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Abstract. In this work, we study Steffensen inequality and obtain some generalizations on q -
analogue of Steffensen inequality for infinite sums without restricted to the bounds. Since there
are some differences between quantum and classical calculus, such as q -integral of a positive
function from a to b (a,b ∈ R

+ , 0 < a < b , 0 < q < 1) does not have to be positive. The
obtained results can not be exactly expressed as classical ones, nonetheless to say, they are q -
extensions of the results in the classical ones.

1. Introduction

Quantum calculus also known as q -calculus can be described as a calculus without
limits. Since it is a connection between mathematics and physics, many researchers
interest in this type of calculus. Some of its applications in physics are in quantum
field theory, the theory of relativity and mechanics. It also has many applications in
mathematics such as basic hypergeometric series, number theory, combinatorics, time
scales etc. Interested readers can find more information about quantum calculus in
[7, 2, 3].

In this section, we give some definitions and facts on q -calculus in order to make
this paper more understandable. Let us start with the q -derivative of a function f :

DEFINITION 1. [7] The q -derivative is defined by

Dq f (x) =
f (qx)− f (x)

(q−1)x

for an arbitrary function f . For a differentiable function f , Dq( f ) → d f (x)
dx

as q→ 1.

Let f be a function defined on [0,b] . Then the q -integral of the function is defined
as follows:
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DEFINITION 2. [7] Suppose 0 < a < b and 0 < q < 1. The definite q -integral is
defined as ∫ b

0
f (x)dqx = (1−q)b

∞

∑
j=0

q j f (q jb) (1)

and ∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx−

∫ a

0
f (x)dqx. (2)

Gauchman in [5] gives the definition of q -decreasing (or q -increasing) function
and the special type of the definite q -integral as follows:

DEFINITION 3. [5] f (x) is called q -increasing (respectively, q -decreasing) on
[a,b] if f (qx) � f (x) (respectively, f (qx) � f (x)) whenever x ∈ [a,b] and qx ∈ [a,b] .
That is, f (x) is q -increasing (respectively, q -decreasing) on [a,b] if and only if (Dq f (x)
� 0) (respectively, (Dq f (x) � 0)) whenever x ∈ [a,b] and qx ∈ [a,b] . Clearly, if f is
increasing (decreasing), then it is also q -increasing (q -decreasing).

DEFINITION 4. [5] Let 0 < q < 1, b > 0 and n∈Z
+ . The restricted q -integral is

defined as
∫ b

bqn
f (x)dqx . In addition to f (x) , the restricted definite q -integral depends

on a , b and n .

We clearly say that the q -restricted integral is convergent, since the series is finite
sums.

One of the well-known classical integral inequality given by Steffensen [22] is as
follows:

THEOREM 1. [22] Suppose that the function f is decreasing and the function g

is integrable on [a,b] with 0 � g � 1 and λ =
∫ b

a
g(t)dt . Then we have

∫ b

b−λ
f (t) �

∫ b

a
f (t)g(t)dt �

∫ a+λ

a
f (t)dt. (3)

The inequalities are reversed if the function f is increasing.

Even nowadays many researchers interest in or inspire by the inequality and obtain
this type of inequality on different subjects. For instances, some authors obtain the
inequality for fractional integrals (see [19, 9, 20, 25]). Özkan and Yıldırım in [13] move
the inequality to the time scales, Gauchman in [4], Jakšetić and Pec̆arić in [6] give the
inequality on measure theory. Furthermore many researchers find generalizations, new
proof or weaker conditions for the inequality (see [14, 12, 10, 26, 15]).

By the aid of Definition 3, Gauchman [5] gives the following q -analogue of Stef-
fensen inequality for finite sum:
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THEOREM 2. [5] Suppose that 0 < q < 1 , b > 0 , n ∈ Z
+ . Let F, G : [a,b]→ R ,

where a = bqn , be two functions such that F is q-decreasing and 0 � G � 1 on [a,b] .
Assume that k, l ∈ {0,1, . . . ,n} are such that

b− cl �
∫ b

a
G(x)dqx � ck −a, if F � 0, on [a,b]

and

ck −a �
∫ b

a
G(x)dqx � b− cl, if F � 0, on [a,b].

Then ∫ b

cl

F(x)dqx �
∫ b

a
F(x)G(x)dqx �

∫ ck

a
F(x)dqx, (4)

where c j = bq j for j ∈ {0,1, . . . ,n}
Rajković et al. [18] firstly show the following results in order to obtain q -Steffensen

inequality for infinite sums. In classical analysis, the integral of a positive function is
also positive, but the q -integral of a positive function does not have to be positive. In
the next lemma, authors give the condition for this fact:

LEMMA 1. [18] If a function f (x) is q-integrable, nonnegative and nondecreas-
ing over [a,b] , then

∫ b

a
f (x)dqx � 0; (0 � a � b; 0 < q < 1).

LEMMA 2. [17, 18] Let u(x) be a continuous function on [a,b] and v(x) be a

nonnegative and integrable function such that
∫ b

a
v(x)dqx > 0 for all q ∈ (0,1] . Then

there exists q̂ ∈ (0,1) such that for every q ∈ (q̂,1) , there exists ξ = ξ (q) ∈ (a,b) so
that ∫ b

a
u(x)v(x)dqx = u(ξ )

∫ b

a
v(x)dqx.

Thus Rajković et al. [18] point out that the inequality (3) can not be given with
conditions in Theorem 1 for all q ∈ (0,1) and they obtain q -Steffensen inequality as
follows:

THEOREM 3. [18] Let 0 < a < b, f (x) and g(x) are both continuous functions

on [a,b] , f (x) is decreasing and 0 < g(x) < 1 on [a,b] and
∫ d

a
g(x)dqx > 0 for every

d ∈ (a,b) . If we denote λ =
∫ b

a
g(x)dqx , then there is a q̂ ∈ (0,1) such that

∫ b

b−λ
f (x)dqx �

∫ b

a
f (x)g(x)dqx �

∫ a+λ

a
f (x)dqx (5)

for all q ∈ (q̂,1) .
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In the same paper, authors also improve Theorem 2 and find another version of
q -Steffensen inequality on (0,b) .

THEOREM 4. [18] Let 0 < q < 1 , b > 0 , f (x) and g(x) are both q-integrable
functions on [0,b] , f (x) is non-negative and decreasing and 0 � g(x) � 1 for each

x ∈ [0,b] and λ =
∫ b

0
g(x)dqx . Let l,k ∈ N0 = N∪{0} be such that

l = �logq(1−λ/b)�, k = �logq(λ/b)�.
Then

Lq( f ;0,b) =
∫ b

bql
f (x)dqx �

∫ b

0
f (x)g(x)dqx �

∫ bqk

0
f (x)dqx = Uq( f ;0,b). (6)

Kalamir in [8] gives weaker conditions for the function g on (0,b) as follows:

LEMMA 3. [8] Let 0 < q < 1 , b > 0 . Let f , g be q-integrable functions on [0,b]

and λ =
∫ b

0
g(x)dqx . Let l,k ∈ N0 be such that

l = �logq(1−λ/b)�, k = �logq(λ/b)�.
Then the following inequalities hold:

∫ bqk

0
f (x)dx −

∫ b

0
f (x)g(x)dqx

�
∫ bqk

0
[ f (x)− f (bqk)][1−g(x)]dqx+

∫ b

bqk
[ f (bqk)− f (x)]g(x)dqx (7)

and
∫ b

0
f (x)g(x)dqx−

∫
bql

f (x)dqx

�
∫ bql

0
[ f (x)− f (bql)]g(x)dqx+

∫ b

bql
[ f (bql]− f (x)][1−g(x)]dqx. (8)

THEOREM 5. [8] Let 0 < q < 1 , b > 0 . Let f and g be q-integrable functions

on [0,b] such that f is nonnegative and decreasing and λ =
∫ b

0
g(x)dqx . Let k ∈ N0

be such that k = �logq(λ/b)� . If

∫ qx

0
g(t)dqt � qx and

∫ b

qx
g(t)dqt � 0, for every x ∈ [0,b],

then ∫ b

0
f (x)g(x)dqx �

∫ bqk

0
f (x)dqx.
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THEOREM 6. [8] Let 0 < q < 1 , b > 0 . Let f and g be q-integrable functions

on [0,b] such that f is nonnegative and decreasing and λ =
∫ b

0
g(x)dqx . Let l ∈ N0

be such that l = �logq(1−λ/b)� . If

∫ qx

0
g(t)dqt � 0 and

∫ b

qx
g(t)dqt � b−qx, for every x ∈ [0,b],

then ∫ b

0
f (x)g(x)dqx �

∫ b

bql
f (x)dqx.

In the same paper, author also gives the q -analogues of several generalizations of
Steffen inequality, such as in the following theorem author obtains the q -analogue of
the results given by Pec̆arić [14].

THEOREM 7. [8] Let 0 < q < 1 , b > 0 . Let f , g and h be q-integrable functions
on [0,b] such that h is positive, f is nonnegative, f/h is decreasing and 0 � g(x) � 1
on [0,b] . Let k ∈ N0 be such that

∫ bqk

0
h(x)dqx �

∫ b

0
h(x)g(x)dqx.

Then ∫ b

0
f (x)g(x)dqx �

∫ bqk

0
f (x)dqx.

Author in [8] points out that since k, l ∈N0 , the function f in Theorem 7 has to be
positive. But the assumption for the function f in the generalization of classical Steffen
inequality (see [14, Theorem 1]) does not have to satisfy such condition. Therefore, the
author finds the following result by investigating the condition of the negativity of the
function f in the next theorem.

THEOREM 8. [8] Let 0 < q < 1 , b > 0 . Let f , g and h be q-integrable functions
on [0,b] such that h is positive, f is negative, f/h is decreasing and 0 � g(x) � 1 on
[0,b] . Let k ∈ N0 be such that

∫ bqk

0
h(x)dqx =

∫ b

0
h(x)g(x)dqx.

Then ∫ b

0
f (x)g(x)dqx �

∫ bqk

0
f (x)dqx.

More q -integral inequalities can be found in [1, 11, 16, 21, 23, 24] and references
therein.

In this paper, our aim is to preserve the bounds of the integral on q -Steffensen
inequality (3) and show which conditions should be added to the q -analogue’s gener-
alizations.
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2. Generalizations of q -Steffensen inequality

As mentioned in Abstract and Introduction, the q -integral of a positive function
f from a to b (a, b ∈ R

+ , 0 < a < b , 0 < q < 1) does not have to be positive. Due
to this fact, throughout the paper we call that the function f is positive q -integrable
if the function f satisfies the conditions in Lemma 1, i.e. the function is q -integrable,
continuous, positive and nondecreasing on [a,b] .

THEOREM 9. Assume that the following conditions

1. 0 < a < b,

2. h is a positive q-integrable function on [a,b] ,

3. g is a q-integrable continuous function such that
∫ d

a
g(x)dqx > 0 for every d ∈

(a,b) and 0 < g(x) < 1 on [a,b]

hold. If the function f is a q-integrable continuous function such that
f
h

is a decreas-

ing function on [a,b] , then there exists a q̂ ∈ (0,1) such that

∫ a+λ

a
f (x)dqx �

∫ b

a
f (x)g(x)dqx (9)

for all q ∈ (q̂,1) , where λ is the solution of the equation

∫ a+λ

a
h(x)dqx =

∫ b

a
h(x)g(x)dqx. (10)

If
f
h

is an increasing function, then the inequality (9) is reversed.

Proof. At first, we will show 0 < λ < b− a . By using Lemma 2 on the integral∫ a+λ

a
h(x)dqx , we can find a q1 ∈ (0,1) such that there exists ξ1 = ξ1(q) ∈ (a,a+ λ )

so that ∫ a+λ

a
h(x)dqx = h(ξ1)

∫ a+λ

a
dqx = h(ξ1)λ (11)

for all q∈ (q1,1) and also using the same lemma on the integral
∫ b

a
h(x)g(x)dqx yields

that there exists a q2 ∈ (0,1) such that there is ξ2 = ξ2(q) ∈ (a,b) so that

∫ b

a
h(x)g(x)dqx = g(ξ2)

∫ b

a
h(x)dqx (12)

for all q ∈ (q2,1) . Hence from the equations (10), (11) and (12), we get

h(ξ1)λ = g(ξ2)
∫ b

a
h(x)dqx
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for all q ∈ (q,1) , where q = max{q1,q2} . Since h is a positive q -integrable function
and 0 < g(x) < 1, we get λ > 0. Also using the equation (12) and 0 < g(x) < 1 leads

us to
∫ b

a
g(x)h(x)dqx <

∫ b

a
h(x)dqx . Then from the equation (10), we get

∫ a+λ

a
h(x)dqx <

∫ b

a
h(x)dqx ⇒

∫ b

a+λ
h(x)dqx � 0 (13)

for all q ∈ (q,1) . Again by using the Lemma 2 on the last integral, there exists a q3 ∈
(q,1) such that there can be found a ξ3 = ξ3(q) ∈ (a+λ ,b) such that

∫ b

a+λ
h(x)dqx =

h(ξ3)(b−a−λ ) . Since h is a nonnegative function, from the equation (13) we lastly
obtain b−a > λ .

We just need to show that I =
∫ a+λ

a
f (x)dqx−

∫ b

a
f (x)g(x)dqx � 0. We have

I =
∫ a+λ

a
f (x)dqx−

∫ a+λ

a
f (x)g(x)dqx−

∫ b

a+λ
f (x)g(x)dqx

=
∫ a+λ

a
(1−g(x)) f (x)dqx−

∫ b

a+λ
f (x)g(x)dqx

Since the function h is positive on [a,b] , we can rewrite that
∫ a+λ

a
(1−g(x)) f (x)dqx =

∫ a+λ

a
[(1−g(x))h(x)]

f (x)
h(x)

dqx and then letting u = (1− g)h and v =
f
h

in Lemma 2

yields that there exists a ξ4 ∈ (a,a+ λ ) so that
∫ a+λ

a
(1−g(x)) f (x)dqx =

f (ξ4)
h(ξ4)

∫ a+λ

a
(1−g(x))h(x)dqx

for q4 ∈ (q3,1) . By using Lemma 2 on the right side of the equation with u = 1− g

and v = h , one can show that
∫ a+λ

a
(1−g(x))h(x)dqx > 0 for q5 ∈ (q4,1) . By using

the facts that
f
h

also decreases on [a,a+ λ ] and the equation (10), we obtain

I >
f (a+ λ )
h(a+ λ )

∫ a+λ

a
(1−g(x))h(x)dqx−

∫ b

a+λ
f (x)g(x)dqx

=
f (a+ λ )
h(a+ λ )

[∫ b

a
h(x)g(x)dqx−

∫ a+λ

a
h(x)g(x)dqx

]
−

∫ b

a+λ
f (x)g(x)dqx

=
∫ b

a+λ
g(x)h(x)

[
f (a+ λ )
h(a+ λ )

− f (x)
h(x)

]
dqx.

Letting u(x) = g(x)
[

f (a+ λ )
h(a+ λ )

− f (x)
h(x)

]
and v(x) = h(x) in Lemma 2 yields that there

exists a q̂ ∈ (q5,1) such that there exists ξ5 = ξ5(q) ∈ (a+ λ ,b) so that
∫ b

a+λ
g(x)h(x)

[
f (a+ λ )
h(a+ λ )

− f (x)
h(x)

]
dqx = g(ξ5)

[
f (a+ λ )
h(a+ λ )

− f (ξ5)
h(ξ5)

]∫ b

a+λ
h(x)dqx.
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The proof is completed by using the equation (13), 0 < g(x) < 1 and monotonicity

property of
f
h

.

For the reverse inequality, let us denote I =
∫ b

a
f (x)g(x)dqx−

∫ a+λ

a
f (x)dqx .

Since f
h is an increasing function, for x ∈ (a,a+λ ) , by using similar technique above,

one can obtain the following inequality

I �
∫ b

a+λ
f (x)g(x)dqx− f (a+ λ )

h(a+ λ )

∫ a+λ

a
(1−g(x))h(x)dqx

=
∫ b

a+λ
g(x)h(x)

[
f (x)
h(x)

− f (a+ λ )
h(a+ λ )

]
dqx.

Hence by letting u(x) = g(x)
[

f (x)
h(x)

− f (a+ λ )
h(a+ λ )

]
and v(x) = h(x) in Lemma 2, we can

find a q′ ∈ (q̊,1) such that there exists ε5 = ε5(q) ∈ (a+λ ,b) for all q∈ (q′,1) so that

I = g(ε5)
[

f (ε5)
h(ε5)

− f (a+ λ )
h(a+ λ )

]∫ b

a+λ
h(x)dqx.

Using the facts that 0 < g(x) < 1 on [a+ λ ,b] , f/h increases on [a+ λ ,b] and h is
positive function on [a+ λ ,b] leads us to the desired result. �

REMARK 1. Letting h(x) = 1 leads us to the right hand side of the inequality (5)
and taking the limit of the inequality (9) as q → 1− tends to the reverse inequality in
[14, Theorem 1].

THEOREM 10. Assume that the following conditions

1. 0 < a < b,

2. h is a positive q-integrable function on [a,b] ,

3. g is a q-integrable continuous function such that
∫ d

a
g(t)dqt > 0 for every d ∈

(a,b) and 0 < g(t) < 1 on [a,b]

hold. If the function f is a q-integrable continuous function such that
f
h

is decreasing

on [a,b] , then there exists a q̂ ∈ (0,1) such that

∫ b

a
f (x)g(x)dqx �

∫ b

b−λ
f (x)dqx (14)

where λ is given by ∫ b

b−λ
h(x)dqx =

∫ b

a
h(x)g(x)dqx. (15)

If f/h increases on [a,b] , then the inequality (14) reverses.
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Proof. From Lemma 2 and 0 < g(x) < 1 on [a,b] , it is easy to see that
∫ d

a
(1−

g(x))dqx > 0 for q ∈ (q1,1) . Taking 1− g(x) and b− a− λ instead of g(x) and λ
respectively in Theorem 9 yields

∫ a+b−a−λ

a
f (x)dqx �

∫ b

a
f (x)(1−g(x))dqx

∫ b−λ

a
f (x)dqx �

∫ b

a
f (x)dqx−

∫ b

a
f (x)g(x)dqx

∫ b

a
f (x)g(x)dqx �

∫ b

a
f (x)dqx+

∫ a

b−λ
f (x)dqx

∫ b

a
f (x)g(x)dqx �

∫ b

b−λ
f (x)dqx

and
∫ a+b−a−λ

a
h(x)dqx =

∫ b

a
h(x)(1−g(x))dqx

∫ b

a
h(x)g(x)dqx =

∫ b

b−λ
h(x)dqx

as desired. We want to note that this result can also be obtained by a similar technique
in Theorem 9. �

REMARK 2. Taking h(x) = 1 leads to the left side of the inequality (5) and taking
the limit of the inequality tends to the reverse inequality in [14, Theorem 2] as q → 1− .

COROLLARY 1. Assume that the following conditions

1. 0 < a < b,

2. h is a positive q-integrable function on [a,b] ,

3. g is a q-integrable continuous function such that
∫ d

a

g(x)
h(x)

dqx > 0 for every

d ∈ (a,b) and 0 < g(x) < h(x) on [a,b]

hold. If f is a decreasing function on [a,b] , then there exists a q̂ ∈ (0,1) such that

∫ b

a
f (x)g(x)dqx �

∫ a+λ

a
f (x)h(x)dqx (16)

is valid for all q ∈ (q̂,1) , where λ is the solution of the equation

∫ a+λ

a
h(x)dqx =

∫ b

a
g(x)dqx. (17)

If f is an increasing function, then the reverse inequality in (16) is valid.



1342 E. YILDIRIM

Proof. If we take f (x)h(x) instead of f (x) in Theorem 9, then
f (x)
h(x)

→ f (x) is

decreasing on [a,b] which satisfy the fourth condition of the theorem. And also taking
g(x)
h(x)

instead of g(x) in Theorem 9 yields

∫ d

a

g(x)
h(x)

dqx > 0 and 0 <
g(x)
h(x)

< 1

from the assumption. Hence by using Theorem 9, we obtain

∫ b

a
f (x)g(x)dqx �

∫ a+λ

a
f (x)h(x)dqx

and∫ a+λ

a
h(x)dqx =

∫ b

a
g(x)dqx

as desired. �

REMARK 3. Taking h(x) = 1 in the Corollary 1 leads to the right side of the
inequality (5). The inequality (16) is also a q -analogue of the result in [15].

COROLLARY 2. Assume that the following conditions

1. 0 < a < b,

2. h is a positive q-integrable function on [a,b] ,

3. g is a q-integrable continuous function such that
∫ d

a

g(x)
h(x)

dqx > 0 for every

d ∈ (a,b) and 0 < g(x) < h(x) on [a,b]

hold. If f is a decreasing function on [a,b] , then there exists a q̂ ∈ (0,1) such that

∫ b

b−λ
f (x)h(x)dqx �

∫ b

a
f (x)g(x)dqx (18)

is valid for all q ∈ (q̂,1) , where λ is the solution of the equation

∫ b

b−λ
h(x)dqx =

∫ b

a
g(x)dqx. (19)

If f is an increasing function, then the reverse inequality in (18) is valid.

Proof. Taking f (x) → f (x)h(x) and g(x) → g(x)
h(x)

in Theorem 10 satisfies the

condition of the theorem. Hence we get the desired result. �
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REMARK 4. Taking h(x) = 1 in Corollary 2 leads to the left side of the inequality
(5). Taking the limit of the inequality (18) as q → 1− tends to the inequality in [15].

THEOREM 11. The following conditions

1. 0 < a < b,

2. h and k are positive q-integrable functions on [a,b] ,

3. g is a q-integrable continuous function such that
∫ d

a

g(x)
h(x)

dqx > 0 for every

d ∈ (a,b) and 0 < g(x) < h(x) on [a,b]

hold. If
f
k

is a decreasing function, then there exists a q̂ ∈ (0,1) such that

∫ b

a
f (x)g(x)dqx �

∫ a+λ

a
f (x)h(x)dqx (20)

where λ is given by

∫ a+λ

a
h(x)k(x)dqx =

∫ b

a
g(x)k(x)dqx

If
f
k

is an increasing function, then the inequality (20) reverses.

Proof. Since the functions h and k are both positive q -integrable, from the as-
sumption, the functions h and k are q -integrable, positive and nondecreasing. So we
can easily see that the function h(x)k(x) is also positive q -integrable. Thus by letting

h(x) → h(x)k(x) , g(x) → g(x)
h(x)

and f (x) → f (x)h(x) in Theorem 9, we get

∫ b

a
f (x)g(x)dqx �

∫ a+λ

a
f (x)h(x)dqx

for all q ∈ (q̂,1) (q̂ ∈ (0,1)) , where λ is given by

∫ a+λ

a
h(x)k(x)dqx =

∫ b

a
g(x)k(x)dqx

as desired. �

THEOREM 12. The following conditions

1. 0 < a < b,

2. h and k are positive q-integrable functions on [a,b] ,
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3. g is a q-integrable continuous function such that
∫ d

a

g(x)
h(x)

dqx > 0 for every

d ∈ (a,b) and 0 < g(x) < h(x) on [a,b]

hold. If
f
k

is a decreasing function, then there exits a q̂ ∈ (0,1) such that

∫ b

a
f (x)g(x) �

∫ b

b−λ
f (x)h(x)dqx (21)

where λ is given by

∫ b

b−λ
h(x)k(x)dqx =

∫ b

a
g(x)k(x)dqx.

If
f
k

is an increasing function, then the inequality (20) reverses.

Proof. The proof can be obtained by replacing

h(x) → h(x)k(x), g(x) → g(x)
h(x)

and f (x) → f (x)h(x)

in Theorem 10. �

REMARK 5. By taking k(x) = 1 in Theorem 11 and Theorem 12, we can obtain
Corollary 1 and Corollary 2, respectively. Also Theorem 11 and Theorem 12 are q -
generalizations of the results obtained by Mercer [12, Theorem 3].
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