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Abstract. Motivated by the results of Zhao and Cheung, we deduce a Hilbert-Pachpatte inequal-
ity with alternating signs involving non-homogeneous kernels. We also obtain a generalization
of a related result known from the literature.

1. Introduction

The Hilbert-Pachpatte inequality is one of interesting inequalities in mathematical
analysis and its applications (see [1], [4], [5], [7]–[9]). Although classical, it is still of
interest to numerous authors.

Recently, C. J. Zhao and W. S. Cheung [7],[8] obtained some Hilbert-Pachpatte
inequalities with alternating signs. Their result is contained in the following theorem:

THEOREM 1. Let p > 1 , 1
p + 1

q = 1 , and let 0 � b2n+1 � b2n � · · ·� b2 � b1 , 0 �
a2m+1 � a2m � · · ·� a2 � a1 for n = 0,1, . . . ,r+1 and m = 0,1, . . . ,s+1 , respectivily.
Further, let Am = ∑2m+1

�=1 (−1)�+1a� and Bn = ∑2n+1
k=1 (−1)k+1bk . If f and g are convex,

nondecreasing and nonnegative functions on [0,b1] and [0,a1] , respectivily, then the
following inequality holds

s+1

∑
m=0

r+1

∑
n=0

pq f (Bn)g(Am)
q(m+1)+ p(n+1)

� Dp,q,r,s

[
s+2

∑
m=1

(g(a2m−1)−g(a2m))q(s−m+3)

] 1
q

×
[

r+2

∑
n=1

( f (b2n−1)− f (b2n))p(r−n+3)

] 1
p

, (1)

where

Dp,q,r,s =
q(s+2)+ p(r+2)

pq
. (2)
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In 2019, Ts. Batbold, L. E. Azar and M. Krnić [1] considered generalizations of
Hilbert-Pachpatte inequality with non-homogeneouskernel. For some similar works on
the extensions and generalizations of Hilbert-Pachpatte inequality, we refer the reader
to [2], [7]–[9].

In this paper, following the way of [1], [7], we give a generalization of Hilbert-
Pachpatte inequality (1). More precisely, in the sequel, we deduce more general form
of inequality (1) containing non-homogeneous kernels. Furhermore, a generalization
of a related inequality is also obtained.

2. Main results

We have already mentioned, we will extend this inequality for a class of non-
homogeneous kernels defined by K(m,n) = (λm+ρn)−μ , m,n∈N∪{0} , μ > 0. Here,
and throughout this paper (λm)m∈N∪{0} and (ρn)n∈N∪{0} are positive sequences of real
numbers.

LEMMA 1. (Szegö’s inequality, [6]) If 0 � b2n+1 � b2n � · · · � b2 � b1 and f is
convex on [0,b1] , then

f

(
2n+1

∑
k=1

(−1)k+1bk

)
�

2n+1

∑
k=1

(−1)k+1 f (bk). (3)

THEOREM 2. Let α > 1 , 1
α + 1

β = 1 , and let 0 � b2n+1 � b2n � · · ·� b2 � b1 , 0�
a2m+1 � a2m � · · ·� a2 � a1 for n = 0,1, . . . ,r+1 and m = 0,1, . . . ,s+1 , respectivily.
Further, let Am = ∑2m+1

�=1 (−1)�+1a� and Bn = ∑2n+1
k=1 (−1)k+1bk . If f and g are convex,

nondecreasing and nonnegative functions on [0,b1] and [0,a1] , respectivily, then the
following inequality holds

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
(λm + ρn)μ � Cλ ,ρ

[
s+2

∑
m=1

(g(a2m−1)−g(a2m))α (s−m+3)

] 1
α

×
[

r+2

∑
n=1

( f (b2n−1)− f (b2n))β (r−n+3)

] 1
β

, (4)

where

Cλ ,ρ = α− μ
α β− μ

β

(
s+1

∑
m=0

m+1

λ μ
m

) 1
β
(

r+1

∑
n=0

n+1

ρ μ
n

) 1
α

. (5)

Proof. Using the following relation

1

(u+ v)μ =
1

Γ(μ)

∫ ∞

0
xμ−1e−(u+v)xdx, (6)



HILBERT-PACHPATTE INEQUALITIES 1277

which follows from the definition of the Gamma function, the left-hand side of inequal-
ity (4) can be rewritten in the following form:

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
(λm + ρn)μ

=
1

Γ(μ)

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
∫ ∞

0
xμ−1e−(λm+ρn)xdx

=
1

Γ(μ)

∫ ∞

0

(
x

μ−1
β

s+1

∑
m=0

e−λmxg(Am)

)(
x

μ−1
α

r+1

∑
n=0

e−ρnx f (Bn)

)
dx. (7)

From the Szegö’s inequality, we have

f (Bn) = f

(
2n+1

∑
k=1

(−1)k+1bk

)

�
2n+1

∑
k=1

(−1)k+1 f (bk)

=
n+1

∑
k=1

( f (b2k−1)− f (b2k)), (8)

and

g(Am) �
m+1

∑
�=1

(g(a2�−1)−g(a2�)), (9)

where, for the sake of simplicity, we write f (b2n+2) = g(a2m+2) = 0.
By the above inequalities (7), (8), (9), and Hölder inequality, we have

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
(λm + ρn)μ

� 1
Γ(μ)

∫ ∞

0

(
x

μ−1
β

s+1

∑
m=0

e−λmx
m+1

∑
�=1

(g(a2�−1)−g(a2�))

)

×
(

x
μ−1

α
r+1

∑
n=0

e−ρnx
n+1

∑
k=1

( f (b2k−1)− f (b2k))

)
dx

� 1
Γ(μ)

⎡
⎣∫ ∞

0
xμ−1

(
s+1

∑
m=0

e−λmx
m+1

∑
�=1

(g(a2�−1)−g(a2�))

)β

dx

⎤
⎦

1
β

×
[∫ ∞

0
xμ−1

(
r+1

∑
n=0

e−ρnx
n+1

∑
k=1

( f (b2k−1)− f (b2k))

)α

dx

] 1
α

. (10)
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Using again Hölder inequality and relation (6), we obtain

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
(λm + ρn)μ � 1

Γ(μ)

[∫ ∞

0
xμ−1

[
s+1

∑
m=0

(
(m+1)

1
β e−λmx

)

×
(

(m+1)−
1
β

m+1

∑
�=1

(g(a2�−1)−g(a2�))

)]β

dx

⎤
⎦

1
β

×
[∫ ∞

0
xμ−1

[
r+1

∑
n=0

(
(n+1)

1
α e−ρnx

)

×
(

(n+1)−
1
α

n+1

∑
k=1

( f (b2k−1)− f (b2k))

)]α

dx

] 1
α

� 1
Γ(μ)

[∫ ∞

0
xμ−1

[
s+1

∑
m=0

(m+1)e−β λmx

]

×
[

s+1

∑
m=0

(m+1)−
α
β

(
m+1

∑
�=1

(g(a2�−1)−g(a2�))

)α] β
α

dx

⎤
⎥⎦

1
β

×
[∫ ∞

0
xμ−1

[
r+1

∑
n=0

(n+1)e−αρnx

]

×
⎡
⎣r+1

∑
n=0

(n+1)−
β
α

(
n+1

∑
k=1

( f (b2k−1)− f (b2k))

)β
⎤
⎦

α
β

dx

⎤
⎥⎦

1
α

= Cλ ,ρ

[
s+1

∑
m=0

(m+1)−
α
β

(
m+1

∑
�=1

(g(a2�−1)−g(a2�))

)α] 1
α

×
⎡
⎣r+1

∑
n=0

(n+1)−
β
α

(
n+1

∑
k=1

( f (b2k−1)− f (b2k))

)β
⎤
⎦

1
β

.

Finally, applying the Hölder inequality and interchanging the order of summation, we
obtain

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)
(λm + ρn)μ

� Cλ ,ρ

⎡
⎣ s+1

∑
m=0

(m+1)−
α
β

⎡
⎣(m+1

∑
�=1

1

) 1
β
(

m+1

∑
�=1

(g(a2�−1)−g(a2�))α

) 1
α
⎤
⎦

α⎤
⎦

1
α
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×

⎡
⎢⎣r+1

∑
n=0

(n+1)−
β
α

⎡
⎣
(

n+1

∑
k=1

1

) 1
α
(

n+1

∑
k=1

( f (b2k−1)− f (b2k))β

) 1
β
⎤
⎦

β⎤⎥⎦
1
β

= Cλ ,ρ

[
s+1

∑
m=0

m+1

∑
�=1

(g(a2�−1)−g(a2�))α

] 1
α
[

r+1

∑
n=0

n+1

∑
k=1

( f (b2k−1)− f (b2k))β

] 1
β

= Cλ ,ρ

[
s+2

∑
�=1

(g(a2�−1)−g(a2�))α (s− �+3)

] 1
α

×
[

r+2

∑
k=1

( f (b2k−1)− f (b2k))β (r− k+3)

] 1
β

= Cλ ,ρ

[
s+2

∑
m=1

(g(a2m−1)−g(a2m))α (s−m+3)

] 1
α

×
[

r+2

∑
n=1

( f (b2n−1)− f (b2n))β (r−n+3)

] 1
β

,

which concludes the proof. �

REMARK 1. It should be noticed here that if α = q , β = p , λm = m+1
p , ρn =

n+1
q and μ = 1, the constant reduces to Cλ ,ρ = (s+ 2)

1
p (r + 2)

1
q . By using Young’s

inequality we get the Theorem 1.

REMARK 2. Taking λm = (m+1)
1
μ , ρn = (n+1)

1
μ in (4), we have

s+1

∑
m=0

r+1

∑
n=0

f (Bn)g(Am)(
(m+1)

1
μ +(n+1)

1
μ
)μ � Cλ ,ρ

[
s+2

∑
m=1

(g(a2m−1)−g(a2m))α(s−m+3)

] 1
α

×
[

r+2

∑
n=1

( f (b2n−1)− f (b2n))β (r−n+3)

] 1
β

,

(11)

where

Cλ ,ρ = α− μ
α β− μ

β (s+2)
1
β (r+2)

1
α . (12)

THEOREM 3. Let p,q � 1 , α > 1 , 1
α + 1

β = 1 , and let (am) , (bn) be positive

non-increasing sequences of real numbers. Further, let Am = ∑2m+1
�=1 (−1)�+1a� and
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Bn = ∑2n+1
k=1 (−1)k+1bk . Then holds the inequality

s

∑
m=0

r

∑
n=0

A
p
mB

q
n

(λm + ρn)μ � C̃λ ,ρ

[
s+1

∑
m=1

(s−m+2)((a2m−1−a2m)Ãp−1
m )β

] 1
β

×
[

r+1

∑
n=1

(r−n+2)((b2n−1−b2n)B̃q−1
n )α

] 1
α

, (13)

where

C̃λ ,ρ = α− μ
α β− μ

β

(
s

∑
m=0

m+1

λ μ
m

) 1
α
(

r

∑
n=0

n+1

ρ μ
n

) 1
β

, (14)

and Ãm = ∑m+1
�=1 (a2�−1−a2�), B̃n = ∑n+1

k=1(b2k−1−b2k).

Proof. By virtue of (6), it follows that

s

∑
m=0

r

∑
n=0

A
p
mB

q
n

(λm + ρn)μ =
1

Γ(μ)

∫ ∞

0

(
x

μ−1
α

s

∑
m=1

e−λmxA
p
m

)(
x

μ−1
β

r

∑
n=1

e−ρnxB
q
n

)
dx. (15)

Using the following inequality (see [3])(
n

∑
m=1

zm

)γ

� γ
n

∑
m=1

zm

(
m

∑
k=1

zk

)γ−1

,

where γ � 0 is a constant and zm � 0, it easily follows that

A
p
m = Ãp

m � p
m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
� . (16)

and

B
q
n = B̃q

n � q
n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k , (17)

and we assume that a2n+2 = b2m+2 = 0.
From (15)–(17) and using Hölder inequality, we have

s

∑
m=0

r

∑
n=0

A
p
mB

q
n

(λm + ρn)μ =
pq

Γ(μ)

∫ ∞

0

(
x

μ−1
α

s

∑
m=0

e−λmx
m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
�

)

×
(

x
μ−1

β
r

∑
n=0

e−ρnx
n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k

)
dx

� 1
Γ(μ)

[∫ ∞

0
xμ−1

(
s

∑
m=0

e−λmx
m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
�

)α

dx

] 1
α

×
⎡
⎣∫ ∞

0
xμ−1

(
r

∑
n=0

e−ρnx
n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k

)β

dx

⎤
⎦

1
β

. (18)
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Using again Hölder inequality and relation (6), we obtain

s

∑
m=0

r

∑
n=0

A
p
mB

q
n

(λm + ρn)μ � pq
Γ(μ)

[∫ ∞

0
xμ−1

[
s

∑
m=0

(
(m+1)

1
α e−λmx

)

×
(

(m+1)−
1
α

m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
�

)]α

dx

] 1
α

×
[∫ ∞

0
xμ−1

[
r

∑
n=0

(
(n+1)

1
β e−ρnx

)

×
(

(n+1)−
1
β

n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k

)]β

dx

⎤
⎦

1
β

.

� pq
Γ(μ)

[∫ ∞

0
xμ−1

[
s

∑
m=0

(m+1)e−αλmx

]

×
⎡
⎣ s

∑
m=1

(m+1)−
β
α

(
m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
�

)β
⎤
⎦

α
β

dx

⎤
⎥⎦

1
α

×
[∫ ∞

0
xμ−1

[
r

∑
n=0

(n+1)e−β ρnx

]

×
[

r

∑
n=0

(n+1)−
α
β

(
n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k

)α] β
α

dx

⎤
⎥⎦

1
β

= C̃λ ,ρ

⎡
⎣ s

∑
m=0

(m+1)−
β
α

(
m+1

∑
�=1

(a2�−1−a2�)Ã
p−1
�

)β
⎤
⎦

1
β

×
[

r

∑
n=0

(n+1)−
α
β

(
n+1

∑
k=1

(b2k−1−b2k)B̃
q−1
k

)α] 1
α

.

Now, using the Hölder inequality and interchanging the order of summation, we have

s

∑
m=0

r

∑
n=0

A
p
mB

q
n

(λm + ρn)μ

� C̃λ ,ρ

[
s

∑
m=0

m+1

∑
�=1

((a2�−1−a2�)Ã
p−1
� )β

] 1
β
[

r

∑
n=0

n+1

∑
k=1

((b2k−1−b2k)B̃
q−1
k )α

] 1
α
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= C̃λ ,ρ

[
s+1

∑
�=1

((a2�−1−a2�)Ã
p−1
� )β (s− �+2)

] 1
β

×
[

r+1

∑
k=1

((b2k−1−b2k)B̃
q−1
k )α(r− k+2)

] 1
α

= C̃λ ,ρ

[
s+1

∑
m=1

(s−m+2)((a2m−1−a2m)Ãp−1
m )β

] 1
β

×
[

r+1

∑
n=1

(r−n+2)((b2n−1−b2n)B̃q−1
n )α

] 1
α

. �

REMARK 3. If μ = 1, λm = (m + 1)/β and ρn = (n + 1)/α , so our inequality
(13) reduces to the corresponding result established in [8].

REMARK 4. Taking λm = (m+1)
1
μ , ρn = (n+1)

1
μ in (13), we have

s

∑
m=0

r

∑
n=0

A
p
mB

q
n(

(m+1)
1
μ +(n+1)

1
μ
)μ � C̃λ ,ρ

[
s+1

∑
m=1

(s−m+2)((a2m−1−a2m)Ãp−1
m )β

] 1
β

×
[

r+1

∑
n=1

(r−n+2)((b2n−1−b2n)B̃q−1
n )α

] 1
α

,

(19)

where

C̃λ ,ρ = α− μ
α β− μ

β (s+1)
1
α (r+1)

1
β . (20)
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inequalities, Element, Zagreb, 2017.

[3] G. S. DAVIES AND G. M. PETERSON, On an inequality of Hardy’s (II), Quart. J. Math., 15, (1964),
35–40.

[4] B. G. PACHPATTE, On some new inequalities similar to Hilbert’s inequality, J. Math. Anal. Appl.,
226, (1998), 166–179.

[5] B. G. PACHPATTE, Inequalities similar to certain extensions of Hilbert’s inequality, J. Math. Anal.
Appl., 243, (2000), 217–227.
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