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(Communicated by T. Burić)

Abstract. This paper deals with new inequalities involving the quotients

(sinx)/(sinhx), (cosx)/(coshx), and (tanx)/(tanhx).

The proofs are based on l’Hôpital’s rule of monotonicity, series expansions using Bernoulli
numbers, and some analytical techniques. Some of the obtained inequalities have a resemblance
with Adamović-Mitrinović, Wilker and Cusa-Huygens type inequalities.

1. Introduction

We begin with the following two results recently established by Chesneau and
Bagul [8] for the quotients of circular and hyperbolic functions. For similar results
involving the products of these functions, we refer to [9] and references therein.

THEOREM 1. [8, Proposition 2] For x ∈ (0,α) where α ∈ (0,π/2), we have

e−β x2 � cosx
coshx

, (1)

with β = ln[(coshα)/(cosα)]/α2.

THEOREM 2. [8, Proposition 4] For x ∈ (0,π/2), we have

e−γx2
<

sinx
sinhx

, (2)

with γ = 4ln(sinhπ/2)/π2 ≈ 0.337794.

The inequalities (1) and (2) are generalized in [17]. We can obtain similar types
of exponential bounds for both the quotients (cosx)/(coshx) and (sinx)/(sinhx) by
using exponential bounds of (sinx)/x,x/(sinhx),cosx, and coshx given in [3, 4, 10]
after a slight rearrangement of terms as follows:
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THEOREM 3. For x ∈ [0,α] where α ∈ (0,π/2), we have

e−(A+1/2)x2 � cosx
coshx

� e−(B+1/2)x2
, (3)

with A = − ln(cosα)/α2 and B = 4ln[cosh(π/2)]/π2 ≈ 0.372844.

THEOREM 4. For x ∈ (0,π/2), we have

e−(C+1/6)x2
<

sinx
sinhx

< e−(D+1/6)x2
, (4)

with C = −4ln(2/π)/π2 ≈ 0.183019 and D = 4ln[2sinh(π/2)/π ]/π2 ≈ 0.154774.

Motivated by these results, the main purpose of this paper is to establish improved
upper bounds for (cosx)/(coshx) and (sinx)/(sinhx) and to obtain some other in-
teresting inequalities involving these functions. Inequalities involving (tanx)/(tanhx)
will also be investigated.

2. Preliminaries

The following series expansions can be found in [15, 1.411]:

cotx =
1
x
−

∞

∑
n=1

22n

(2n)!
|B2n|x2n−1; |x| < π , (5)

cothx =
1
x

+
∞

∑
n=1

(−1)n−1 22n

(2n)!
|B2n|x2n−1; |x| < π , (6)

cosecx =
1
x

+
∞

∑
n=1

2
(
22n−1−1

)
(2n)!

|B2n|x2n−1; |x| < π , (7)

and

cosechx =
1
x
−

∞

∑
n=1

2
(
22n−1−1

)
(2n)!

B2nx
2n−1; |x| < π , (8)

where B2n are the even-indexed Bernoulli numbers, see [14, p. 231]. From expansion
(5), we obtain

tanhx
tanx

=
tanhx

x
−

∞

∑
n=1

22n

(2n)!
|B2n|x2n−1 tanhx; |x| < π , (9)

and (
sinhx
sinx

)2

= −(cotx)′ sinh2 x

=
(

sinhx
x

)2

+
∞

∑
n=1

22n(2n−1)
(2n)!

|B2n|x2n−2 sinh2 x; |x| < π . (10)
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Similarly, from (7), (8) we respectively have

x
sinx

= 1+
∞

∑
n=1

2
(
22n−1−1

)
(2n)!

|B2n|x2n; |x| < π , (11)

and

x
sinhx

= 1−
∞

∑
n=1

2
(
22n−1−1

)
(2n)!

B2nx
2n; |x| < π . (12)

The following l’Hôpital’s rule of monotonicity [1] has widespread applications
and is proved to be an important tool in the field of analytic inequalities.

LEMMA 1. ([l’Hôpital’s rule of monotonicity] [1]) Let f ,g be two real valued
functions that are continuous on [a,b] and differentiable on (a,b) , where −∞ < a <
b < ∞ and g′(x) �= 0, for ∀x ∈ (a,b). Let,

A(x) =
f (x)− f (a)
g(x)−g(a)

and

B(x) =
f (x)− f (b)
g(x)−g(b)

.

Then

I. A(x) and B(x) are increasing on (a,b) if f ′/g′ is increasing on (a,b) and

II. A(x) and B(x) are decreasing on (a,b) if f ′/g′ is decreasing on (a,b).

The strictness of the monotonicity of A(x) and B(x) depends on the strictness of mono-
tonicity of f ′/g′.

3. Main results

We state and prove the first main result of the paper.

PROPOSITION 1. If x ∈ [0,α] where α ∈ (0,π/2) then

e−ax2 � cosx
coshx

� e−x2
, (13)

with a = ln[(coshα)/(cosα)]/α2.

Proof. We have to show that

1 < f (x) < a (0 < x < π/2),
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where

f (x) =
ln[(coshx)/(cosx)]

x2 .

Let
g1(x) = ln[(coshx)/(cosx)], g2(x) = tanhx+ tanx,

and
h1(x) = x2, h2(x) = 2x.

Then

gi(0+) = hi(0+) = 0 (i = 1,2),
g′1(x)
h′1(x)

=
g2(x)
h2(x)

,

and
g′2(x)
h′2(x)

=
P(x)

2

with P(x) = sech2 x+ sec2 x. It has derivative

P′(x) = 2
(
tanxsec2 x− tanhxsech2 x

)
.

Now tanx > tanhx and sec2 x > sech2 x in (0,π/2) imply P′(x) > 0 which in turn
implies that P(x) is increasing in (0,π/2). Applying Lemma 1, gives that f (x) is
increasing in the same interval. Since f (0+) = 1 by l’Hôpital’s rule and f (α−) =
ln[(coshα)/(cosα)]/α2 we obtain (13). �

It is to be noted that the lower bound in (13) is nothing but the lower bound in (1)
and the upper bound in (13) is sharper than the corresponding upper bound in (3). The
right inequality of (13) is in fact true in (0,π/2).

In what follows, similar bounds for (sinx)/(sinhx) as in (13) are proposed.

PROPOSITION 2. If x ∈ (0,π/2) then

e−bx2
<

sinx
sinhx

< e−x2/3, (14)

with b = 4ln[sinh(π/2)]/π2 ≈ 0.337794.

The next lemma is important for proving Proposition 2 and it also gives sharp
bounds for x/ tanx in (0,π/2).

LEMMA 2. λ (x)= (cothx−cotx)/x is positive increasing in (0,π). In particular
we have the following inequalities:

x
tanhx

− cx2 <
x

tanx
<

x
tanhx

− 2
3
x2; x ∈ (0,π/2), (15)

and

x
tanx

<
x

tanhx
− 2

3
x2; x ∈ (0,π) (16)

where c = 2coth(π/2)/π = 0.694126 · · ·.
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Proof. Utilizing (5) and (6) we write

λ (x) =
cothx− cotx

x

=
∞

∑
n=1

22n

(2n)!
|B2n|

[
(−1)n−1 +1

]
x2n−2

=
∞

∑
n=1

anx
2n−2

where an � 0; ∀n. Thus

λ (x) =
2
3

+
4x4

945
+

4x8

93555
+ · · · .

This shows that λ (x) is positive increasing in (0,π). With the limits λ (0+) = 2/3 and
λ (π/2−) = 2coth(π/2)/π we get inequalities (15) and (16). �

The inequality (15) is too sharp and can be studied further independently for its
refinement and generalization. Let us now prove Proposition 2.

Proof of Proposition 2. Let

f (x) =
ln[(sinhx)/(sinx)]

x2 =
g(x)
h(x)

,

where g(x) = ln[(sinhx)/(sinx)] and h(x) = x2 with g(0+) = 0 and h(0) = 0. Differ-
entiation gives

g′(x)
h′(x)

=
1
2

cothx− cotx
x

=
1
2

λ (x)

which is increasing in (0,π/2) by Lemma 2. So

f (0+) < f (x) < f (π/2−) for 0 < x < π/2.

With the limits f (0+) = limx→0+(1/2)λ (x) = (1/2)(2/3) = 1/3 by Lemma 2 and
f (π/2−) = 4ln[sinh(π/2)]/π2 ≈ 0.337794 we finish the proof. �

We observe that the lower bound in (14) is nothing but the lower bound in (2) and
the upper bound in (14) is sharper than the corresponding upper bound in (4). Moreover,
the constants obtained in Propositions 1 and 2 are optimal.

REMARK 1. An immediate consequence of Propositions 1 and 2 is the following
inequality:

cosx
coshx

<
sinx
sinhx

; x ∈ (0,π/2) (17)
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which can also be obtained from the obvious relation tanhx < tanx. Similarly from
Propositions 1 and 2, we can have the inequality

cosx
coshx

<

(
sinx
sinhx

)1/b

; x ∈ (0,π/2) (18)

where 1/b ≈ 2.960383.

Now we ask the natural question: What can be the best possible exponent of
(sinx)/(sinhx) in the above inequality (18)? Can we expect it to be 3? The affirmative
answer can be seen in the following theorem.

THEOREM 5. If x ∈ (0,π/2) then the inequality(
tanhx
tanx

)1/2

<
sinx
sinhx

(19)

holds true with the best possible constant 1/2. Equivalently, we have

cosx
coshx

<

(
sinx
sinhx

)3

; x ∈ (0,π/2), (20)

with the best possible constant 3.

Before entering the proof of Theorem 5, we prove two lemmas.

LEMMA 3. ξ (x) = cosxcoshx is strictly positive decreasing in (0,π/2).

Proof. The proof is easy and straightforward since,

ξ ′(x) = cosxsinhx− sinxcoshx < 0

by (17). �

LEMMA 4. Define

τ(x) =
sin2 x+ sinh2 x

sinxsinhx
=

sinx
sinhx

+
sinhx
sinx

for x ∈ (0,π/2). Then τ(x) is strictly increasing.

Proof. Consider

(sinxsinhx)2 τ ′(x) = sinxsinh2 xcoshx+ sin2 xsinhxcosx

− sin3 xcoshx− sinh3 xcosx

= sinh2 x(sinxcoshx− sinhxcosx)

− sin2 x(sinxcoshx− sinhxcosx)

= (sinxcoshx− sinhxcosx)
(
sinh2 x− sin2 x

)
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which is positive by (17) and the fact that sinhx > sinx. This proves our lemma. �

We are now in a position to prove Theorem 5.

Proof of Theorem 5. Suppose

f (x) =
ln[(sinx)/(sinhx)]
ln[(tanhx)/(tanx)]

=
g(x)
h(x)

,

where g(x) = ln[(sinx)/(sinhx)] and h(x) = ln[(tanhx)/(tanx)] with g(0+) = 0 =
h(0+). Then

g′(x)
h′(x)

=
sinxcoshx− sinhxcosx
sinhxcoshx− sinxcosx

(cosxcoshx)

= q(x)(cosxcoshx).

And

q(x) =
sinxcoshx− sinhxcosx
sinhxcoshx− sinxcosx

=
q1(x)
q2(x)

,

where q1(x) = sinxcoshx− sinhxcosx, q2(x) = sinhxcoshx− sinxcosx with q1(0) =
q2(0) = 0. By differentiation

q′1(x)
q′2(x)

=
sinxsinhx

sin2 x+ sinh2 x
=

1
τ(x)

which is strictly decreasing by Lemma 4. By Lemma 1, q(x) is strictly decreasing in
(0,π/2) and it is obvious that q(x) is positive. By Lemma 3, cosxcoshx is positive
decreasing. Consequently g′(x)/h′(x) is strictly decreasing in (0,π/2) and so is f (x)
by Lemma 1 again. Hence

f (x) < f (0+); 0 < x < π/2.

Lastly f (0+)= limx→0+ q(x) limx→0+(cosxcoshx)= limx→0+ 1/τ(x)= 1/2 completes
the proof. �

NOTE. The inequality (20) has a close resemblance with Mitrinović-Adamović
inequality, see e.g., [1, 19, 23, 29].

In Corollary 1, we present an inequality for ratio functions similar to the one
known as Wilker’s inequality [12, 20, 22, 25, 28, 30].

COROLLARY 1. For x ∈ (0,π/2), we have

(
sinx
sinhx

)2

+
tanx
tanhx

> 2. (21)
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Proof. For x ∈ (0,π/2), the inequality (19) can be written as

(
sinx
sinhx

)2

>
tanhx
tanx

.

This implies (
sinx
sinhx

)2

+
tanx
tanhx

>
tanhx
tanx

+
tanx
tanhx

> 2,

as u+1/u > 2 for any u > 0. �
In Proposition 3, we establish another upper bound for (sinx)/(sinhx).

PROPOSITION 3. If x ∈ (0,π) then

sinx
sinhx

<

√
x+ sinxcosx

x+ sinhxcoshx
=

√
2x+ sin2x
2x+ sinh2x

. (22)

Proof. By Lemma 2, λ ′(x) > 0 in (0,π). It means that

x
(
cosec2 x− cosech2 x

)− (cothx− cotx) > 0,

which is equivalent to

xcosec2 x+ cotx > cothx+ xcosech2 x

or
x+ sinxcosx

sin2 x
>

x+ sinhxcoshx

sinh2 x
.

This gives desired inequality. �

0.0 0.5 1.0 1.5

0.
5
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0

sin(x) sinh(x)
exp(− (0.154774 + 1 6)x2)
exp(− (x2) 3)
(x + sin(x)cos(x)) (x + sinh(x)cosh(x))

Figure 1: Upper bounds of (sinx)/(sinhx) in (4), (14) and (22) for x ∈ (0,π/2) .
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Some computations and Graphing calculator at www.symbolab.com suggest that
the upper bound of (sinx)/(sinhx) in (22) is sharper than the corresponding upper
bound in (4) except for a small portion as x → π/2. The graphical comparison in sup-
port of our claim is presented in Figure 1.

Inspired by Corollary 1, we prove

THEOREM 6. For x ∈ (0,π), the inequality

(
sinhx
sinx

)2

+
tanhx
tanx

> 2 (23)

holds true.

Proof. Adding (9) and (10), and using the well-known inequality (see e.g., [28])(
sinhx

x

)2

+
tanhx

x
> 2; x > 0,

we get (
sinhx
sinx

)2

+
tanhx
tanx

> 2+
∞

∑
n=1

22n

(2n)!
|B2n| fn(x)x2n−1 sinhx,

for x ∈ (0,π), where

fn(x) =
(

(2n−1)
sinhx

x
− 1

coshx

)
.

Since,

(2n−1)
sinhx

x
>

1
coshx

for all x > 0 and n � 1, our assertion is proved. �
Let us find exponential bounds for (tanhx)/(tanx).

PROPOSITION 4. For x ∈ (0,α] where α ∈ (0,π/2), it is true that

e−cx2
<

tanhx
tanx

< e−
2
3 x2

, (24)

with the best possible constants c = ln[(tanα)/(tanhα)]/α2 and −2/3.

Proof. We want to prove that

−2
3

< f (x) < a; x ∈ (0,α],

where

f (x) =
ln[(tanx)/(tanhx)]

x2 .
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Let g(x) = ln[(tanx)/(tanhx)] and h(x) = x2. We can see that g(0+)= 0 = h(0). After
differentiating we get

g′(x)
h′(x)

=
tanhxsec2 x− tanxsech2 x

2x tanx tanhx

=
sinhxcoshx− sinxcosx
2xsinxcosxsinhxcoshx

=
1

2x2

(
2x

sin2x
− 2x

sinh2x

)

Utilization of (11) and (12) yields

g′(x)
h′(x)

=
1

2x2

(
∞

∑
n=1

22n+1(22n−1−1)
(2n)!

|B2n|x2n +
∞

∑
n=1

22n+1(22n−1−1)
(2n)!

B2nx
2n

)

=
1
2

∞

∑
n=1

22n+1(22n−1−1)
(2n)!

(|B2n|+B2n)x2n−2

=
1
2

∞

∑
n=1

22n+1(22n−1−1)
(2n)!

|B2n|
(
1+(−1)n−1)x2n−2

which is strictly increasing in (0,α]. By Lemma 1, f (x) is also strictly increasing in
(0,α]. By the limits f (0+) = 2/3 and f (α−) = ln[(tanα)/(tanhα)]/α2, the proof is
now completed. �

The right inequality of (24), of course, holds for x ∈ (0,π/2) and this inequality
with the left inequality of (14) provides an alternative simple proof of Theorem 5.

We proceed to obtain a simple Jordan-type inequality for (sinx)/(sinhx). The
details of Jordan’s inequality can be found in [1, 4, 6, 16, 27] and references therein.

PROPOSITION 5. For x ∈ (0,π/2) we have

1− x2

3
<

sinx
sinhx

< 1. (25)

Proof. The right inequality is obvious as sinx < sinhx. For left inequality, let us
set

T (x) = sinx− sinhx+
x2

3
sinhx.

Successive differentiation gives

T ′(x) = cosx− coshx+
x2

3
coshx+

2x
3

sinhx,

T ′′(x) = −sinx− sinhx+
x2

3
sinhx+

4x
3

coshx+
2
3

sinhx
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and

T ′′′(x) = (coshx− cosx)+2xsinhx+
x2

3
coshx > 0,

implying that T ′′(x) is increasing on (0,π/2) and, T ′′(x) > T ′′(0) = 0 fortiori, T (x) >
0 gives inequality (25). �

The Cusa-Huygens inequality [2, 5, 13, 20, 21, 24] which is stated as

sinx
x

<
2+ cosx

3
; x ∈ (0,π/2),

motivates us to present its alike in the next theorem.

THEOREM 7. If x ∈ (0,π/2) then the following inequality holds true:

sinx
sinhx

<
2+ cosx
2+ coshx

. (26)

Proof. Suppose that,

f (x) = 2(sinhx− sinx)− (sinxcoshx− sinhxcosx).

On differentiating continuously four times we get successive derivatives as follows:

f ′(x) = 2(coshx− cosx)−2sinxsinhx,

f ′′(x) = 2(sinhx+ sinx)−2(cosxsinhx+ sinxcoshx),

f ′′′(x) = 2(coshx+ cosx)−4cosxcoshx

and
f iv(x) = 2(sinhx− sinx)+4(sinxcoshx− cosxsinhx) > 0.

Now since sinhx > sinx and by (7) we get f iv(x) > 0, implying that f ′′′(x) is in-
creasing on (0,π/2). Hence f ′′′(x) > f ′′′(0) = 0 fortiori, f (x) > 0 gives the desired
inequality. �

The inequality (26) is extensively sharp. This claim can be verified from the fol-
lowing figure.

4. Applications

In this section, we see some important consequences of our main results. We first
offer a simple proof of Wu and Srivastava’s inequality [26, Lemma 3].

LEMMA 5. ([26]) For x ∈ (0,π/2) , it is true that

( x
sinx

)2
+

x
tanx

> 2.
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0.0 0.5 1.0 1.5
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0.
7

0.
8

0.
9

1.
0

sin(x) sinh(x)
(2 + cos(x)) (2 + cosh(x))

Figure 2: Graphs of functions in (26) for x ∈ (0,π/2) .

Proof. We write the inequality (22) as( x
sinx

)2
+

x
tanx

>
( x

sinhx

)2
+

x
tanhx

; x ∈ (0,π/2). (27)

C.-P. Chen and J. Sándor [7, Theorem 1.2(iii)] established the inequality( x
sinhx

)2
+

x
tanhx

> 2; x ∈ (0,π/2). (28)

Required inequality follows from inequalities (27) and (28). �
To obtain bounds of (sinx)/(sinhx) in terms of cosine and hyperbolic cosine func-

tions we continue with

COROLLARY 2. ρ(x) = cothx(cothx− cotx) is strictly increasing in (0,π).

Proof.

ρ(x) =
x

tanhx
cothx− cotx

x
= κ(x)λ (x)

which is strictly positive increasing since κ(x) is obviously positive increasing and
λ (x) is also positive increasing by Lemma 2. �

COROLLARY 3. Ψ(x) = cotx(cothx− cotx) is strictly decreasing in (0,π/2).

Proof. From (17), Ψ(x) is positive in (0,π/2). After differentiating Ψ(x) we get

Ψ′(x) = −cotxcosech2 x− cothxcosec2 x+2cotxcosec2 x.

From Corollary 2, we have
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ρ ′(x) > 0 in (0,π/2).

i.e.
−2cothxcosech2 x+ cotxcosech2 x+ cothxcosec2 x > 0.

Equivalently,
−cothxcosec2 x < (cotx−2cothx)cosech2 x.

It follows that

Ψ′(x) < (cotx−2cothx)cosech2 x− cotxcosech2 x

+2cotxcosech2 x+2cotxcosec2 x

= −2cothxcosech2 x+2cotxcosec2 x

= 2

(
sinh3 xcosx− sin3 xcoshx

)
sin3 xsinh3 x

< 0,

by (20). Thus our claim is proved. �
NOTE. We can prove new bounds for x/ tanx with the help of Corollaries 2 and

3; but the new bounds are not as sharp as those obtained in Lemma 2. So we do not
present them here.

PROPOSITION 6. For x ∈ (0,π/2) , one has

cos2/3 x <
sinx
sinhx

. (29)

Proof. Let

F(x) =
ln[(sinx)/(sinhx)]

ln(cosx)
=

F1(x)
F2(x)

,

where F1(x) = ln[(sinx)/(sinhx)] and F2(x) = ln(cosx) with F1(0+) = 0 = F2(0). By
differentiation we have

F ′
1(x)

F ′
2(x)

= cotx(cothx− cotx) = Ψ(x)

which is strictly decreasing in (0,π/2) by Corollary 3. Therefore F(x) is also strictly
decreasing in (0,π/2) by Lemma 1. So we can write

F(x) < F(0+); x > 0,

and F(0+) = limx→0+ Ψ(x) = limx→0+(x/ tanx)λ (x) = 2/3 gives (29). �

PROPOSITION 7. For x ∈ (0,π/2) we have(
1

coshx

)h

<
sinx
sinhx

<

(
1

coshx

)2/3

(30)

with best possible constants h = ln[sinh(π/2)]/ ln[cosh(π/2)]≈ 0.905994 and 2/3.
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Proof. Suppose

G(x) =
ln[(sinhx)/(sinx)]

ln(coshx)
.

We want
2
3

< G(x) < h; x ∈ (0,π/2).

Let G1(x) = ln[(sinhx)/(sinx)] and G2(x) = ln(coshx). Clearly G1(0+) = 0 = G2(0).
Differentiation gives

G′
1(x)

G′
2(x)

= cothx(cothx− cotx) = ρ(x)

which is strictly increasing in (0,π/2) by Corollary 2 and so is G(x) by Lemma 1.
Lastly, the limits G(0+) = limx→0+ G(x) = limx→0+ ρ(x) = limx→0+(x/ tanhx)λ (x) =
2/3 and G(π/2−) = ln[sinh(π/2)]/ ln[cosh(π/2)] ≈ 0.905994 give the desired re-
sult. �

REMARK 2. Combining (29) and (30), the following inequality can be written:

cos2 x <

(
sinx
sinhx

)3

<
1

cosh2 x
; x ∈ (0,π/2). (31)

We conclude this section by noticing that our obtained results give interested in-
equalities connecting sinc and hyperbolic sinc functions as well as inequalities con-
necting cosine and hyperbolic cosine functions. For instance, the inequalities (13),
(14), (20), (24), (25), and (26) can be written respectively as follows:

e−ax2
coshx � cosx � e−x2

coshx; x ∈ [0,α], (32)

where α ∈ (0,π/2) and a = ln[(coshα)/(cosα)]/α2,(
sinhx

x

)
e−bx2

<
sinx
x

<

(
sinhx

x

)
e−x2/3; x ∈ (0,π/2), (33)

where b ≈ 0.337794,(
sinhx

x

)3

cosx <

(
sinx
x

)3

coshx; x ∈ (0,π/2), (34)

e−cx2
tanx < tanhx < e−

2
3 x2

tanx; x ∈ (0,α], (35)

where α ∈ (0,π/2) and c = ln[(tanα)/(tanhα)]/α2.(
1− x2

3

)
sinhx

x
<

sinx
x

<
sinhx

x
; x ∈ (0,π/2), (36)

and

sinx
x

(
2+ coshx

3

)
<

sinhx
x

(
2+ cosx

3

)
; x ∈ (0,π/2). (37)
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5. Conclusion

We obtained sharp exponential bounds for (cosx)/(coshx), (sinx)/(sinhx), and
(tanx)/(tanhx) and established some other inequalities involving these functions. The
obtained inequalities are similar to Jordan, Mitrinović-Adamović, Wilker, and Cusa-
Huygens type for these functions. In an attempt to obtain our main results, we also
established very sharp bounds for x/ tanx.
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A. Math. 113, pp. 957–968, 2019, https://doi.org/10.1007/s13398-018-0521-0 .

[30] L. ZHU, New inequalities of Wilker’s type for hyperbolic functions, AIMS Mathematics, vol. 5, no. 1,
pp. 376–384, 2020, https://doi.org/10.3934/math.2020025 .

(Received July 15, 2020) Yogesh J. Bagul
Department of Mathematics, K. K. M. College

Manwath, Dist: Parbhani (M.S.)-431505, India
e-mail: yjbagul@gmail.com

Ramkrishna M. Dhaigude
Department of Mathematics

Government Vidarbha Institute of Science and Humanities
Amravati (M.S.)-444604, India

e-mail: rmdhaigude@gmail.com

Sumedh B. Thool
Department of Mathematics

Government Vidarbha Institute of Science and Humanities
Amravati (M.S.)-444604, India

e-mail: sumedhmaths@gmail.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com

https://dx.doi.org/10.7153/mia-13-50
https://doi.org/10.22436/jnsa.011.07.02
https://doi.org/10.2307/2323260
https://doi.org/10.1080/10652460701284164
https://doi.org/10.1155/2014/364076
https://dx.doi.org/10.7153/mia-10-67
https://doi.org/10.1007/s13398-018-0521-0
https://doi.org/10.3934/math.2020025

