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CATER TYPE INEQUALITIES INVOLVING CATER
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Abstract. By means of the mathematical induction, stepwise adjustment method and the reorder
method, under the proper hypotheses, we established the following Cater type inequalities in-
volving Cater products:

X⊗Y � KX ⊗Y � K+X⊗Y > e−1 and f ⊗g � f (1− t)⊗g > e−1.

As applications, we solved the problem which proposed by M. Laub, Jerusalem and Israelin un-
der the proper hypotheses, and an l -isoperimetric inequality in the centered n -surround system
S(2) {P,Γ, l} is obtained as follows:

[μ ]⊗ [l] �
( |Γ|

n

) 2π
n

.

1. Introduction

In 1980, F. S. Cater established an interesting inequality involving the Cater prod-
uct K0X⊗X [1]. Since the Cater products X⊗Y and f ⊗g are of extreme complexity
and wide applicable so, it is of theoretical significance and application value that to
establish Cater type inequalities involving Cater products.

The surround system has a wide application background in space science. In [32,
15,34,28,26,14,33], the authors systematically established the surround system theory
and some valuable isoperimetric inequalities [12] in space science are obtained.

In this paper, we will establish Cater type inequalities involving Cater products.
As applications, we solved the problem which proposed by M. Laub, Jerusalem and Is-
raelin [2] under the proper hypotheses, and an l-isoperimetric inequality in the centered
n-surround system S(2){P,Γ, l} is obtained.

The research methods of the paper are based on the mathematical induction [15,
13, 30, 22], stepwise adjustment method [29] and the reorder method [30, 22, 29]. The
research tools of this paper include the theories of functional analysis, discrete math-
ematics, optimization, convex geometry, inequality, mean value and the Mathematica
software, especially the mean value theory [32, 15, 34, 28, 26, 14, 33, 13, 30, 22, 29, 16,
17, 18, 24, 23, 10, 11].
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2. Basic concepts and preliminary results

We will use the following hypotheses and notations throughout the paper:

R � (−∞,∞) , R+ � [0,∞) , R++ � (0,∞) , X � (x1, . . . ,xi, . . . ,xn) ∈ Rn,

Y � (y1, . . . ,yi, . . . ,yn) ∈ Rn,
−→
I n � {X ∈ In : x1 � · · ·� xi � · · ·� xn} ,

←−
I n � {X ∈ In : x1 � · · ·� xi � · · ·� xn} , În �−→I n∪←−I n,

C � {ψ : [0,1]→ R : ψ be continuous} , C++ � {ψ : [0,1]→ R++ : ψ be continuous} ,
where I ⊆ R is an interval and n � 2.

DEFINITION 2.1. Let K � [k1 · · ·ki · · ·kn] � k1 · · ·ki · · ·kn ∈ Sn be a permutation
[30] of 1,2, . . . ,n. Then we define:

K− � [k−1 · · ·k−i · · ·k−n ] : k−i = i, ∀i : 1 � i � n, (1)

K0 � [k0
1 · · ·k0

i · · ·k0
n] : k0

i = i+1, ∀i : 1 � i � n−1 ∧ k0
n = 1, (2)

K+ � [k+
1 · · ·k+

i · · ·k+
n ] : k+

i = n+1− i, ∀i : 1 � i � n, (3)

and
KX �

(
xk1 ,xk2 , . . . ,xkn

) ∈ Rn, (4)

where Sn is the symmetric group [30].

By Definition 2.1, we have
K−X = X . (5)

DEFINITION 2.2. [30,22] The points X ,Y ∈Rn are said to be comonotone, write
as X � Y, if

(xi− x j) (yi− y j) � 0, ∀i, j : 0 � i, j � n, (6)

and X and Y are said to be countermonotone, write as X �Y, if −X �Y ; The functions
f ,g : [0,1]→R are said to be comonotone, write as f � g, if

( f (x)− f (y)) (g(x)−g(y)) � 0, ∀x,y ∈ [0,1], (7)

and f and g are said to be countermonotone, write as f � g, if − f � g .

DEFINITION 2.3. We define the function

X⊗Y : Rn×Rn
++→R++, X⊗Y � 1

n

n

∑
i=1

yxi
i , (8)

as a Cater product of the points X and Y, and the functional

f ⊗g : C×C++→R++, f ⊗g �
∫ 1

0
[g(t)] f (t) dt, (9)

as a Cater product of the functions f and g.
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By Definition 2.3, we see that X ⊗Y is the mean value [32, 15, 34, 28, 26, 14, 33,
13, 30, 22, 29, 16, 17, 18, 24, 23, 10, 11] of the positive real numbers yx1

1 ,yx2
2 , . . . ,yxi

i , . . . ,
yxn
n , and f ⊗g is the mean value of the function g f ∈C++.

In 1980, F. S. Cater established an interesting inequality involving the Cater prod-
uct K0X⊗X as follows [1]:

K0X⊗X > n−1 [1+(n−2)min
{
xx2
1 ,xx3

2 , · · · ,xxn
n−1,x

x1
n

}]
, ∀X ∈Rn

++, (10)

which is called as the Cater inequality.
In 1985, M. Laub, Jerusalem and Israel proposed the following problem [2].

PROBLEM 2.1. Let X ∈ Rn
+ and K ∈ Sn . Prove or disprove that

X⊗X � KX⊗X . (11)

In 1990, Ishai Ilani proved that [2]

X⊗X � K0X⊗X . (12)

In Section 3, we will establish the discrete Cater type inequalities which similar
to the inequality (10). In Section 4, we will establish the continuous Cater type in-
equalities. In Section 5, we will study Problem 2.1. In Section 6, we will display the
applications of our main results in space science.

3. Discrete Cater type inequalities

In this section, our main result is the following Theorem 3.1.

THEOREM 3.1. (Discrete Cater type inequalities) Let X ∈ R̂n, Y ∈ R̂n
++ and X �

Y. If

min
1�i, j�n

{
yxi

j

}
> e−1, (13)

then we have the following discrete Cater type inequalities:

X⊗Y � KX⊗Y � K+X⊗Y > e−1, ∀K ∈ Sn. (14)

For any K ∈ Sn , the equalities in (14) hold if, and only if

x1 = x2 = · · ·= xn ∨ y1 = y2 = · · ·= yn. (15)

In order to prove Theorem 3.1, we need to establish the following Lemma 3.1.

LEMMA 3.1. Under the hypotheses in Theorem 3.1, for any i, j : 1 � i < j � n
and any ki,k j : 1 � ki < k j � n, we have

χ
(
xki ,yi

)
+ χ

(
xkj ,y j

)
� χ

(
xkj ,yi

)
+ χ

(
xki ,y j

)
(16)
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and, for any i, j : 1 � i < j � n and any ki,k j : 1 � ki < k j � n,

χ
(
xki ,yi

)
+ χ

(
xkj ,y j

)
= χ

(
xkj ,yi

)
+ χ

(
xki ,y j

)
, (17)

if and and only if (15) hold, where K ∈ Sn and

χ : R×R++→ R++, χ(x,y) � x⊗ y = yx. (18)

Proof. Let 1 � i < j � n and 1 � ki < k j � n. Now we prove the inequality (16).
We define an auxiliary function as follows:

ϕ : R++→R, ϕ(t) � χ
(
xki ,t

)− χ
(
xkj ,t

)
. (19)

Then the inequality (16) can be rewritten as:

ϕ(y j)−ϕ(yi) � 0, ∀yi,y j ∈ R++. (20)

We first prove that (
xkj − xki

)
(y j− yi) � 0. (21)

Indeed, if X ,Y ∈ R̂n, then, by Definition 2.2, we have

X � Y ⇔
(
X ∈ −→R n∧Y ∈ −→R n

)
∨
(
X ∈←−R n∧Y ∈←−R n

)
⇔ K+X � Y. (22)

Since Y ∈ R̂n
++, we have

Y ∈ −→R n
++∨Y ∈←−R n

++. (23)

Let Y ∈−→R n
++. Since X �Y, by (22), we have X ∈−→R n. By 1 � i < j � n and 1 � ki <

k j � n , we get y j−yi � 0 and xkj −xki � 0. Hence (21) holds. Similarly, if Y ∈←−R n
++,

then X ∈←−R n, y j−yi � 0 and xkj −xki � 0. Hence (21) also holds. Thus, the inequality
(21) is proved.

For the convenience of narration, we might as well assume that

xkj � xki ∧ y j � yi. (24)

Since the function χ is continuous so, by the mathematical analysis theory, we
have

∂ χ(x,y)
∂x

� χ1(x,y) = yx logy, (25)

∂ χ(x,y)
∂y

� χ2(x,y) = xyx−1 (26)

and
∂ 2χ(x,y)

∂x∂y
� χ12(x,y) = χ21(x,y) � ∂ 2χ(x,y)

∂y∂x
= yx−1 (logyx +1) . (27)
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According to (24)–(27) and the Lagrange mean value theorem, there exists a ξ ∈
[yi,y j]⊆ R++ such that

ϕ(y j)−ϕ(yi) = (y j− yi)
(

dϕ(t)
dt

)
t=ξ

= (y j− yi)
(

χ2(xki ,ξ )− χ2(xkj ,ξ )
)

, (28)

and there exists an η ∈
[
xki ,xkj

]
⊆ R such that

χ2(xki ,ξ )− χ2(xkj ,ξ ) =
(
xki − xkj

)
χ21(η ,ξ ). (29)

By (13) and (27), we have

χ21(η ,ξ ) = ξ η−1 (logξ η +1)
� ξ η−1 (logmin

{
ξ xki ,ξ xk j

}
+1
)

� ξ η−1
(

log min
1�m�n

{ξ xm}+1

)
� ξ η−1

(
log min

1�m�n

{
min

{
yxm
i ,yxm

j

}}
+1

)
� ξ η−1

(
log min

1�m, j�n

{
yxm

j

}
+1

)
= ξ η−1

(
log min

1�i, j�n

{
yxi

j

}
+1

)
> ξ η−1 (loge−1 +1

)
= 0.

Hence
χ21(η ,ξ ) > 0. (30)

Combining with (28)–(30) and (21), we get

ϕ(y j)−ϕ(yi) = (y j− yi)
(

χ2(xki ,ξ )− χ2(xkj ,ξ )
)

= (y j− yi)
(
xki − xkj

)
χ21(η ,ξ )

= −
(
xkj − xki

)
(y j− yi)χ21(η ,ξ )

� 0

⇒ (20)
⇒ (16).

Hence the inequality (16) is proved.
Based on the above proof, we can see that, for any i, j : 1 � i < j � n and any

ki,k j : 1 � ki < k j � n, the equalities (17) hold if and only if(
xkj − xki

)
(y j− yi) = 0,∀i, j : 1 � i < j � n and ∀ki,k j : 1 � ki < k j � n. (31)
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Since k1 · · ·ki · · ·kn is an arbitrary permutation of 1,2, . . . ,n, we see that (31) can be
rewritten as (15). This ends the proof of Lemma 3.1. �

Now we turn to the proof of Theorem 3.1.

Proof. We first prove that: There exists a permutation k∗m+2k
∗
m+3 · · ·k∗n of 1,2, . . . ,

n−m−1, such that

KX⊗Y �
[
k+
1 k+

2 · · ·k+
m+1k

∗
m+2k

∗
m+3 · · ·k∗n

]
X ⊗Y, ∀m : 0 � m � n−1, (32)

and there exists a permutation k∗m+2k
∗
m+3 · · ·k∗n of m+2,m+3, . . .,n, such that

KX⊗Y �
[
k−1 k−2 · · ·k−m+1k

∗
m+2k

∗
m+3 · · ·k∗n

]
X ⊗Y, ∀m : 0 � m � n−1. (33)

We only prove the inequality (32) since the proof of the inequality (33) is similar.
Now we use the mathematical induction [15,13,30,22] for m and use the stepwise

adjustment method [29] for K to prove the inequalities (32).
(A) Let m = 0. If k1 = k+

1 = n, Then the inequality (32) is an equation. Assume
that k1 < k+

1 . Then there exists an r : 2 � r � n, such that kr = k+
1 . Since 1 � 2 � r �

n and 1 � k1 < k+
1 = kr � n, by Lemma 3.1, we have

χ
(
xk1 ,y1

)
+ χ (xkr ,yr) � χ (xkr ,y1)+ χ

(
xk1 ,yr

)
. (34)

So, from the (34), we have

KX⊗Y = [(k1k2 · · ·kr · · ·kn)]X⊗Y

=
1
n

n

∑
i=1

χ
(
xki ,yi

)
=

1
n

(
χ
(
xk1 ,y1

)
+ χ (xkr ,yr)+ ∑

1�i�n, i�=1,r

χ
(
xki ,yi

))

� 1
n

(
χ (xkr ,y1)+ χ

(
xk1 ,yr

)
+ ∑

1�i�n, i�=1,r

χ
(
xki ,yi

))
= [(krk2 · · ·k1 · · ·kn)]X⊗Y

=
[
k+
1 k∗2k

∗
3 · · ·k∗n

]
X⊗Y

⇒ (32),

where k∗2k
∗
3 · · ·k∗n � k2 · · ·k1 · · ·kn ia a permutation of 1,2, . . . ,n−1. Thus, the inequal-

ities (32) holds when m = 0.
(B) Suppose that there exists a permutation k∗m+2k

∗
m+3 · · ·k∗n of 1,2, . . . ,n−m−1,

such that (32) holds, where 0 � m � n−2. Now we prove that there exists a permutation
k∗∗m+3k

∗∗
m+4 · · ·k∗∗n of 1,2, . . . ,n−m−2, such that

KX⊗Y �
[
k+
1 k+

2 · · ·k+
m+2k

∗∗
m+3k

∗∗
m+4 · · ·k∗∗n

]
X⊗Y. (35)

To this end, we prove that there exists a permutation k∗∗m+3k
∗∗
m+4 · · ·k∗∗n of 1,2, . . . ,

n−m−2, such that[
k+
1 k+

2 · · ·k+
m+1k

∗
m+2k

∗
m+3 · · ·k∗n

]
X⊗Y �

[
k+
1 k+

2 · · ·k+
m+2k

∗∗
m+3k

∗∗
m+4 · · ·k∗∗n

]
X⊗Y. (36)
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Indeed, if k∗m+2 = k+
m+2 = n−m−1, then (36) is an equation. Assume that k∗m+2 <

k+
m+2. Then, there exists an r : m+3 � r � n such that k∗r = k+

m+2 . Since 1 � m+3 �
r � n and 1 � k∗m+2 < k+

m+2 = k∗r � n, by Lemma 3.1, we have

χ
(
xk∗m+2

,ym+2

)
+ χ

(
xk∗r ,yr

)
� χ

(
xk∗r ,ym+2

)
+ χ

(
xk∗m+2

,yr

)
. (37)

Let
k∗i � k+

i = n+1− i, i = 1,2, . . . ,m+1. (38)

Then, by (37) and (38), we have[
k+
1 k+

2 · · ·k+
m+1k

∗
m+2k

∗
m+3 · · ·k∗n

]
X⊗Y

=
[
k∗1k
∗
2 · · ·k∗m+1k

∗
m+2k

∗
m+3 · · ·k∗r · · ·k∗n

]
X⊗Y

=
1
n

n

∑
i=1

χ
(
xk∗i ,yi

)
=

1
n

(
χ
(
xk∗m+2

,ym+2

)
+ χ

(
xk∗r ,yr

)
+ ∑

1�i�n, i�=m+2,r

χ
(
xk∗i ,yi

))

� 1
n

(
χ
(
xk∗r ,ym+2

)
+ χ

(
xk∗m+2

,yr

)
+ ∑

1�i�n, i�=m+2,r

χ
(
xk∗i ,yi

))
=
[
k∗1k
∗
2 · · ·k∗m+1k

∗
r k
∗
m+3 · · ·k∗m+2 · · ·k∗n

]
X⊗Y

=
[
k+
1 k+

2 · · ·k+
m+2k

∗
m+3 · · ·k∗m+2 · · ·k∗n

]
X⊗Y

=
[
k+
1 k+

2 · · ·k+
m+2k

∗∗
m+3k

∗∗
m+4 · · ·k∗∗n

]
X⊗Y

⇒ (36),

where k∗∗m+3k
∗∗
m+4 · · ·k∗∗n � k∗m+3 · · ·k∗m+2 · · ·k∗n is a permutation of 1,2, . . . ,n−m− 2.

Thus, inequality (36) is proved.
Combining with (32) and (36), we get

KX⊗Y �
[
k+
1 k+

2 · · ·k+
m+1k

∗
m+2k

∗
m+3 · · ·k∗n

]
X⊗Y

�
[
k+
1 k+

2 · · ·k+
m+2k

∗∗
m+3k

∗∗
m+4 · · ·k∗∗n

]
X⊗Y

⇒ (35).

Hence the inequality (35) is proved.
According to the principle of the mathematical induction, the inequalities (32) are

proved.
Finally, we prove the inequalities (14). In (32) and (33), set m = n−1. Then, by

Definition 2.3, (5) and (13), we get

X⊗Y = K−X⊗Y = [k−1 k−2 · · ·k−n ]X⊗Y

� KX⊗Y � [k+
1 k+

2 · · ·k+
n ]X⊗Y

= K+X⊗Y > e−1⇒ (14).
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Thus, the inequalities (14) are proved.
Based on the above proof and Lemma 3.1, for any K ∈ Sn , the equalities in (14)

hold if and only if (15) hold. The proof of Theorem 3.1 is completed. �

REMARK 3.1. By (5) and Theorem 3.1, we see that the mean value of the positive
real numbers y

xk1
1 ,y

xk2
2 , . . . ,y

xki
i , . . . ,y

xkn
n reaches the maximum when K = K− , while

reaches the minimum when K = K+ , where K−X � K+X . This is the significance of
Theorem 3.1 in the optimization theory.

REMARK 3.2. An important hypothesis of Theorem 3.1 is X � Y. Using this
method to deal with the inequality problems is called as the reorder method [30,22,29].

REMARK 3.3. The equalities conditions of the inequalities (14) are similar to that
of the Chebyshev inequality [30, 29, 3, 21, 20, 9, 4, 35, 25, 5].

REMARK 3.4. We remark here that,

x1 = x2 = · · ·= xn =−1 ∧ y1 = y2 = · · ·= yn = e⇒ K+X⊗Y = e−1. (39)

4. Continuous Cater type inequalities

In this section, our main result is the following Theorem 4.1.

THEOREM 4.1. (Continuous Cater type inequalities) Let f ∈ C, g ∈ C++ be
monotone functions, and let f � g. If

min
(x,y)∈[0,1]2

{
[g(y)] f (x)

}
> e−1, (40)

then we have the following continuous Cater type inequalities:

f ×g � f (1− t)×g > e−1, (41)

where f � f (t) ∧ g � g(t).

Proof. According to the theory of functional analysis, for any continuous function
φ : [0,1]→R, we have ∫ 1

0
φ(t)dt = lim

n→∞

1
n

n

∑
i=1

φ
(

i−1
n−1

)
. (42)

Let X ∈ Rn, Y ∈ Rn
++, and let

xi = f

(
i−1
n−1

)
∧ yi = g

(
i−1
n−1

)
, i = 1,2, . . . ,n. (43)
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By Definition 2.1 and (43), we have

K+X =
(
xk+

1
, . . . ,xk+

i
, . . . ,xk+

n

)
∧ xk+

i
= xn+1−i = f

(
1− i−1

n−1

)
, i = 1,2, . . . ,n. (44)

By Definition 2.3 and (42)–(44), we have

lim
n→∞

X⊗Y = lim
n→∞

1
n

n

∑
i=1

χ
(

f

(
i−1
n−1

)
,g

(
i−1
n−1

))
=
∫ 1

0
g f dt (45)

and

lim
n→∞

K+X⊗Y = lim
n→∞

1
n

n

∑
i=1

χ
(

f

(
1− i−1

n−1

)
,g

(
i−1
n−1

))
=
∫ 1

0
g f (1−t)dt. (46)

By (43) and the assumptions of Theorem 4.1, we have

X ∈ R̂n, Y ∈ R̂n
++, X � Y and min

1�i, j�n

{
yxi

j

}
> e−1. (47)

By (47) and Theorem 3.1, we have

X⊗Y � K+X⊗Y. (48)

Combining with (45), (46) and (48), we get

f ⊗g =
∫ 1

0
g f dt = lim

n→∞
X⊗Y

� lim
n→∞

K+X⊗Y =
∫ 1

0
g f (1−t)dt

= f (1− t)⊗g > e−1

⇒ (41).

Hence the inequality (41) is proved. This completes the proof of Theorem 4.1. �

5. Research on Problem 2.1

In this section, our main result is the following Theorem 5.1.

THEOREM 5.1. (Discrete Cater type inequalities) Let X ∈ ̂[e−1,1]
n ∪ [̂1,∞)

n
.

Then we have the following discrete Cater type inequalities:

X⊗X � KX⊗X � K+X⊗X � 2−1 (e−1 +1
)
= 0.6839397205857212 · · ·, ∀K ∈ Sn.

(49)

In order to prove Theorem 5.1, we need to establish the following Lemma 5.1.
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LEMMA 5.1. If (x,y) ∈ [e−1,1]2, then we have

1 � (x,y)⊗ (y,x) � 2−1 (e−1 +1
)
= 0.6839397205857212 · · · (50)

and, if (x,y) ∈ [1,∞)2, then we have

(x,y)⊗ (y,x) � 1. (51)

Proof. We just need to prove the inequalities (50) since the inequality (51) is clear.
Define the function

F : [e−1,1]2→R++, F(x,y) � (x,y)⊗ (y,x) = 2−1 (xy + yx) . (52)

The graph of the function F(x,y) is depicted in Figure 1.

Figure 1: The graph of the function F(x,y).

We first prove that: In (e−1,1)2 , the function F has no any stagnation points.
Indeed, assume that there exists an (x,y) ∈ (e−1,1)2 such that

∂F
∂x

= 2−1 (yxy−1 + yx logy
)

= 0 and
∂F
∂y

= 2−1 (xy logx+ xyx−1)= 0. (53)

By (53), we have

logx logy =
(−x1−yyx−1)(−y1−xxy−1)= 1. (54)

Since (x,y) ∈ (e−1,1)2, we have 0 <− logx < 1 and 0 <− logy < 1. Hence

0 < logx logy = (− logx)(− logy) < 1. (55)

The equality (54) and the inequalities (55) are contradictory. This proves our assertion.
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Let (x,y) be the boundary points of the closed region [e−1,1]2.
Case 1: x = e−1, y ∈ [e−1,1]. Now we prove that the function

F(e−1,y) = 2−1
(
e−y + ye−1

)
in (e−1,1) has no any stagnation points.

Indeed, assume that there exists an y ∈ (e−1,1) such that

∂F(e−1,y)
∂y

= 2−1
(
−e−y + e−1ye−1−1

)
= 0⇔ ψ(y) � (e−1−1) logy+ y−1 = 0.

(56)
Since

ψ(e−1) = ψ(y) = ψ(1) = 0, (57)

according to the Rolle theorem, there exist ξ1,ξ2,ξ : ξ1 ∈ (e−1,y), ξ2 ∈ (y,1), ξ ∈
(ξ1,ξ2)⊂ (e−1,1), such that

ψ
′
(ξ1) = ψ

′
(ξ2) = 0 and ψ

′′
(ξ ) = (1− e−1)ξ−2 = 0. (58)

The equlities (58) and the inequality (1− e−1)ξ−2 > 0 are contradictory. This proves
our assertion.

Case 1.1: y = e−1. Then

1 > F(x,y) = e−e−1
= 0.6922006275553464 · · ·> 2−1 (e−1 +1

)
.

Case 1.2: y = 1. Then

1 > F(x,y) = 2−1 (e−1 +1
)
.

Case 2: y = e−1, x ∈ [e−1,1]. By the proof of the Case 1, we have

1 > F(x,y) = F(y,x) � 2−1 (e−1 +1
)
.

Case 3: x = 1, y ∈ [e−1,1]. Then

1 � F(x,y) = 2−1 (1+ y) � 2−1 (e−1 +1
)
.

Case 4: y = 1, x ∈ [e−1,1]. Then

1 � F(x,y) = 2−1 (x+1) � 2−1 (e−1 +1
)
.

According to the theory of mathematical analysis, the inequalities (50) are proved.
This proves Lemma 5.1. �

Now we turn to the proof of Theorem 5.1.

Proof. Set Y = X and let X ∈ ̂[e−1,1)
n ∪ [̂1,∞)

n
. By Definition 2.2, we have

X ,Y ∈ R̂n
++ and X � Y. If X ∈ ̂[e−1,1)

n
, then

min
1�i, j�n

{
yxi

j

}
= min

1�i, j�n

{
xxi

j

}
� min

1�i�n

{
(e−1)xi

}
> (e−1)1 = e−1,
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that is, (13) holds. If X ∈ [̂1,∞)
n
, then

min
1�i, j�n

{
yxi

j

}
= min

1�i, j�n

{
xxi

j

}
� min

1�i�n
{1xi}= 1 > e−1,

hence (13) also holds.
According to Theorem 3.1 and Y = X , for any permutation K of 1,2, . . . ,n, we

have
X⊗X � KX⊗X � K+X⊗X . (59)

Now we prove that
K+X⊗X � 2−1 (e−1 +1

)
. (60)

Indeed, if X ∈ ̂[e−1,1)
n
, then, by Definition 2.3 and Lemma 5.1, we have

K+X⊗X =
1
n

n

∑
i=1

χ
(
xk+

i
,xi

)
=

1
n

n

∑
i=1

χ (xn+1−i,xi)

≡ 1
n

n

∑
i=1

χ (xi,xn+1−i)

=
1
2

(
1
n

n

∑
i=1

χ (xn+1−i,xi)+
1
n

n

∑
i=1

χ (xi,xn+1−i)

)

=
1
n

n

∑
i=1

1
2

(χ (xn+1−i,xi)+ χ (xi,xn+1−i))

=
1
n

n

∑
i=1

(xn+1−i,xi)⊗ (xi,xn+1−i)

� 1
n

n

∑
i=1

2−1 (e−1 +1
)

= 2−1 (e−1 +1
)

⇒ (60).

Similarly, if X ∈ [̂1,∞)
n
, then

K+X⊗X =
1
n

n

∑
i=1

(xn+1−i,xi)⊗ (xi,xn+1−i) � 1
n

n

∑
i=1

1 = 1 > 2−1 (e−1 +1
)⇒ (60).

Thus, the inequality (60) is proved.
Combining with (59) and (60), we get the inequalities (49). That is, the inequalities

(49) hold when X ∈ ̂[e−1,1)
n∪ [̂1,∞)

n
. Since the functions X⊗X , KX⊗X and K+X⊗

X are continuous so, the inequalities (49) also hold when X ∈ ̂[e−1,1]
n∪ [̂1,∞)

n
. The

proof of Theorem 5.1 is completed. �
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REMARK 5.1. By Theorem 5.1, we see that, under the hypothesis X ∈ ̂[e−1,1]
n∪

[̂1,∞)
n
, we solved Problem 2.1. In other word, if X ∈ ̂[e−1,1]

n ∪ [̂1,∞)
n
, then the

inequality (11) holds.

REMARK 5.2. If X ∈ ̂[0,1]
n
, then the inequalities (59) do not hold. Indeed, when

n = 3 and 0 = x1 < x2 < x3 < 1, we have

K0X⊗X = xx2
1 + xx3

2 + xx1
3 = xx3

2 +1 < xx2
2 +1 = xx3

1 + xx2
2 + xx1

3 = K+X⊗X .

REMARK 5.3. If n = 2m and X =
(
e−11m,1m

)
, where 1m � (1,1, . . . ,1) ∈ Rm

and m is a positive integer, then the equality in (60) holds.

REMARK 5.4. Figure 1 and the relevant calculations of this paper are based on
the Mathematica software. The references on using mathematical software to deal with
inequality problems can be see [32, 15, 28, 13, 31].

6. Applications in space science

Let S(2){P,Γ, l} be a centered 2-surround system [32, 15, 34, 28, 26, 14, 33] and
A,A+ be two satellites of the surround system, and let the curve ÃA+ ⊂ Γ. Then

0 <
∣∣∣ÃA+

∣∣∣= l <
|Γ|
2

(61)

and
μ � ∠APA+ ∈ (0,π), ∀A,A+ ∈ Γ, (62)

where |Γ| � ∮
Γ ds is the length of the smooth and convex Jordan closed curve [8] Γ ,

l is a constant and
∣∣∣ÃA+

∣∣∣ is the length of the curve ÃA+ . We say that the μ is l -

observation angle of the surround system S(2){P,Γ, l} , and the function

μ⊗ l : (0,π)×
(

0,
|Γ|
2

)
, μ⊗ l � lμ , (63)

is the l -feature function of the surround system.
According to the above definition, we know that the l -observation angle μ can be

represented by the l -feature function μ⊗ l as follows:

μ = logl(μ⊗ l). (64)

In [15] (see Lemma 2.12 in [15]), the authors proved that

μ � 1
|Γ|
∮

Γ
μds =

1
|Γ|
∮

Γ
∠APA+ds =

2lπ
|Γ| , (65)

where μ is the mean value [32,15,34,28,26,14,33,13,30,22,29,16,17,18,24,23,10,11]
of the l -observation angle μ .
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Let S(2){P,Γ, l} be a centered n -surround system [32] and A1,A2, . . . ,An be n
satellites of the surround system. Then

l = (l1, l2, . . . , ln) , 0 <
∣∣∣Ã jA j+1

∣∣∣= l j <
|Γ|
2

, j = 1,2, . . . ,n,
n

∑
j=1

l j = |Γ|, An+1 � A1.

(66)
Set

μ j � ∠AjPAj+1 ∈ (0,π), j = 1,2, . . . ,n, An+1 � A1, μ � (μ1,μ2, . . . ,μn) . (67)

Then
n

∑
j=1

μ j = 2π . (68)

Let
[l] = ([l1], [l2], . . . , [ln]) ∧ [μ ] � ([μ1], [μ2], . . . , [μn]) , (69)

where [l1][l2] · · · [ln] is a permutation of l1, l2, . . . , ln , and [μ1][μ2] · · · [μn] is a permuta-
tion of μ1,μ2, . . . ,μn , which such that

[l1] � [l2] � · · ·� [ln] ∧ [μ1] � [μ2] � · · ·� [μn]. (70)

Then, by Definition 2.2, we have
[μ ] � [l]. (71)

We say that the function

[μ ]⊗ [l] : (0,π)n×
(

0,
|Γ|
2

)n

→ R++ (72)

is the l -feature function of the centered n -surround system S(2){P,Γ, l} .
In this section, our main results are the following Theorems 6.1 and 6.2.

THEOREM 6.1. ( l-isoperimetric inequality) Let S(2){P,Γ, l} be a centered n-
surround system, where 3 � n � 6 . If

[l1] � e−
1
π = 0.7273773492952165 · · ·, (73)

then we have the following l-isoperimetric inequality [12]:

[μ ]⊗ [l] �
( |Γ|

n

) 2π
n

. (74)

Proof. By (67) and (73), we have

min
1�i, j�n

{
[l j][μi]

}
= min

1�i�n

{
[l1][μi]

}
� min

1�i�n

{(
e−

1
π
)[μi]

}
>
(
e−

1
π
)π

= e−1. (75)
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By (71), (75) and Theorem 3.1, we have

[μ ]⊗ [l] � [μ ]⊗K[l], ∀K ∈ Sn. (76)

By (76) and Definition 2.3, we have

[μ ]⊗ [l] =
1
n! ∑

K∈Sn

[μ ]⊗ [l]

� 1
n! ∑

K∈Sn

[μ ]⊗K[l]

=
1
n! ∑

K∈Sn

1
n

n

∑
i=1

[li][μki
]

=
1

n ·n!

n

∑
i=1

∑
K∈Sn

[li][μki
]

=
1

n ·n!

n

∑
i=1

(n−1)!
n

∑
ki=1

[li][μki
]

=
1
n

n

∑
i=1

1
n

n

∑
j=1

[li][μ j ],

that is,

[μ ]⊗ [l] � 1
n

n

∑
i=1

1
n

n

∑
j=1

[li][μ j ]. (77)

Since for a fixed li , the function [li]t : (0,π)→ R for the variable t is a strictly convex
function [32, 14, 16, 27, 19, 6, 7] so, by the classical Jensen inequality [32, 27] and (68),
we have

1
n

n

∑
j=1

[li][μ j ] � [li]
1
n ∑n

j=1[μ j ] = [li]
2π
n . (78)

Since 3 � n � 6, we have 2π
n > 1. By the classical power mean inequality [26, 13, 31]

and (66), we have

1
n

n

∑
i=1

[li]
2π
n �

(
1
n

n

∑
i=1

[li]

) 2π
n

=
( |Γ|

n

) 2π
n

. (79)

Combining with (77), (78) and (79), we get

[μ ]⊗ [l] � 1
n

n

∑
i=1

1
n

n

∑
j=1

[li][μ j ] � 1
n

n

∑
i=1

[li]
2π
n �

( |Γ|
n

) 2π
n

⇒ (74).

The proof of Theorem 6.1 is completed. �

THEOREM 6.2. ( l-isoperimetric inequality) Let S(2){P,Γ, l} be a centered n-
surround system, where 3 � n � 6 . If

[l1]× [l2] � 1, (80)
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then we have the l -isoperimetric inequality (74).

Proof. Let us first recall the classical Chebyshev inequality [30, 29, 3, 21, 20, 9, 4,
35, 25, 5] as follows.

Let X ,Y ∈ Rn . If X � Y, then we have

1
n

n

∑
j=1

x jy j �
(

1
n

n

∑
j=1

x j

)
×
(

1
n

n

∑
j=1

y j

)
. (81)

The equalities in (81) holds if, and only if (15) hold.
Next, we proof that

(logm[l1], logm[l2], . . . , logm[ln]) � ([μ1]m, [μ2]m, . . . , [μn]m) , m = 0,1,2, . . . . (82)

Indeed, if m = 2k+1, k = 0,1,2, . . . , then, by (70), we have

(logm[li]− logm[l j]) ([μi]m− [μ j]m) � 0, ∀i, j : 1 � i, j � n⇒ (82).

Let m = 2k , k = 0,1,2, . . . . If k = 0 or i = j, then (82) holds. Assume that k � 1 and
i �= j . Without losing of generality, we may assume that 1 � j < i � n . By (70) and
(80), we have

[μi]m− [μ j]m � 0, (83)

and

| log[li]|2−| log[l j]|2 = log2[li]− log2[l j]
= log([li][l j])(log[li]− log[l j])
� log([l1][l2])(log[li]− log[l j]) � 0

⇒ | log[li]|� | log[l j]|
⇒ logm[li]− logm[l j]
= | log[li]|m−| log[l j]|m � 0.

Hence

logm[li]− logm[l j] � 0⇔ log[li]+ log[li] � 0. (84)

Combining with (83) and (84), we get

(logm[li]− logm[l j]) ([μi]m− [μ j]m) � 0, ∀i, j : 1 � i, j � n⇒ (82).

Next, we proof that

1
n

n

∑
i=1

logm[li] � 0, m = 0,1,2, . . . . (85)
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Indeed, if m = 2k , k = 0,1,2, . . . , then (85) hold. Let m = 2k+1, k = 0,1,2, . . . .
By 1 � j < i � n , (70) and (84), we have

1
n

n

∑
i=1

logm[li] =
1
n

(
2

∑
i=1

logm[li]+
n

∑
j=3

logm[l j]

)

� 1
n

(
2

∑
i=1

logm[li]+
n

∑
j=3

∑2
i=1 logm[li]

2

)

=
1
2

(logm[l1]+ logm[l2])

� 1
2
{(− log[l2])

m + logm[l2]}
= 0 ⇒ (85).

Next, we proof that

1
n

n

∑
i=1

[μi]m �
(

2π
n

)m

, m = 0,1,2, . . . . (86)

Indeed, if m = 0, then, then (86) hold. Assume that m � 1. By the classical power
mean inequality [26, 13, 31] and (68), we have

1
n

n

∑
i=1

[μi]m �
(

1
n

n

∑
i=1

[μi]

)m

=
(

2π
n

)m

⇒ (86).

Finally, we prove the inequality (74). Combining with (81), (82), (85), (86), 2π
n >

1 and the power mean inequality , we get

[μ ]⊗ [l] =
1
n

n

∑
i=1

[li][μi]

=
1
n

n

∑
i=1

e[μi] log[li]

=
1
n

n

∑
i=1

([μi] log[li])
m

m!

=
∞

∑
m=0

1
m!

1
n

n

∑
i=1

([μi])
m (log[li])

m

�
∞

∑
m=0

1
m!

(
1
n

n

∑
i=1

[μi]m
)(

1
n

n

∑
i=1

logm[li]

)

�
∞

∑
m=0

1
m!

(
2π
n

)m
(

1
n

n

∑
i=1

logm[li]

)

=
1
n

n

∑
i=1

e
2π
n log[li]
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=
1
n

n

∑
i=1

[li]
2π
n

�
(

1
n

n

∑
i=1

[li]

) 2π
n

=
( |Γ|

n

) 2π
n

⇒ (74).

This completes the proof of Theorem 6.2. �
Based on the Theorems 6.1 and 6.2, we see that Theorem 3.1 is of the application

value in space science.

REMARK 6.1. Let S(2){P,Γ, l} be a centered n -surround system [32] and A1,A2,
. . . ,An be n satellites of the surround system. Then we may think that the particle P
is the Earth, and the particles A1,A2, . . . ,An are the synchronous satellites of the Earth,
and Γ is their orbit. In general, we have 3 � n � 6. Therefore, Theorems 6.1 and 6.2
are of the practical in space science.

REMARK 6.2. In space science, by Theorem6.1, we need the lower bound
( |Γ|

n

) 2π
n

to be maximal. Since the function tt : (e−1,∞)→R is strictly incremental, and

|Γ|
n

� [l1] > e−
1
π > e−1 ∧

( |Γ|
n

) 2π
n

=

⎡⎣( |Γ|
n

) |Γ|
n

⎤⎦ 2π
|Γ|

,

we see that the sequence

{( |Γ|
n

) 2π
n
}6

n=3
is strictly decreasing. Hence, we may choose

the parameter n = 3.
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