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COMPLETE CONVERGENCE AND COMPLETE
MOMENT CONVERGENCE FOR ARRAYS OF
ROWWISE NEGATIVELY DEPENDENT RANDOM
VARIABLES UNDER SUB-LINEAR EXPECTATIONS

MIAOMIAO WANG, MIN WANG, RUI WANG AND XUEJUN WANG*

(Communicated by L. Mihokovic)

Abstract. In this paper, under some suitable conditions, we study the complete convergence and
complete moment convergence for arrays of rowwise negatively dependent random variables in
sub-linear expectation space (Q,. 77 7IAE). Some general results on complete convergence and
complete moment convergence for arrays of rowwise negatively dependent random variables
under sub-linear expectations are established, which extend the corresponding ones in classical
probability space to the case of sub-linear expectation space.

1. Introduction

As is known to all, the limit theorems play very important roles in probability and
mathematical statistics, and classical limit theorems only hold in the case of model cer-
tainty. However, there exist uncertainties, such as measures of risk, nonlinear stochastic
calculus, and statistics in the process of finance. In the classical limit theorems, proba-
bilities and expectations are additive while many uncertainty phenomena do not satisfy
the linear additivity condition. At this time, nonadditive probabilities and nonadditive
expectations are useful tools for studying uncertainties and nonlinear stochastic calculus
in the process of finance. Therefore, in order to solve the limitation of the application
of classical limit theorems in practice, Peng (2005, 2006, 2008a) introduced and es-
tablished the basic framework and concept of sub-linear expectation space as a natural
extension of the classical linear expectation space.

Under the framework of Peng (2005, 2006, 2008a), many scholars have paid at-
tention to and studied the relevant properties of sub-linear expectations, and many ex-
cellent results have been achieved. For example, Gao and Xu (2011, 2012) studied the
large deviations and moderate deviations for quasi-continuous random variables in a
complete separable metric space under the Choquet capacity generalized by a regular
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sub-linear expectation; Zhang (2016a, 2016b, 2022) obtained the exponential inequali-
ties, Rosenthal’s inequalities and some limit theorems in sub-linear expectation space;
Zhong and Wu (2017) studied the complete convergence and complete moment con-
vergence for weighted sums of extended negatively dependent (END, for short) ran-
dom variables in (Q, .7 ,]I:Z); Zhang and Lin (2018) gained Marcinkiewicz’s strong
law of large numbers (SLLN, for short) for nonlinear expectations; Xi et al. (2019)
studied the complete convergence for arrays of rowwise END random variables; Kucz-
maszewska (2020) obtained the exponential inequalities, Hoffmann-Jgrgensen type in-
equalities and the complete convergence for widely acceptable (WA, for short) random
variables; Song (2020) gives an estimate of the convergence rate of this central limit
theorem by Stein’s method under sub-linear expectations; Zhang (2021) build Heyde’s
theorem under the sub-linear expectations; Guo and Li (2021) introduced the concept
of pseudo-independence under sub-linear expectations and derived the weak laws of
large numbers and SLLN with nonadditive probabilities generated by sub-linear expec-
tations; Chen and Liu (2021) obtained SLLN for negatively dependent (ND, for short)
random variables under sub-linear expectations, and so on.

The complete convergence is one of the important problems in limit theorems. The
concept of the complete convergence was first introduced by Hsu and Robbins (1947)
as follows: A sequence {X,,n > 1} of random variables is said to converge completely
to a constant 6 if

=

Y P(|X,— 6] >¢) <o forall e >0.

n=1

By the Borel-Cantelli lemma, this implies that X;, — 6 almost surely (a.s., for short).
Hence the complete convergence implies a.s. convergence. The concept of the com-
plete g-th moment convergence was introduced by Chow (1988), which is a stronger
concept than complete convergence as follows: Let {X,,n > 1} be a sequence of ran-
dom variables and a, >0, b, >0, g > 0. If

S anE{b, "X, — €} < o forall € >0,
n=1

then the above result was said to be complete moment convergence.
Now let us recall the concept of ND random variables in the classical probability
space (Q,.#,P), which was first introduced by Lehmann (1966) in the following way.

DEFINITION 1.1. Random variables X, X5, -, X, are said to be ND if for each
n > 2, the following two inequalities hold:

P(X; <x1,Xp <xp,--+, Xy <) < [[P(Xi < x0),

and

P(Xy >x1, X2 > x2,-, X > x0) < [[P(Xi > xi),
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forall xy,---,x, € R. An infinite family {X,,n > 1} of random variables is ND if every
finite subfamily is ND.

An array {X,x,k > 1,n > 1} of random variables is said to be rowwise ND if for
every n > 1, {Xu,k > 1} is ND.

In many statistical frameworks, such as multinomial, convolution of unlike multi-
nomial, multivariate hypergeometric, Dirichlet, permutation distribution, negatively
correlated normal distribution, random sampling without replacement and joint distri-
bution of ranks, the ND assumption is more reasonable than the independent structures.
A number of limit theorems for ND random variables have been established by many
scholars. We refer to Joag-Dev and Proschan (1983), Amini and Bozorgnia (2000,
2003), Taylor et al. (2002), Volodin (2002), Amini et al. (2004, 2007), Klesov et al.
(2005), Asadian et al. (2006), Li et al. (2006), Kuczmaszewska (2006), Zarei and Jab-
bari (2011), Wu (2010, 2011), Sung (2012, 2015), Chen and Sung (2016), Xu (2019),
and so on.

Let {ky,n > 1} be anon-decreasing sequence of positive integers such that lim k,

n—oo

=0, Qiu et al. (2011) studied the complete convergence for arrays of rowwise ND
random variables, and obtained the following interesting result.

THEOREM 1.1. Let {Xy,1 < k < ky,n > 1} be an array of rowwise ND random
variables, and {cy,n > 1} be a sequence of positive constants. Suppose that for every
T >0 and some 6 >0:

ok

(D) X end P(|Xu] > 1) <oo;

n=1 k=1

(ii) there exists N > 1 such that

oo kn n
2 (Z Var nkl(‘xnk‘ ))) < oo,

>g><w.

In this paper, under appropriate conditions, we will study the complete conver-
gence and complete moment convergence for arrays of rowwise ND random variables
in sub-linear expectation space (Q,. 77 ,]E), and obtain some simple corollaries. The
results obtained by Qiu et al. (2011) from the classical probability space will be gener-
alized to the case of sub-linear expectation space.

Then for all € > 0,

zor(2

ky,
2 EXnkI ‘Xnk| ))

The structure of this article is as follows. Some preliminary lemmas are stated in
Section 2. Main results and their proofs are provided in Section 3.

Throughout this paper, the symbol C represents positive some constant which may
be different in various places. Let I(A) be the indicator function of the set A.
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2. Preliminaries

In this section, we introduce some basic notations and concepts. We use the nota-
tions established by Peng (2008b).

Let (Q,.%) be a given measurable space and let % be a linear space of real
functions defined on (Q,.%) such thatif X;,X>,---,X, € 5, then ¢(Xy,---,X,) € A
foreach ¢ € C; 1;,(R"), where C; 1;,(R") denotes the linear space of (local Lipschitz)
functions ¢ satisfying

[@(x) = o) < C(L+ [x™ + [y[")|x —y|, forany x,y € R,

for some C > 0, m € N depending on ¢. 7 is considered as a space of “random
variables”. In this case, we denote X € J7Z.

DEFINITION 2.1. A sub-linear expectation £ on # is a functional £ : 22 —
R := [—oo, 0] satisfying the following properties: for all X,¥ € .7, we have

(i) monotonicity: if X > Y, then E[X] > R[Y];

(ii) constant preserving: E[c] = ¢ for ¢ € R;

(iii) sub-additivity: B[X 4+ Y] < E[X] 4+ E[Y], whenever E[X]+E[Y] is not of the
form +oo0 — oo Or —oo 4 o0

(iv) positive homogeneity: E[AX] = AK[X], 1 > 0.

The triple (Q #,) is called a sub-linear expectation space. Given a sub-linear ex-
pectation [, let us denote the conjugate expectation & of & by

&[X]:= —R[-X], forany X € /7.

Obviously, for all X € 7, 2[X] < E[X]. We also call E[X] and &[X] the upper-
expectation and lower-expectation of X , respectively.

Next we consider the capacities corresponding to the sub-linear expectations. Let
¢ C #. Afunction V: ¥ — [0,1] is called a capacity if

V(0)=0,V(Q)=1,V(A) <V(B), forany ACB, A,BEY.

If the capacity V satisfies V(AUB) <V(A)+V(B) forall A,B € ¢, then it is called
to be sub-additive. In the sub-linear expectation space (Q,.57,[£), we denote a pair
(V, %) of capacities by

V(A) :=inf{R[E] : Iy <&, E € A}, V(A) :=1-V(AC), forany A € F

where A€ is the complement set of A. By definition of V and 7/, it is obvious that V
is sub-additive, and

E[f] < V(A) <Elg, 8[f] < ¥ (A) < &g, if f<Ia< g, f.gEH.

The corresponding Choquet integrals/expectations (Cy,Cy ) are defined by

/VX>tdt+/ V(X >1t)—1]dt,



CONVERGENCE FOR ARRAYS OF ROWWISE VARIABLES 1351

with V being replaced by V and 7/, respectively.
Zhang (2016b) introduced the following concept of ND random variables in the
sub-linear expectation space (Q, .77, E).

DEFINITION 2.2. (i) In a sub-linear expectation space (2,5, E), arandom vec-
tor Y =(Yy,--- an), Y; € A is said to be ND to another random vector X = (X1,--+,Xy),
X; € 2 under K, if for each pair of functions ¢ € C;1;,(R™) and ¢, € C;1;p(R"),
we have

Elo1(X) 2 (Y)] < Eloy (X)]E[@2(Y)],

whenever g1 (X) >0, Elgy(¥)] > 0, E[| g1 (X) @2(¥)]] < oo, B[ o1 (X)) < oo, E[}2(¥)]
< oo, and either ¢; and ¢, are both coordinatewise non-decreasing or non-increasing.

(ii) Let {X,, n > 1} be a sequence of random variables in the sub-linear expecta-
tion space (Q,,%”E). X1,X,,--- are said to be ND, if X;; is ND to (X;,---,X;) for
eachi>1.

It is obvious that if {X,,n > 1} is a sequence of ND random variables in (Q,.7, )
and functions fi(x), f2(x),--- € Gy 1;,(R") are all non-decreasing (resp. all non-increa-
sing), then {f,(X,),n > 1} is also a sequence of ND random variables.

In the next part of this section, we present the main tools and preliminary lemmas
that are needed for the proofs of main results. The first one is about basic inequalities
under sub-linear expectations, which can be proved easily.

LEMMA 2.1. Forany X,Y € I, the following inequalities hold:

() [EX]| <E[X]];

(i) [EX]-E[]] <E[IX-Y

(iii) Markov’s inequality: V(|X| > x) < ]E“jf,lp] ,forany p>0, x>0;

A(iv) Jensen’s inequality: Let f(-) be a convex function on R. Suppose that E[X]
and E[f(X)] exist, then f(E[X]) < E[f(X)].

], B[x]-E[r] <E[X — 1],

The next one can be referred to Theorem 3.1 in Zhang (2022).

LEMMA 2.2. Let (Xi,---,X,) be a sequence of ND random variables in (Q, 7, 1)
A n no .
with E[X;] <0. Let S, = Y, X, By= Y, E[sz} Then, for all x,y >0,
k=1 k=1

V(S >2x) <V | max X >y | +ex —L 1+%1n 142 ;
n = X L <k<n k=Y p 2(.Xy+Bn) 3 Bn ’

in particular,

B,
V(S, > x) <Cx—2 Sforany x>0.

In the sub-linear expectation space, because of the uncertainty of expectation and
capacity, the study of complete convergence and complete moment convergence are
both much more complex and difficult. As is known to all, in the classical probability
space (Q,.Z,P), there is an equality: EI4 = P(A), A € % . However, in the sub-
linear expectation space, this equality is not defined. We need to modify the indicator
function by functions in C;z;,(R). To this end, for 0 < p < 1, we define the even
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function h(x) € Cprip(R), 0 < h(x) <1 forall x, h(x) =1 if |x| < p, h(x) =0 if
|x| > 1 and h(x) | as x > 0. For this function we have

1(lx] < ) < h(x) <I(x| < 1), 103 > 1) < 1 h(x) < I > p).

3. Main results and their proofs

THEOREM 3.1. Let {Xu,1 < k < ky,n > 1} be an array of rowwise ND random
variables in (Q,. 7, ), and {cy,n > 1} be a sequence of positive constants. Suppose
that:

ok
(i) X cn Y V(| Xuk| > 1) < oo forevery > 0;
=1 k=1

(ii) there exist constants 1 > 1 and & > 0 such that

. kn n
> cn ( E [kah (”?k”) < oo,
n=1 k=1
Then for all € > 0,
ad ki = Xnk
Y eV (Xnk—E[Xnkh (7)D > £ | < oo, (3.1)
n=1 k=1
i (Xnk — & [Xnkh (%)]) < —6) < oo, 3.2)
k=1

In particular, if]I:Z [Xnkh (%)} = [Xnkh (%)} , then for all € > 0,

)

Proof. If & [Xnkh (%)] =£ [Xnkh (%)] , then it is easy to check that

£ (re-epua (%)) |-

and

i vV

n=1

> g) < oo, (3.3)
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Considering {—X,, 1 <k <ky,n > 1} instead of { Xy, 1 <k <kyyn>1}in (3.1), we
can obtain (3.2) and (3.3) immediately. Therefore, we just need to prove (3.1). It is
easy to see that

(8 (st (5)]) <)
(B e ()< ea)
(kg e ”"h< gk)D >8’]§{Xnk<5}>

kZV Xtl > 8)+V (:21 (Xnk1<|xnk <6)-E [xnkh (’%)D > e) |

By condition (i), it is enough to prove that

St (3 (maonar <o wan (%2]) ) <=

For fixed n > 1, denote for 1 < k <k, that

Ynk - _Sl(xnk < _6)+Xnk1(‘Xnk| < )+6I( nk > 6)

Then, {Yjx,1 <k <k,} and {V;x —E[Vx],1 <k < k,} are both ND random variables
by the definition of ND random variables for each n > 1. Hence, we have

z (z (xnkuxnk <o san(%)]) )

+ Xk — O) (X > 0) + Xk + 0) (X < —0) — Xyt (| X k| >5)) )

& o o Xnk
x oV n -k n ElYu| —E | Xuh | —<
<X (;( «~ Bl8] + B8] - B [ ot (3|
+(Xnk_ 6)I(Xnk > 6) + |Xnk‘1(|Xnk‘ > 6)) > 8)
I kn €
<ch (Z(nk_ nk)>4>

5 (§ (sl (2])-)
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oo kn
—|—ZC" <Z wk— O nk>6)>§>
n=1

oo kn

PSev (zxnk|z<|xnk|>6> 4>
n=1 k=1

= h+bL+L+1.

For the estimate of 15, note that

Xnk
Ynk _Xnkh (7) '

= I(SI(Xnk > 5) 5]( nk < 5) +Xnk1(|Xnk‘ 5) X,h (%)

< SI(|Xowe| > 8) + | X ( (1| < ( ))

< 61(|Xnk‘ > 6) + ‘Xnk‘l(.u(s < |Xnk| X )
Xnk
< SI([Xo| > u8) < 6 (1—h<”5)>.

We have by Lemma 2.1 and condition (i) that,

oo kn | X,
< Czcn IE|:Ynk_ Xuch (T):H
n=1 k=1
- L 2 Xnk
gczcn E|:Ynk_ nkh<7)‘:|
n=1 k=1
- b 2 Xnk
<CY e Y [1 —h ( )}
n—l k=1 néd
oo kn
<CY en ), V(| Xu| > 1?9)
n=1 k=1
< oo

In the following, we will show Iz < oo. It is easy to obtain by condition (i) that

o oo kn
h< 3o <m1x xnk|>5) <o g (X > &) <

1<k<kn

Similar to the proof of I3 < eo, we can obtain Iy < e immediately.
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n

kn N
Finally, we will show I} < o. Let B, = Y K {(Ynk — ]E[Ynk])z} . Forany € >0

k=1
and y > 0, set
€
N; = {I’l B, > %}7
k
)N ‘ ey
Ny, = {n.kle(Xnk > uod) >m1n{173262,45}},
K 2
SRy (B ind Y2 X
N3—{n.k1E|:Xnkh< 6 >:|>m1n{32716}}7
N4=(N2UN3)C
Note that
X, X
Y2 = 81(1 Xl > 8) + X3I(1Xu| < 8) < & (1—h( 5k))+X3kh(“5k)-

By C,-inequality and Jensen’s inequality, it is easy to check that

B, <4 Y B[V

k=1
kn N ,LLXk kn ~ Xnk

<4 E[x,?kh< 6" )}4—4622]13[1—}1(7)]
k=1 k=1
kn N “X & kn

<4 ]E|:ankh< 6" ):l +4622V(‘Xnk|>“6)7
k=1 k=1

Hence, it is sufficient to prove that

Y eV (i (Ve — EYu]) > Z) < oo,

neN, k=1
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By Lemma 2.2 we have that

Y eV (kz (Ve — E[Yu]) > Z)

neN, k=1
< n“’ )% —-ﬁIY; 2
3 o (O 8 >0
2
£ 2 V€
+ cpexpy ——— | 1+ =In{ 1+
3 ool -speram (4500}
=: 111+ 1>

By Jensen’s inequality, we have for n € Ny that

1<k<ky

R Xt
< max SR {1—;;( )] + max E[|Xnkh<“xnk)}
1<k<hy 0 1<k<hy

<83 V(ul > ) + (kZ < (ugk)D

max |E[Y]| <  max DA

=7

(S

k=1
NN
. Yy . Y€y
< 5 {17____7___} PEEEYR
mn b s as st (mm{32 16})
y_ y_Jy
SatiT o
which implies that for any n € Ny, max |E[Y]| < %. Combining with condition (i),
< < n
we obtain
Yy
I < ¢,V max |Vl > )
neN, L<kshn 2
ok v
<Yy V(X >2)
n=1 k=1
< oo,

kn
Next, we prove /12 <. When n € Ny, we have B, < 7 2 and 2 V(|Xu| > 1d) <
—1

1. Lety= 5= 4 By C,-inequality, conditions (i) and (ii), we have

U

2
I < cnexp{ (1—|——1 ( ))}
n§v4 16 4B,
3 V€
:exp{——n} cnexp{—nln<1+ )}
2 ng’\,4 4B,
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4B, n 4B, \"
= <
CEC"<4B +y8> \CZC"<y6>

nENy neENy

<o (§ (Font-oefuan (5F)]))
<CY e (kZ"V(Xnkl >H5)>n+cn§vf” (:nlﬁ {X”z"h (u?k)Dn

neN, k=1

oo kn B .
<SCY cn Y, V(X >u8)+CY cn (21@ [ankh (H?k)
n=1 k=1 = =
< oo,

This completes the proof of the theorem. [

By Theorem 3.1, we can obtain the following corollaries.

COROLLARY 3.1. Let { Xy, 1 < k < kyyn > 1} be an array of rowwise ND ran-
dom variables in (Q,7,E), and {c,,n > 1} be a sequence of positive constants.
Assume that the conditions (i) and (ii) of Theorem 3.1 are satisfied, and

(iiiy) if Z E[ ,,kh( )} —0as n— oo, then forall € >0,
- kn
ZC,,V<2Xnk>e> < oo,
n=1 k=1
kn
(iiip) ifkél [ h (TAH — 0as n— oo, then forall € >0,

e kn
Y eV (ZX,,k < —s) < oo,
n=1

k)'l
(iii3) if Z E[ h (T"ﬂ —0asn— o andkgls[ nkh(#‘)] —0asn— o,
then for all 8>0

N kn
Zc,,V( Y Xk >£> < oo,
n=1 k=1

COROLLARY 3.2. Let {Xu,1 < k< kyyn > 1} be an array of rowwise ND ran-
dom variables in (Q,.7¢, &), and {cmn > 1} be a sequence of positive constants. As-
sume that B[X,4] = &[X,u] =0 forall 1 <k <k, and n>1. Let 0 < ¢(x) € Cy 1p(R)
such that for some 8 >0,

X x?
sup < oo, Sup <L oo

cous O(x) 0cx<? o(x)
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Suppose that condition (i) of Theorem 3.1 is satisfied, and the following conditions are

satisfied:
(iv) there exists some M > 1 such that

Ecn (Z,E (X)) )" < oo}

n—=

k’l A
() 3 BIp(Xuh] — 0 asn -

Then for all € > 0,

N kn
ZC,,V< Y Xuk| > s) < oo,
n=1 k=1

Proof. Obviously, to prove the above result, we only need to show that the con-
ditions of Theorem 3.1 and Corollary 3.1 are satisfied. For condition (ii), it is easy to
check that

kn X, kn
EE[X,%kh(“a")] < sup —2 o (X))
k=1 \<§¢ k=1

which together with sup ¢( y < e and (iv) yields (ii).

O<x§ u

Next, we will prove (iii). Since E[X,x] = 0, it follows by sup ¢( ;< oo and (V)

)| <22 (=4 ()

ey
< sup ol Z O(|Xux|)] — 0 as n — oo,
x>pd o(x) k=1

that

glE[Xnk}—g,l [nkh<

which implies that

Mz

N X

E [Xnkh (—"kﬂ — 0 asn— oo.
‘ )
! X

5 [Xnkh (—nk>} —0asn— oo,
‘ é

The proof is completed. []

k

Similarly, we get

>~

»
I
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In Theorem 3.1, the condition (ii) and results (3.1), (3.2) and (3.3) are all related
to the function /. In the following theorem, we will give some conditions which are all
unrelated to the function /4, and get some simple results. It is obvious from the proof of
Theorem 3.2 that Theorem 3.1 still holds under the conditions of the Theorem 3.2.

THEOREM 3.2. Let {Xui, 1 < k < ky,n > 1} be an array of rowwise ND random

variables in (Q,., &), and {c,,n > 1} be a sequence of positive constants. Assume
that the condition (i) of Theorem 3.1 is satisfied, and there exists some constant 0 <

< 2 such that 2 Cn Z E[|Xnk\1’] < oo,
n=1

(viy) If B[X] = 0, thenforall £>0,

e kn
Y eV (2 X > e) < oo, (3.4)
n=1 k=1

(via) If €[Xux] =0, then for all € > 0,

b kn
Y <2Xnk < —s) < oo, (3.5)
n=1

k=1

(viz) If B[X,i] = &[Xux] = 0, then for all € >0,

= k
2 o,V (
n=1

2 Xk
k=1
. )

= k,, 0 kn
< 2 VvV <2Xnk > 8) + ECHV <2Xnk < —8) .
n=1 k=1 n=1 k=1

> 8) < oo, (3.6)
Proof. It is easy to check that

oo k
Z iV (
n=1 k=1

Zn Xnk

Considering {—X,, | <k <ky,n > 1} instead of { Xy, 1| <k < kyyn > 1} in (3.4), we
can obtain (3.5) and (3.6) immediately. Therefore, we just need to prove (3.4). It is

easy to see that
Xk > 8)

(o (2] -8 s (32)]) o)

oo

=
1]
i

(o)

=
—
Il T

I
DM
()
=
<
N
K

3
I
-
~
I
_
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< o(Expa(3)]-5)
S (§ (ca-elra (3)])-3)

k=1
For the estimate of H;, when 0 < p < 1, we note that |X,;|h (Tk) <X I (1 K] <

8) < 8'P|X,x|P. By Lemma 2.1, we have
=YV (21@[ nkh(
n=1
o Xk
< _—
\‘CTEZ EZE:DX;kll< K} )]

n=1 k=1

=:.f114-112.

8

>~

7

cn 2, B {1Xul]

M s

<C

T
I

n=1

< oo,

When 1 < p <2, we note that [X| (1 —h (%)) < Xl (1 Xe] > 18) < (108)' X,

By Lemma 2.1 and E[X,;] = 0, we have
s £
2

H = imz(ki( R[X, nk}HE[ nkh(
o ky )

k=1
. kn
S (32 [ni(1-0(%))
k=1
gCchilﬁl }
n=1 k=1
< 1)

ARIEC)

cn 2, B[ Xu”]

n=1 k=1

a
M s

For H,, according to the proof of (3.1), it suffices to prove that condition (ii) of
Theorem 3.1 is satisfied. Since 0 < p < 2, we have
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62 & “‘Xnk‘ .uzxnk
< Ze|(M5) ("5
kn

<C E[‘Xnk|p]a
k=1
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which together with 2 Cn 2 & [|Xuk|?] < oo yields condition (ii) of Theorem 3.1 with

n=1 k=1
n = 1. The proof is completed. [

The third theorem extends the result of Theorem 3.1 from complete convergence

to complete moment convergence.

THEOREM 3.3. Let {Xu, 1 < k < kyn,n > 1} be an array of rowwise ND random
variables in (Q, 7, E), and {c,,,n > 1} be a sequence of positive constants. Suppose

that the following conditions hold for some 6 > 0:
(i) 2 Cn 2 1) [ank <l —h(—))] < oo forevery T>0;

(i) nm F E [X,fkh (“’gnk)] < oo

Cn
(ii) éle [\Xnk| (1 —h (%))] . 0as n— oo

B »—-

k

S =

Then for all € > 0,

and

(3.7)

(3.8)

(3.9)
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< * b 2 Xnk
< ch/ v (Xnk—E[xnkh<—>D >t+4g |di
n=1 0 k=1 6
* kn S Xnk
n/ \ 2<—Xnk—E{—Xnkh< )D>t+£ dt
n=1 0 k=1 6
oo k
" N X,
eCo ( (Xnk—]E [Xnkh (J)D e
n=1 k=1 6 +
- b A Xnk
+Se(§ (raveran(%)]) ¢
n=1 k=1

Considering {—X,, | <k <ky,n > 1} instead of { Xy, | <k < kyyn > 1} in (3.7), we
can obtain (3.8) and (3.9) immediately. So it is sufficient to prove that

- o [ kn A X,
ch/o V(Z (Xnk—]E[Xnkh<T)]>>t—|—£>dt<°o.
n=1 k=1

($ caelua ()] )
< S [ 0(§ (e (%)) rre)

+
M s
o

+

Note that

Obviously, to prove (3.7), it is sufficient to prove that J; < e and Jp < eo. It is easily
checked that

S IR [RS8 S

Hence, condition (i) of Theorem 3.1 holds. Note that condition (ii) of Theorem 3.1
holds for n = 1. Therefore, by Theorem 3.1 we obtain J; < oo.
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In the following, we will show J, < oo. It is easy to see that

(§ (e (3)])
<i< B[ (%)) >r,k@"1{xnk>t}>
oo (8 (et ()] o o)
< 3 vl >0 +v<k§ (oittad <2 [ (52 >t>7

which derives that

oo kn oo
5 < chZ/ V([ Xpe| > 1)t
n=1 k=179
- « kn A Xnk
+2C"/§ V(Z (XnkI(Xnk| gt)—E[Xnkh< 5 )D >t> dt
k=1

It is easy to obtain by condition (i) that,

5= 21 e kkz [ V] >
snicnki/ 2]E[X ( h(Xt"k)ﬂdt
cSegefi(-(3))]

< oo,
For fixed n > 1 and ¢t > 0, denote for 1 < k < k,, that
Zi = —t (Xop < —1) + X (|Xe] < 8) +21 (X > 1)

Then, {Zy,1 <k<k,} and {Zy —E[Zx],1 <k <k,} are both ND random variables
by the definition of ND random variables for each n > 1. Hence, we have

Jy = icn/:V (:Zl (Xnkl(|X,,,< <t)— fE[ nkh( 5 )D >t> dt

> :sz"l(znk—I‘E[znk]H@[zn} E[kh((s)}

+ Xk — (X > 1) + (X + I (X < —1) — X (| Xouk| > t)) > t) dt

Il
Ms

S
S—
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< }gcn /:V (:Zl (an —B[Zu] + B[Zu] - & [Xnkh (%)]

+ Xk — O ( Xk > 1) + [ X (| Xk | > t)) > t) dt

VAN
™M
Y
S
<

o (g‘( (Zu —E[Zu]) > %) dt
n=1 k=1

(e nn ()] 1)

kn

2E

L t
(; wk — (X > 1) > Z)dt

kn

+ch/ (2 X[ 1(|Xoui| > 1) > Z) dt
=:J5+Jo+J7+ Js.

For the estimate of Jg, note that for t > 0,

X,
an - Xnkh (%)

X
= |t (X > 1) —t1 (X < —1) + Xoid (| Xor) < 1) — Xoih (%")

(| Xk| > 1) + [ Xt <I(|Xnk| <i)—h (%))

< tl(‘Xnk| > t)+ |Xnk‘1(nu6 < |Xnk‘ < t)

X,
< [Xutll(Xoi| > 16) < [ Xt (1 h (u—g)) .

By condition (iii), for all sufficiently large n, we have that

efua(-0(35)]

Note that [X,u| (1 - (X" )) Xl (1Xi] > 1128) <cx,3k<1 —h(
by Lemma 2.1 and condition (i) that,

(X,V(i

k=1

u

~ Xk t
E |:an —X,ih <T>:| ’ > Z) dt

b )) . We have

&
VAN
M s
)
S
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o - kn X 2
<Cc¥e, [ t2 E[Xn (1—/@(—"1‘))] dt
21/5 <k1 X 5

o ko

o t
J7:ch/ (Z wk — 1) nk>t)>4>dt
< Ecn/ V( max | Xl >t> dt

=" s 1<k<hn
< chZ/ V([ Xoue| >1)dt
n=1
- b « 2 2 Xnk
<Tad | ]E{Xnk<l—h<—>)]dt
n=1 k=179
had kn 2 Xk
= .
<cTaXepa(i-0(%))]
< oo

Similar to the proof of J; < oo, we can obtain Jg < e immediately.
Finally, we will show J5 < c. Note that

Zye < Xaie = Xl (1Xo] > 8) + X3 (1Xou] < 6)

X, X,
< X2 (1 —h (%‘)) +X2h (”6 ").

By Lemma 2.2, C,-inequality, Jensen’s inequality and conditions (i) and (ii), it is easy
to check that

J5 = ch/ ( nk_E[anD > %) dt

< Ci cn /:fz 2 E [(an—ﬁ«:[znk])z} dt

- k=1
o o kn
<CYaf Y EZ]a
n—1 /0 k=1
- o kn
e[ e () o (5
n=1 0 k=1 6 6
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)] e e Ze i (452)

oo kn
< CECHEJE[X,fk <l—h<
n=1 k=1
< oo,
The proof is completed. []
The following theorem extends the result of the Theorem 3.2 from complete con-

vergence to complete moment convergence.

THEOREM 3.4. Let {Xx,1 < k < ky,n > 1} be an array of rowwise ND random
variables in (Q,.7,E), and {cy,n > 1} be a sequence of positive constants. Suppose
that:

(i) ; Cn 2 ]E{X,%k <l—h<%">>} < oo forevery T>0;

oo

k)'l A
(ii) there exists some constant 1 < p < 2 such that 'Y, ¢, Y. E[|Xu|?] <
n=1 k=1

(if) éﬁl 1) [\Xnk| (1 - (ﬁ))} — 0 as n— oo, for some § > 0.

If E[X,x] =0, then for all € >0,

kn
chC:v(Z nk—s) < oo, (3.10)

k=1 +

If €[X,x] =0, then for all € >0,

oo kn
Y caCy (—EX,,k—e> < oo, (3.11)
n=1 k=1

+

IfE[Xu] = &[Xuu] =0, then for all € >0,

i kn
Z cnCy ( 2 Xk
n=1 k=1

—s) < oo, (3.12)
+

Proof. 1t is easy to check that

_ icn/:v<kz nk>£+t>dl+2cn/ (—kznxnk>s+t>dt

=1

k
N kn N n
=Y eCy Xnk—z?) + > cnCy (—ank—e> :
1 4 k=1

n=1 +
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Considering {—Xt,1 < k < ky,n > 1} instead of {X,;,1 <k < ky,n > 1} in (3.10),
we can obtain (3.11) and (3.12) immediately. Therefore, we just need to prove (3.10).

It is sufficient to prove that

- o kn
Zc,,/ V(ZXnk>£+t>dt<oo.
n=1 0 k=1

Note that

0o - kn

Zc,,/o V(Z nk>£+t>dl
k=1
n
)y

n=1
oo § oo oo kn
= ch/ V( nk>8+t>dl Z (ZXnk>£+t>dt
n=1 /0 k=1 n=1 k=1
b kn ©o oo n
< SchV<2Xnk>s>+ch/ V(ZXnk>t>dt
n—1 - n=1 70 k=1
=L+

Obviously, to prove (3.10), it is sufficient to prove that L; < eo and L, < eo. It s easily
checked that

oo k, oo kn
noo. X
w>2anE{ka<l—h<T))] Z Z (1Xi| > 7).
Hence, condition (i) of Theorem 3.1 holds. Therefore, by Theorem 3.2 we obtain L; <

oo,

In the following, we will show L, < . It is easy to see that

o - kn
L, = ZC"/5 V(ZXnk>t>dt

n=1 k=1
<ic/NV§X—I@Xh)& > a
X - n 5 - nk nk 5 2
n=1 k=1
+i /wV knfEXh)& > D) ar
n=lcn k=1 " 6 2
=3+ L4

For the estimate of L4, by condition (iii), for all sufficiently large n, we have that

Sefra(-2(5)) -

Noting that 1 < p < 2, we have

X, _
ol (10 () ) < Il > 1) < )71
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By Lemma 2.1, condition (ii) and E[X,;] = 0, we get that

£

5 (oo (5)])-2)
<YV :”lfa[xnu (-0 (%)=
kel Exlua(10(3))]) o
Al9)

o3

dt

N~

For L3, according to the proof of J, in Theorem 3.3, it suffices to prove that
condition (ii) of Theorem 3.3 is satisfied. Since 1 < p < 2, we have by condition (ii)

that,
kn 2 k 2
X\ 07 & | WXk M Xk
2[ (5”_”21(11@(5)}1(5)

62 & I’E .u‘Xnk| Ph .uzxnk
u2 = ) )

‘Xnk|p

//\

<C

HM”

which yields condition (ii) of Theorem 3.3. Hence, we can obtain L3 < co. The proof
is completed. [J
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