn , generalized Hilbert operator is defined as

Hμ( f )(z) =
∞

∑
n=0

(
∞

∑
k=0

μn,kak

)
zn, z ∈ D,

on the space of analytic functions in D . In recent decades, in complex setting, gener-
alized Hilbert operator Hμ has been studied extensively. For example, Galanopoulos
and Peláez [7] characterized the Borel measure μ for which the Hankel operator is a
bounded (resp., compact) operator on Hardy and Bergman space. Girela and Merchán
[6] extended the study of Hilbert operator to all the conformally invariant spaces. Li
and Zhou [10] studied the essential norm of generalized Hilbert matrix from Bloch type
spaces into BMOA and Bloch space.

In 2020, Ye and Zhou [13] defined the Derivative-Hilbert operator for the first time
using Hankel matrix. They defined it as

DH μ( f )(z) =
∞

∑
n=0

(
∞

∑
k=0

μn,kak

)
(n+1)zn, z ∈ D,
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on the space of analytic functions in D . Since

DH μ( f )(z) = (zHμ ( f )(z))′,

DH μ is called the Derivative-Hilbert operator. Another generalized integral operator
related to DH μ (denoted by Iμα , α ∈ N+ ) is defined by

Iμα ( f )(z) =
∫

[0,1)

f (t)
(1− tz)α dμ(t).

Ye and Zhou [13] characterized the measure μ for which Iμ2 and DH μ is
bounded (resp., compact) on Bloch space. They did the similar research on Bergman
spaces in [14].

In this paper, we consider the operators

DH μ , Iμ2 : Bp → B, 1 < p < ∞.

The aim is to study the boundedness (resp.,compactness)of Iμ2 and DH μ .
The rest of this paper is organized as follows. In section 2, we state some notation

and preliminaries which will be used in the sequel. Section 3 gives the sufficient con-
dition such that DH μ and Iμα (α ∈ N+) are well defined in Bp . Section 4 devotes
to study the boundedness (resp., compactness) of Iμ2 and DH μ .

NOTATION. Throughout this paper, C denotes a positive constant which may be
different from one occurrence to the next.

2. Notation and preliminaries

Let D and ∂D = {z : |z| = 1} denote respectively the open unit disc and the unit
circle in the complex plane C . Let H(D) be the space of all analytic functions in D

and dA(z) = 1
π dxdy the normalized Lebesgue area measure on D .

For 1 < p < ∞ , the analytic Besov space Bp consists of functions f ∈ H(D) with

‖ f‖Bp =
(| f (0)|p + ρp( f )p) 1

p < ∞,

where

ρp( f ) =
(∫

D

(1−|z|2)p−2| f ′(z)|pdA(z)
) 1

p

.

We refer to [1, 5, 8, 16, 18] for the theory of Besov spaces.
If 0 < p < ∞ , the Bergman space Ap is the set of all f ∈ H(D) such that

‖ f‖p
Ap =

∫
D

| f (z)|pdA(z) < ∞.

We refer to [18] for the notation and results regarding Bergman spaces.
The Bloch space B is the set of functions f ∈ H(D) with

‖ f‖B = | f (0)|+ sup
z∈D

(1−|z|2)| f ′(z)| < ∞.
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It is known that B is a Banach space with the norm ‖ f‖B , a classical reference for the
Bloch space is [17].

For an arc I ⊆ ∂D , let |I| = 1
2π
∫
I |dξ | be the normalized length of I and S(I) is

the Carleson box based on I with

S(I) = {z = reit : eit ∈ I;1−|I|� r < 1}.
Clearly, if I = ∂D , then S(I) = D .

For 0 < s < ∞ , we say that a positive Borel measure on D is a s-Carleson measure
(see [4]) if

sup
I⊂∂D

μ(S(I))
|I|s < ∞.

If s = 1, 1-Carleson measure is the classical Carleson measure. When the positive
Borel measure μ on D satisfies the following equation

lim
|I|→0

μ(S(I))
|I|s = 0,

μ is a vanishing s-Carleson measure. If s = 1, the vanishing 1-Carleson measure is
the vanishing Carleson measure.

For 0 � α < ∞ and 0 < s < ∞ , we say that a positive Borel measure on D is a
α -logarithmic s-Carleson measure (see [15]) if

sup
I⊂∂D

μ(S(I))(log 2π
|I| )

α

|I|s < ∞.

If a positive Borel measure μ on D satisfies the following equation

lim
|I|→0

μ(S(I))(log 2π
|I| )

α

|I|s = 0,

μ is a vanishing α -logarithmic s-Carleson measure (see [11]).
Suppose μ is a s-Carleson measure on D , the Carleson norm of μ is

N1(μ) = sup
I⊂∂D

μ(S(I))
|I|s ,

we use N2(μ) denote the norm of identity mapping i from A1 into L1(D,μ) . More
important, N1(μ) is equivalent to N2(μ) . Set dμr(z) = Xr<|z|<1(t)dμ(t) . Then μ is
a vanishing s-Carleson measure if and only if

lim
r→1−

N1(μr) = 0 or lim
r→1−

N2(μr) = 0. (2.1)

A positive Borel measure on [0,1) can be seen as a Borel measure on D by iden-
tifying it with the measure μ̃ defined by

μ̃(E) = μ(E∩ [0,1)),
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for any Borel subset E of D . Then a positive Borel measure μ on [0,1) can be seen
as an s-Carleson measure on D , if

sup
t∈[0,1)

μ([t,1))
(1− t)s < ∞.

On the interval [0,1) , we have similar statements for vanishing s-Carleson measure, α -
logarithmic β -Carleson measure and vanishing α -logarithmic β -Carleson measure.

3. Conditions such that DH μ and Iμα are well defined in Bp

In this section, we find the sufficient condition such that Iμα and DH μ are well
defined in Bp (1 < p < ∞) and obtain that DH μ( f ) = Iμ2( f ) , for all f ∈ Bp , with
the certain condition.

THEOREM 3.1. Suppose 1 < p < ∞ , 1
p + 1

q = 1 and let μ be a positive Borel

measure on [0,1) . If μ satisfies
∫
[0,1)

(
log 2

1−t

) 1
q dμ(t) < ∞ , then for any f ∈ Bp ,

α ∈ N+ , Iμα ( f )(z) uniformly converges on any compact subset of D .

Proof. Let M =
∫
[0,1)

(
log 2

1−t

) 1
q dμ(t) , it follows from Holland [8] that there ex-

ists a positive constant C , such that

| f (z)| � C‖ f‖Bp

(
log

2
1−|z|

) 1
q

, f ∈ Bp. (3.1)

For any f ∈ Bp , 0 < r < 1, |z| � r , using (3.1) we have

∫
[0,1)

| f (t)|
|1− tz|α dμ(t) � 1

(1− r)α

∫
[0,1)

| f (t)|dμ(t)

�
C‖ f‖Bp

(1− r)α

∫
[0,1)

(
log

2
1− t

) 1
q

dμ(t)

=
CM‖ f‖Bp

(1− r)α .

Hence Iμα ( f )(z) uniformly converges on any compact subset of D . �

THEOREM 3.2. Suppose 1 < p < ∞ , 1
p + 1

q = 1 , α ∈ N+ and let μ be a positive

Borel measure on [0,1) . If the operator Iμα is well defined in Bp , then for any γ < 1
q ,

we have
∫
[0,1)

(
log 2

1−t

)γ
dμ(t) < ∞ .

Proof. Let γ < 1
q , note that the function F(z) =

(
log 2

1−z

)γ
belongs to Bp (see

[8], Theorem 1). From the suppose, Iμα (F)(z) is well defined for every z ∈ D . Take
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z = 0, we have

Iμα (F)(0) =
∫

[0,1)

(
log

2
1− t

)γ
dμ(t),

it is a complex number. Since μ is a positive Borel measure on [0,1) and
(
log 2

1−t

)γ
>

0 for all t ∈ [0,1) , we obtain that

∫
[0,1)

(
log

2
1− t

)γ
dμ(t) < ∞. �

The following two lemmas will be used in finding the condition such that DH μ
is well defined in Bp .

LEMMA 3.3. [6] Suppose that 0 � α � β , s � 1 and let μ be a positive Borel
measure on [0,1) which is a β -logarithmic s-Carleson measure. Then

∫
[0,1)

tk
(

log
2

1− t

)α
dμ(t) = O

(
(logk)α−β

ks

)
, as k → ∞.

LEMMA 3.4. (I) [8] Suppose that 1 < p � 2 . Then there exists a positive con-
stant Cp such that if f ∈ Bp and f (z) = ∑∞

k=0 akzk(z ∈ D) , then ∑∞
k=1 kp−1|ak|p �

Cp(ρp( f ))p .
(II) [12] Suppose that 2 < p < ∞ . Then there exists a positive constant Cp such

that if f ∈ Bp and f (z) = ∑∞
k=0 akzk(z ∈ D) , then ∑∞

k=1 k|ak|p � Cp(ρp( f ))p .

THEOREM 3.5. Suppose 1 < p < ∞ , 1
p + 1

q = 1 and let μ be a finite positive
Borel measure on [0,1) .

(I) If 1 < p � 2 and ∑∞
k=1

μk
q

k < ∞ , then the operator DH μ is well defined in
Bp .

(II) If 2 < p < ∞ and ∑∞
k=1

μk
q

k
q
p

< ∞ , then the operator DH μ is well defined in

Bp .

Proof. For any f ∈ Bp , let f (z) = ∑∞
k=0 akzk(z ∈ D) . Since

μn+1− μn =
∫

[0,1)
tn(t −1)dμ(t) < 0,

the non-negative sequence {μn}∞
n=0 is decreasing, we have

∞

∑
k=1

|μn+k||ak| �
∞

∑
k=1

|μk||ak|, n � 0. (3.2)

First, we prove (I) :
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Let 1 < p � 2 and ∑∞
k=1

μk
q

k < ∞ . Using (3.2) , Hölder inequality and Lemma
3.4(I) , we obtain that

∞

∑
k=1

|μn+k||ak| �
∞

∑
k=1

|μk||ak|

=
∞

∑
k=1

k1− 1
p |ak| |μk|

k
1
q

�
(

∞

∑
k=1

kp−1|ak|p
) 1

p
(

∞

∑
k=1

|μk|q
k

) 1
q

� Cρp( f )

(
∞

∑
k=1

|μk|q
k

) 1
q

< ∞.

So in this condition, DH μ is well defined in Bp .
Second, we prove (II) :
Let 2 < p < ∞ and ∑∞

k=1
|μk|q
k

q
p

< ∞ . Applying (3.2) , Hölder inequality and Lemma

3.4(II) , we have

∞

∑
k=1

|μn+k||ak| �
∞

∑
k=1

|μk||ak|

=
∞

∑
k=1

k
1
p |ak| |μk|

k
1
p

�
(

∞

∑
k=1

k|ak|p
) 1

p
(

∞

∑
k=1

|μk|q
k

q
p

) 1
q

� Cρp( f )

(
∞

∑
k=1

|μk|q
k

q
p

) 1
q

< ∞.

In this case, we see also DH μ is well defined in Bp . �

THEOREM 3.6. Suppose that 1 < p < ∞ and let μ be a positive Borel measure
on [0,1) . If μ is a 1 -Carleson measure, then the operator DH μ is well defined in
Bp .

Proof. Since μ is a 1-Carleson measure, using Lemma 3.3 with α = 0 and β =
0, we have

μk =
∫

[0,1)
tkdμ(t) = O

(
1
k

)
, k → ∞.
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Hence there exists a positive constant C and a positive integer N such that

μk � C
k

, k > N. (3.3)

When 1 < p � 2 and q = p
p−1 , using (3.3) , we have

∞

∑
k=1

μk
q

k
=

N

∑
k=1

μk
q

k
+

∞

∑
k=N+1

μk
q

k

�
N

∑
k=1

μk
q

k
+C

∞

∑
k=N+1

1
kq+1

< ∞,

then by Theorem 3.5(I) , DH μ is well defined in Bp .
When 2 < p < ∞ and q = p

p−1 , using (3.3) , we have

∞

∑
k=1

μk
q

k
q
p

=
N

∑
k=1

μk
q

k
q
p

+
∞

∑
k=N+1

μk
q

k
q
p

�
N

∑
k=1

μk
q

k
q
p

+C
∞

∑
k=N+1

1

kq+ q
p

=
N

∑
k=1

μk
q

k
q
p

+C
∞

∑
k=N+1

1

k
2q
p +1

< ∞,

then Theorem 3.5(II) yields that DH μ is well defined in Bp . �

THEOREM 3.7. Suppose 1 < p < ∞ , 1
p + 1

q = 1 , s � 1 , α ∈ N+ and let μ be the

positive Borel measure on [0,1) . If μ is a 1
q -logarithmic s-Carleson measure, then

the operator DH μ and Iμα are well defined in Bp and DH μ( f ) = Iμ2( f ) , for all
f ∈ Bp .

Proof. Let dν(t) =
(
log 2

1−t

) 1
q dμ(t) . Proposition 2.5 of [6] gives that ν is a

s-Carleson measure. From the definition of s-Carleson measure, we know that there
exists a positive constant C , such that

∫
[0,1)

(
log

2
1− t

) 1
q

dμ(t) = ν([0,1)) � C(1−0)s � C,

then

∫
[0,1)

|tn f (t)|dμ(t) �
∫

[0,1)
| f (t)|dμ(t) � C‖ f‖Bp

∫
[0,1)

(
log

2
1− t

) 1
q

dμ(t) � C.
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Thus for all n ∈ N , the integral
∫
[0,1) t

n f (t)dμ(t) converges absolutely. From the proof

of Theorem 3.1, we know the integral
∫
[0,1)

f (t)
(1−tz)2 dμ(t) converges absolutely. We

have ∫
[0,1)

f (t)
(1− tz)2 dμ(t) =

∞

∑
n=0

(∫
[0,1)

tn f (t)d μ(t)
)

(n+1)zn.

Hence, from the given condition we can imply that Iμ2 is well defined in Bp and

Iμ2( f )(z) =
∞

∑
n=0

(∫
[0,1)

tn f (t)dμ(t)
)

(n+1)zn.

Since μ is a 1
q -logarithmic s-Carleson measure on [0,1) , Theorem 3.6 gives that

DH μ is well defined in Bp . From the proof of Theorem 3.5 and Theorem 3.6, we
get that ∑∞

k=0 |μn,kak| � C , hence we can interchange the order of summation in the
expression defining DH μ( f )(z) .

Therefore, for any f ∈Bp , let f (z) = ∑∞
k=0 akzk , using Fubini’s theorem, we obtain

that

DH μ( f )(z) =
∞

∑
n=0

(
∞

∑
k=0

μn,kak

)
(n+1)zn

=
∞

∑
n=0

(
∞

∑
k=0

ak

∫
[0,1)

tn+kdμ(t)

)
(n+1)zn

=
∞

∑
n=0

(∫
[0,1)

(
∞

∑
k=0

akt
k

)
tndμ(t)

)
(n+1)zn

=
∞

∑
n=0

(∫
[0,1)

f (t)tndμ(t)
)

(n+1)zn

= Iμ2( f )(z).

The proof is complete. �

4. Boundedness and compactness of DH μ and Iμ2

The following two lemmas will be very useful in the proof of the boundedness and
compactness of DH μ and Iμ2 .

LEMMA 4.1. Suppose that Iμ2 is a bounded operator from Bp (1 < p < ∞) into
B . Then Iμ2 is compact if and only if for any bounded sequence { fn}∞

n=0 ⊆ Bp which
converges to 0 uniformly on every compact subset of D , we have Iμ2( fn) → 0 in B .

The proof of Lemma 4.1 is referred to the Proposition 3.11 of [3]. From [9] and
the closed graph theorem we can easy obtain the following result.

LEMMA 4.2. Let 1 � m � n < ∞ , then Am ⊆ Ln(D,dμ) if and only if μ is a
2n
m -Carleson measure.
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THEOREM 4.3. Suppose 1 < p < ∞ , 1
p + 1

q = 1 and let μ be a positive Borel
measure on [0,1) .

(I) If μ is a 1
q -logarithmic 2 -Carleson measure, then Iμ2 is a bounded operator

from Bp into B.

(II) If μ is a vanishing 1
q -logarithmic 2 -Carleson measure, then Iμ2 is a com-

pact operator from Bp into B .

Proof. Let M =
∫
[0,1)

(
log 2

1−t

) 1
q dμ(t) , since μ is a 1

q -logarithmic 2-Carleson
measure, by the proof of Theorem 3.7, we know that M < ∞ and Iμ2 is well defined
in Bp . Using (3.1) , we obtain that

∫
[0,1)

| f (t)|dμ(t) � CM‖ f‖Bp .

If 0 � r < 1, for any f ∈ Bp , g ∈ A1 , let gr(z) = g(rz) , z ∈ D , by Theorem 11.6 of
[18], we get that ‖gr‖A1 � ‖g‖A1 , then we have

∫
D

∫
[0,1)

∣∣∣∣ f (t)g(rz)
(1− rtz)2

∣∣∣∣dμ(t)dA(z) �
CM‖ f‖Bp

(1− r)2

∫
D

|g(rz)|dA(z)

=
CM‖ f‖Bp

(1− r)2 ‖gr‖A1 (4.1)

�
CM‖ f‖Bp

(1− r)2 ‖g‖A1.

For 0 < k < 1, the Bergman kernel function of kD = {kz : z∈D} is K(z,ξ )= 1

k2(1− ξ z
k2

)2
.

The reproducing property is

f (z) =
∫

kD
f (ξ )K(z,ξ )dA(ξ ), f ∈ A1. (4.2)

When 0 � r < 1, f ∈ B , g ∈ A1 , using (4.1) , Fubini’s theorem and (4.2) , we imply
that ∫

D

Iμ2( f )(rz)g(rz)dA(z) =
∫

[0,1)
f (t)g(r2t)dμ(t), (4.3)

which is referred to the proof of Theorem 2.3 in [13].
Now we begin the proof of (I) :

Let dν(t) = (log 2
1−t )

1
q dμ(t) , by Proposition 2.5 of [6], ν is a 2-Carleson mea-

sure. From Lemma 4.2, we obtain that A1 ⊆ L1(D,dν). Hence there exists C > 0,
such that for any g ∈ A1 ,

∫
[0,1)

|g(t)|dν(t) �
∫

D

|g(z)|dν(z) � C
∫

D

|g(z)|dA(z) = C‖g‖A1. (4.4)
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For any f ∈ Bp, g ∈ A1 , combining (4.3) and (3.1) with (4.4) , we get∣∣∣∣
∫

D

Iμ2( f )(rz)g(rz)dA(z)
∣∣∣∣=
∣∣∣∣
∫

[0,1)
f (t)g(r2t)dμ(t)

∣∣∣∣
� C‖ f‖Bp

∫
[0,1)

∣∣g(r2t)
∣∣(log

2
1− t

) 1
q

dμ(t)

= C‖ f‖Bp

∫
[0,1)

∣∣g(r2t)
∣∣dν(t) (4.5)

� C‖ f‖Bp‖g‖A1,

we know that (A1)∗ ∼= B (see [17]), under the pairing

〈 f ,g〉 = lim
r→1−

∫
D

f (rz)g(rz)dA(z), f ∈ B, g ∈ A1. (4.6)

Combining (4.5) with (4.6) , we have that

〈Iμ2( f ),g〉 = lim
r→1−

∣∣∣∣
∫

D

Iμ2( f )(rz)g(rz)dA(z)
∣∣∣∣

� C‖ f‖Bp‖g‖A1.

Hence, Iμ2 is a bounded operator from Bp into B .
Next we start the proof of (II) :

Let dν(t) = (log 2
1−t )

1
q dμ(t) , since μ is a vanishing 1

q -logarithmic 2-Carleson
measure, then by Proposition 2.5 of [6], ν is a vanishing 2-Carleson measure. For
0 < r < 1, let dνr(z) = Xr<|z|<1(t)dν(t) and N be the norm of identity mapping
i from A1 into L1(D,dν) , by (2.1) , N (νr) → 0 (r → 1−) . Suppose { fn}∞

n=1 is a
bounded sequence in Bp which converges to 0 uniformly on every compact subset of
D . For any g ∈ A1 , r ∈ [0,1) , we have∫

[0,1)
| fn(t)||g(t)|dμ(t)

=
∫

[0,r)
| fn(t)||g(t)|dμ(t)+

∫
[r,1)

| fn(t)||g(t)|dμ(t)

�
∫

[0,r)
| fn(t)||g(t)|dμ(t)+C‖ fn‖Bp

∫
[r,1)

|g(t)|
(

log
2

1− t

) 1
q

dμ(t)

=
∫

[0,r)
| fn(t)||g(t)|dμ(t)+C‖ fn‖Bp

∫
[0,1)

|g(t)|dνr(t)

�
∫

[0,r)
| fn(t)||g(t)|dμ(t)+C‖ fn‖BpN (νr)‖g‖A1 .

Then N (νr) → 0 (r → 1−) and the condition { fn} → 0(n → 0) uniformly on every
compact subset of D imply that

lim
n→∞

∫
[0,1)

| fn(t)||g(t)|dμ(t) = 0, g ∈ A1, (4.7)
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combining (4.7) with (4.3) , we get that

lim
n→∞

〈Iμ2( fn),g〉 = lim
n→∞

(
lim

r→1−

∣∣∣∣
∫

D

Iμ2( fn)(rz)g(rz)dA(z)
∣∣∣∣
)

= lim
n→∞

(
lim

r→1−

∣∣∣∣
∫

[0,1)
fn(t)g(r2t)dμ(t)

∣∣∣∣
)

� lim
n→∞

∫
[0,1)

| fn(t)||g(t)|dμ(t)

= 0.

Hence when n → 0, Iμ2( fn) → 0 in B . Then, Lemma 4.1 implies that Iμ2 is a
compact operator from Bp into B . �

Using Theorem 3.7 and Theorem 4.3, we obtain the following corollary.

COROLLARY 4.4. (I) If μ is a 1
q -logarithmic 2 -Carleson measure, then DH μ

is a bounded operator from Bp into B .
(II) If μ is a vanishing 1

q -logarithmic 2 -Carleson measure, then DH μ is a
compact operator from Bp into B .

THEOREM 4.5. Suppose 1 < p < ∞ , 1
p + 1

q = 1 and let μ be a positive Borel

measure on [0,1) which satisfies
∫
[0,1)(log 2

1−t )
1
q dμ(t) < ∞ .

(I) If DH μ is a bounded operator from Bp into B , then μ is a γ -logarithmic
2 -Carleson measure.(γ < 1

q )
(II)If DH μ is a compact operator from Bp into B , then μ is a vanishing γ -

logarithmic 2 -Carleson measure.(γ < 1
q)

Proof. Since μ satisfies
∫
[0,1)(log 2

1−t )
1
q d μ(t) < ∞ , it follows from Theorem 3.1

that Iμ2 is well defined in Bp . Let f (z) = ∑∞
n=0 akzk ∈ B , the proof of Theorem 2.3

in [6] gives that ∑∞
k=0 |μn,kak|� ‖ f‖B . Bp ⊂B implies that for every f = ∑∞

k=0 akzk ∈
Bp , ∑∞

k=0 |μn,kak| � C . Then by the similar proof of Theorem 3.7, we get that

DH μ( f ) = Iμ2( f ) for all f ∈ Bp.

(I) From the given condition and the above proof, we know that Iμ2 is a bounded
operator from Bp into B . For b∈ (0,1) , we take two test functions Fb(z) = (log 2

1−bz)
γ

and gb(z) = ( 1−b2

(1−bz)2 )
2 , z∈ D. We already mention that the function F(z) = (log 1

1−z)
γ

belongs to Bp .
Let ϕ(z) = bz , z ∈ D , then ϕ is a analytic function from D into D and Fb(z) =

F(ϕ(z)) . Using the Theorem 11.6 in [18], we have

‖Fb‖p
Bp

= |Fb(0)|+
∫

D

|F ′
b(z)|p(1−|z|2)p−2dA(z)

= |F(0)|+bp
∫

D

|F ′(ϕ(z))|p(1−|z|2)p−2dA(z)
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< |F(0)|+
∫

D

|F ′(ϕ(z))|p(1−|z|2)p−2dA(z)

< |F(0)|+
∫

D

|F ′(z)|p(1−|z|2)p−2dA(z)

= ‖F‖p
Bp

.

Hence ‖Fb‖Bp < ‖F‖Bp and ‖gb‖A1 = 1, this implies that Fb(z) ∈ Bp , gb(z) ∈ A1

and
sup

0<b<1
‖Fb‖Bp � ‖F‖Bp , sup

0<b<1
‖gb‖A1 = 1.

Combing(4.3) with (4.6) , due to the boundedness of Iμ2 , there exists a positive con-
stant C such that∣∣∣∣

∫
[0,1)

f (t)g(r2t)dμ(t)
∣∣∣∣� C‖ f‖Bp‖g‖A1, 0 < r < 1, f ∈ Bp, g ∈ A1.

Hence, we have

∞ > C sup
0<b<1

‖F‖Bp sup
0<b<1

‖gb‖A1

�
∣∣∣∣
∫

[0,1)
Fb(t)gb(r2t)dμ(t)

∣∣∣∣
�
∫

[b,1)

(
1−b2

(1−br2t)2

)2(
log

2
1−bt

)γ
dμ(t)

� C

(
log 2

1−b2

)γ

(1−b2)2 μ([b,1)),

thus, μ is a γ -logarithmic 2-Carleson measure.
(II) Since DH μ( f ) = Iμ2( f ) , Iμ2 is a compact operator from Bp into B .

Take any sequence {bn} ⊂ (0,1) and limn→∞ bn = 1. Set

gbn(z) =
(

1−b2
n

(1−bnz)2

)2

,

thus ‖gbn‖A1 = 1 and gbn ∈ A1 , for all n ∈ N. Let fbn(z) = 1
log 2

1−b2
n

(log 2
1−bnz

)γ+1 and

Fbn(z) = (log 2
1−bnz

)γ , from the proof of (I) , we know Fbn ∈ Bp . Let

M = | f ′bn
(z)|p(1−|z|2)p−2 =

⎛
⎜⎝bn (γ +1)

(
log 2

|1−bnz|
)γ

|1−bnz| log 2
1−b2

n

⎞
⎟⎠

p (
1−|z|2)p−2

.

When |z| � bn ,

M �

⎛
⎜⎝bn (γ +1)

(
log 2

|1−bnz|
)γ−1

|1−bnz|

⎞
⎟⎠

p

(1−|z|2)p−2 = C|F ′
bn

(z)|p (1−|z|2)p−2
.
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Since

‖ fbn(z)‖p
Bp

= | fbn(0)|+
∫
|z|�bn

MdA(z)+
∫
bn<|z|�1

MdA(z)

� | fbn(0)|+C
∫
|z|�bn

|F ′
bn

(z)|p (1−|z|2)p−2
dA(z)+

∫
bn<|z|�1

MdA(z)

� C|Fbn(0)|+C
∫

D

|F ′
bn

(z)|p (1−|z|2)p−2
dA(z)+

∫
bn<|z|�1

MdA(z)

� C‖Fbn‖p
Bp

+
∫
bn<|z|�1

MdA(z),

we obtain

lim
n→∞

‖ fbn‖p
Bp

� C lim
n→∞

‖Fbn‖p
Bp

=C‖F‖p
Bp .

The above calculations show that fbn ∈ Bp and supn�1 ‖ fbn‖Bp < ∞. Then { fbn} is a
bounded sequence in Bp and { fbn} converges to 0 uniformly on any compact subset
of D . Lemma 4.1 implies that Iμ2( fbn) converges to 0 in B . Using (4.3) , we have

lim
n→∞

∫
[0,1)

fbn(t)gbn(r
2t)dμ(t)

= lim
n→∞

∫
D

Iμ2( fbn)(rz)gbn(rz)dA(z)

= 0.

Now we imply that

∫
[0,1)

fbn(t)gbn(r
2t)d μ(t)

�
∫

[bn,1)

(
1−b2

n

(1−bnr2t)2

)2
1

log 2
1−b2

n

(
log

2
1−bnt

)γ+1

dμ(t)

� C
(log 2

1−b2
n
)γ

(1−b2
n)2 μ([bn,1)).

Since {bn} ⊂ (0,1) and limn→∞ bn = 1,

lim
b→1−

(log 2
1−b2 )γ

(1−b2)2 μ([b,1)) = 0.

It is clear that μ is a vanishing γ -logarithmic 2-Carleson measure. �
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