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HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN

BY SUBORDINATE FRACTIONAL BROWNIAN MOTION

ZHI LI ∗ , YARONG PENG AND LITAN YAN

(Communicated by X. Wang)

Abstract. Being base on coupling by change of measure and an approximation technique, the
Harnack inequalities for a class of stochastic functional differential equations driven by subordi-
nate fractional Brownian motion with Hurst parameter 0 < H < 1/2 are established. By using a
transformation formulas for fractional Brownian motion, the Harnack inequalities for stochastic
functional differential equations driven by subordinate fractional Brownian motion with Hurst
parameter 1/2 < H < 1 are established.

1. Introduction

The dimension-free Harnack inequality with powers introduced in [35] and the
log-Harnack inequality introduced in [29] have attracted more and more attentions be-
cause of its extensive applications in stochastic analysis, such as strong Feller prop-
erty and contractivity properties (see [27, 28, 36]); heat kernel estimates (see [17,
32, 38, 40]); transportation-cost inequalities and properties of invariant measures (see
[4, 24, 39]). Up to now, the dimension-free Harnack inequality and log-Harnack in-
equality have been intensively investigated for various stochastic (partial) differential
equations driven by several different kinds of noise. For example, Bao et al, [2] and [3]
for functional SDEs and SPDEs driven by Brownian motion, respectively; Shao et al,
[33] for SDEs driven by Brownian motion with non-Lipschitz coefficients and Huang
and Zhang [18] for functional SDEs by Brownian motion with Dini drifts. In addition,
Bass and Levin [5] for the pure jump Markov processes; Wang and Wang [37] for SDEs
driven by Lévy noise; Zhang [46] for SDEs driven by α -stable processes and Wang and
Zhang [41] for SDEs driven by cylindrical α -stable processes.

The theory of subordinate Brownian motion recently received increasing attentions
since they may describe some mathematical models in finance. There also exists sev-
eral results on the Harnack inequality for subordinate Brownian and the time changed
Brownian motion. For example, Rao et al, [26] and Mimica and Kim [23] studied the
Harnack inequality for subordinate Brownian motion; Deng [14] established the Har-
nack inequalities for the inhomogeneous semigroup associated with a class of SDEs
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with Lévy noise containing a subordinate Brownian motion. Very recently, by using the
coupling argument, the Girsanov transformations and the an approximation argument,
Deng and Huang [12] established Harnack inequalities for the following stochastic dif-
ferential equation driven by subordinate Brownian motion

X(t) = ξ +
∫ t

0
b(X(s))ds+

∫ t

0
B(Xs)ds+WS(t), t � 0,

where W = {Wt}t�0 is a d -dimensional Brownian motion, S = {S(t)}t�0 is a subordi-
nator and independent of W .

It is a natural question whether one can still establish the Harnack inequality when
the driving noise is a more general, maybe non-Markovian process. As far as I know
that the fractional Brownian motion (in short fBm) becomes the standard Brownian mo-
tion when H = 1/2, and the fBm BH neither is a semimartingale nor a Markov process
if H �= 1/2. However, the fBm BH , H > 1/2 is a long-memory process and presents an
aggregation behavior. The long-memory property make fBm as a potential candidate to
model noise in mathematical finance (see [8]); in biology (see [7, 10]); in communica-
tion networks (see, for instance [42]); the analysis of global temperature anomaly [30]
electricity markets [34] etc. There are several frontier works on the Harnack inequali-
ties for stochastic (partial) differential equations driven by fractional Brownian motion,
see [15, 16, 20, 21, 22, 43, 44, 45].

However, there is only a few result on the stochastic differential equations driven
by subordinat fBm and we can only find that Deng and Schilling [13] established
Harnack inequalities stochastic differential equations driven by subordinate fBm with
H ∈ (0,1/2) . The main aim of this work is to establish Harnack inequalities for func-
tional SDEs driven by subordinate fBm with Hurst parameter H ∈ (0,1/2)∪ (1/2,1) .
It turns out that our results cover the corresponding ones in the case without delay
derived by [13] when H ∈ (0,1/2) and extend the corresponding ones in the case sub-
ordinate Brownian motion derived by [12] to subordinate fBm with Hurst parameter
H ∈ (0,1/2)∪ (1/2,1) . To this end, we consider the following stochastic differential
equation on Rd

X(t) = ξ +
∫ t

0
b(X(s))ds+

∫ t

0
B(Xs)ds+WH

S(t), t � 0, (1.1)

where b : [0,∞)×Rd → Rd , B : [0,∞)×L →Rd are some appropriate functions; WH

is a d -dimensional fBm with Hurst parameter H ∈ (0,1/2)∪ (1/2,1) , S is a subor-
dinator and independent of WH . We firstly establish the Harnack inequality for (1.1)
with H ∈ (0,1/2) by using the coupling argument, the Girsanov transformations of
fBm with Hurst parameter H ∈ (0,1/2) and the an approximation argument.

On the other hand, in virtue of irregularity of the operator K−1
H , it is very difficult

to obtain the Harnack inequality by using directly Girsanov transformations when the
Hurst parameter 1/2 < H < 1. To overcome this difficulty, motivating mainly by [19],
we will transform the fractional Brownian motion with Hurst parameter 1/2 < H < 1
into some integral with respect to the fractional Brownian motion with Hurst parameter
0 < H < 1/2 by using of the transformation formula for fractional Brownian motion.
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The rest of this paper is organized as follows. In Section 2, we introduce some
necessary notations and preliminaries. In Section 3, we devote ourselves to establish
the Harnack inequalities for SDEs driven subordinat fBm with H ∈ (0,1/2) . In Section
4, we consider the Harnack inequalities for SDEs driven subordinate fBm with H ∈
(1/2,1) .

2. Preliminaries

In this section, we recall briefly some basic facts on fractional Brownian motion
(fBm) which will be used later on. Let WH = {WH

t , t � 0} on Rd be a fractional
Brownian motion with Hurst parameter H ∈ (0,1) defined on the probability space
(Ω,F ,P), i.e., WH is a centered Gauss process with covariance function

RH(t,s) = E(WH,i
t WH, j

s ) =
1
2
(t2H + s2H −|t− s|2H)δi j, t,s � 0, 1 � i, j � d,

where δi j denotes Kronecker’s delta. In particular, if H = 1
2 , WH is a Brownian mo-

tion. It is well known that if H �= 1
2 , WH does not have independent increments and

has α -order Hölder continuous path for all α ∈ (0,H) . For more details of fBm and
proofs we refer the readers, for instance, to [6, 11].

On the other hand, from [11], we know the covariance kernel RH(t,s) can be
written as

RH(t,s) =
∫ t∧s

0
KH(t,r)KH(s,r)dr,

where KH is a square integrable kernel given by

KH(t,s) = Γ
(
H +

1
2

)−1
(t− s)H− 1

2 F
(
H− 1

2
,
1
2
−H,H +

1
2
,1− t

s

)
,

in which F(·, ·, ·, ·) is the Gauss hypergeometric function and Γ(·) denotes the Euler
Gamma function. Moreover, according to [1], fractional Brownian motion has the fol-
lowing integral representation with respect to the usual d -dimensional standard Brow-
nian motion W = (Wt)t�0

WH
t =

∫ t

0
KH(t,s)dWs.

By [11], the operator KH : L2([0,T ];Rd) → I
H+ 1

2
0+ (L2[0,T ];Rd) associated with the

square integrable kernel KH(·, ·) is defined as follows

(KH f )(t) :=
∫ t

0
KH(t,s) f (s)ds, f ∈ L2([0,T ];Rd),

where I
H+ 1

2
0+ is the H + 1

2 -order left fractional Riemann-Liouville operator on [0,T ] ,
one can see [31]. It is an isomorphism and for each f ∈ L2([0,T ];Rd) ,

(KH f )(s) = I2H
0+ s

1
2−HI

1
2−H
0+ sH− 1

2 f , H � 1
2
,



1432 Z. LI, Y. PENG AND L. YAN

(KH f )(s) = I1
0+sH− 1

2 I
H− 1

2
0+ s

1
2−H f , H � 1

2
.

As a consequence, for every h∈ I
H+ 1

2
0+ (L2[0,T ];Rd) , the inverse operator K−1

H is of the
following form

(K−1
H h)(s) = sH− 1

2 D
H− 1

2
0+ s

1
2−Hh′, H >

1
2
,

(K−1
H h)(s) = s

1
2−HD

1
2−H
0+ sH− 1

2 D2H
0+h, H <

1
2
,

where D
H− 1

2
0+ (D

1
2−H
0+ ) is H − 1

2 ( 1
2 −H)-order left-sided Riemann-Liouville derivative,

one can see [31]. In particular, if h is absolutely continuous, we have

(K−1
H h)(s) = sH− 1

2 I
1
2−H
0+ s

1
2−Hh′, H <

1
2
. (2.1)

Fix a constant r > 0. Denote by L the family of all right continuous functions
f : [−r,0] → Rd with left limits equipped with the norm ‖ · ‖2

‖ f‖2
2 :=

∫ 0

−r
| f (s)|2ds+ | f (0)|2.

For f : [−r,∞)→Rd , we will denote ft ∈L , t � 0, the corresponding segment process
by

ft(s) := f (t + s), s ∈ [−r,0].

Let S = {S(t)}t�0 be a subordinator (without killing), i.e. a nondecreasing Lévy
process in [0,∞) starting at S(0)= 0. Due to the independent and stationary increments
property, it is uniquely determined by the Laplace transform

Ee−uS(t) = e−tφ(u), u > 0, t � 0,

where the characteristic (Laplace) exponent φ : (0,∞) → (0,∞) is a Bernstein function
with φ(0+) := limδ→0 = 0, i.e. a C∞ -function such that (−1)n−1φ (n) � 0 for all
n ∈ N . Every such φ has a unique Lévy-Khintchine representation

φ(u) = κu+
∫
(0,∞)

(1− e−ux)ν(dx), u > 0, (2.2)

where κ � 0 is the drift parameter and ν is a Lévy measure on (0,∞) satisfying∫
(0,∞)

(1∧ x)ν(dx) < ∞.

It is clear that φ̃ := φ(u)− κu is the Bernstein function of the subordinator S̃(t) =
S(t)−κt having zero drift and Lévy measure ν .

Throughout this paper we assume that the coefficients b and B satisfy the follow-
ing Hypothesis:
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(H) There exist constants K ∈ R and K1 � 0 such that

〈x− y,b(x)−b(y)〉� K|x− y|2, x,y ∈ Rd ,

and
|B(ξ )−B(η)|� K1‖ξ −η‖2, ξ ,η ∈ L .

REMARK 2.1. The Hypothesis (H) ensures the existence, uniqueness and non-
explosion of the solution to (1.1). Indeed, letting L(t) = WH

S(t) , b̂(t,x) = b(x +L(t))
and B̂(t,ξ ) = B(ξ +Lt) , one has

〈x− y, b̂(t,x)− b̂(t,y)〉 � K|x− y|2, x,y ∈ Rd , t � 0,

and
|B̂(t,ξ )− B̂(t,η)| � K1‖ξ −η‖2, ξ ,η ∈ L , t � 0.

Then the following ordinary functional differential equation

dX̂(t) = b̂(t, X̂(t))dt + B̂(t, X̂t)dt

has a unique solution which does not explode in finite time; setting X(t) := X̂(t)+L(t) ,
we know that (1.1) has a unique non-explosive solution.

3. Harnack inequality for (1.1) with H ∈ (0,1/2)

For ξ ∈ L , let Xξ
t be the solution to (1.1) with X0 = ξ . Let Pt be the semigroup

associated to Xξ
t , i.e.

Pt f (ξ ) = E f (Xξ
t ), t � 0, f ∈ Bb(L ), (3.1)

where Bb(L ) denotes the set of all bounded measurable functions on L .

THEOREM 3.1. Let H ∈ (0,1/2) , T > r , the Hypothesis (H) holds and S be a
subordinator with Bernstein function of φ of the form (2.2). Then,

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

PT log f (η)

� logPT f (ξ )+
(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H ;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
PT f (η)

)p

�PT f p(ξ )exp
[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H
]
,
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where

C1(K1,H,κ) =
( K1

Γ( 1
2 −H)

)2 2
κ2 ,

C2(K,K1,H,T,r,κ) =
( K1

Γ( 1
2 −H)

)2(e2K(T−r) −1
Kκ2 +2E

(∫ T−r

0
e−2KtdS(t)

)−2)
,

and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.

REMARK 3.1. If B = 0, then we can choose r = 0 and K1 = 0, and thus the
assertions in the Theorem 2.1 reduce to the ones derived in [13] for the case without
delay.

For a measurable space (E,F ) , let P(E) denote the family of all probability
measures on (E,F ) . For μ ,ν ∈ P(E) , the entropy Ent(ν|μ) is defined by

Ent(ν|μ) :=
{∫

ln dν
dμ dν, ν � μ ,

+∞, otherwise.

The total variation distance ‖μ −ν‖var is defined by

‖μ −ν‖var := sup
A∈F

|μ(A)−ν(A)|.

By Pinsker’s inequality (see [9]),

‖μ −ν‖2
var � 1

2
Ent(ν|μ), μ ,ν ∈ P(E).

For ξ ∈ L , let PT (ξ , ·) be the distribution of Xξ
T . The following corollary is a

direct consequence of Theorem 3.1, see [37] for the proof.

COROLLARY 3.1. Let the assumptions in Theorem 3.1 hold. Then the following
assertions hold.

(i) For any ξ ,η ∈ L and PT (ξ , ·) is equivalent to PT (η , ·) and

Ent(PT (ξ , ·)|PT (η , ·))
�

(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H ,

which together with Pinsker’s inequality implies that

2‖PT (ξ , ·)−PT (η , ·)‖2
var

�
(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H .
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(ii) For any p > 1 , ξ ,η ∈ L

PT

{(dPT (ξ , ·)
dPT (η , ·)

)1/(p−1)}
(ξ )

�E

{
exp

[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H
]}

.

Let � : [0,∞)→ [0,∞) be a sample path of S , which is a non-decreasing and càdlàg
function with �(0) = 0. By (H) and the same explanation as in Remark 2.1, for any
ξ ∈L , the following functional SDE has a unique non-explosive solution with X �

0 = ξ :

dX �(t) = b(X �(t))dt +B(X �
t )dt +dWH

�(t). (3.2)

We denote the solution by X �,ξ
t . Let

P�
t f (ξ ) = E f (X �,ξ

t ), t � 0, f ∈ Bb(L ). (3.3)

PROPOSITION 3.1. Let H ∈ (0,1/2) , T > r and the Hypothesis (H) hold. Then,

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�
T log f (η)

� logP�
T f (ξ )+

(
C1(K1,H,κ)‖ξ −η‖2

2 +C3(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H ;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�

T f (η)
)p

�P�
T f p(ξ )exp

[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ −η‖2

2 +C3(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H
]
,

where

C3(K,K1,H,T,r,κ) =
( K1

Γ( 1
2 −H)

)2(e2K(T−r)−1
Kκ2 +2

(∫ T−r

0
e−2Ktd�(t)

)−2)
,

and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.
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For ε ∈ (0,1) , consider the following regularization of � :

�ε :=
1
ε

∫ t+ε

t
�(s)ds+ εt =

∫ t

0
�(εs+ t)ds+ εt, t � 0.

It is clear that for each ε ∈ (0,1) , the function �ε is a absolutely continuous, strictly
increasing and satisfies for any t � 0

�ε(t) ↓ � as ε ↓ 0. (3.4)

For ξ ∈ L , let X �ε ,ξ
t be the solution to the following functional SDE with initial value

ξ :
dX �ε ,ξ (t) = b(X �ε ,ξ (t))dt +B(X �ε ,ξ )dt +dWH

�ε(t)−�ε (0). (3.5)

The associated semigroup is denoted by P�ε
t . Note that this SDE is indeed driven by

fBm and thus the method of coupling and Girsanov’s transformation can be used to
establish the dimension-free Harnack inequalities for P�ε

t .

PROPOSITION 3.2. Let H ∈ (0,1/2) , T > r and the Hypothesis (H) hold. Then

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�ε
T log f (η)

� logP�ε
T f (ξ )+

(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H ;

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�ε

T f (η)
)p

�P�ε
T f p(ξ )exp

[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ−η‖2

2+C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H
]
,

where

C4(K,K1,H,T,r,κ ,ε) =
( K1

Γ( 1
2 −H)

)2(e2K(T−r) −1
Kκ2 +2

(∫ T−r

0
e−2Ktd�ε(t)

)−2)
,

and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.

Proof. First of all, we will construct coupling as follows. Let Yt solve the equation

dY (t) = b(Y (t))dt +B(X �ε ,ξ
t )dt + λ (t)I[0,τ)(t)

X �ε ,ξ (t)−Y(t)
|X �ε ,ξ (t)−Y(t)| |ξ (0)−η(0)|d�ε(t)

+dWH
�ε(t)−�ε (0)

(3.6)
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with Y0 = η , where

λ (t) :=
e−Kt∫ T−r

0 e−2Ksd�ε(s)
, t � 0,

and
τ := T ∧ inf{t � 0;X �ε ,ξ (t) = Y (t)}

is the coupling time. It is clear that (X �ε ,ξ (t),Y (t)) is well defined for t < τ . By (H),
we have

d|X �ε ,ξ (t)−Y(t)| � K|X �ε ,ξ (t)−Y(t)|dt−λ (t)|ξ (0)−η(0)|d�ε(t), t ∈ [0,τ).

Thus, for t ∈ [0,τ) ,

|X �ε ,ξ (t)−Y(t)| � eKt |ξ (0)−η(0)|
(
1−

∫ t

0
e−Ksλ (s)d�ε(s)

)

� eKt ∫ T−r
t e−2Ksd�ε(s)∫ T−r

0 e−2Ksd�ε(s)
|ξ (0)−η(0)|

=: γ(t)|ξ (0)−η(0)|.

(3.7)

If τ(ω) > T − r for some ω ∈ Ω , we can take t = T − r in the above inequality to get

0 < |X �ε ,ξ (t)(ω)−Y(t)(ω)| � 0,

which is absurd. Therefore, τ � T − r . Letting Y (t) = X �ε ,ξ (t) for t ∈ [τ,T ] , Y (t)
solves (3.6) for t ∈ [τ,T ] . In particular, X �ε ,ξ

T =YT . Moreover, by (3.7) and τ � T − r ,
we have

|X �ε ,ξ (t)−Y(t)|2 � |ξ (0)−η(0)|2γ(t)2I[0,T−r](t), t ∈ [0,T ]. (3.8)

Denote by ζ ε : [�ε(0),∞) → [0,∞) the inverse function of �ε . Then �ε(ζ ε (t)) = t for
t � �ε(0) , ζ ε (�ε(t)) = t for t � 0, and t → ζ ε (t) is absolutely continuous and strictly
increasing. Let

Ψ(u) := Φ◦ ζ ε(u+ �ε(0)),

where

Φ(u) := [B(X �ε ,ξ
u )−B(Yu)]

1
(�ε)′(u)

+ λ (u)I[0,τ)(u)
X �ε ,ξ (u)−Y(u)
|X �ε ,ξ (u)−Y(u)| |ξ (0)−η(0)|.

A simple calculation shows
∫ �ε (T )−�ε(0)
0 |Ψ(u)|2du < ∞ . Then, by using H ∈ (0,1/2)

we have
∫ ·
0 Φ(u)du ∈ IH+1/2

0+ (L2([0, �ε(T ) − �ε(0)];Rd)) . Therefore, the following
stochastic integral defines a martingale

Mt := −
∫ t

0
〈ϒ(s),dWs〉, t � 0,
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where ϒ(s) := K−1
H

(∫ ·
0 Ψ(r)dr

)
(s) , s � 0 and W = {Wt}t�0 is a d -dimensional stan-

dard Brownian motion. Because of (2.1), we have

K−1
H

(∫ ·

0
Ψ(r)dr

)
(s) = sH− 1

2 I
1
2−H
0+ s

1
2−HΨ(s),

and this yields for any s ∈ [0, �ε(T )− �ε(0)] ,

|ϒ(s)| =
∣∣∣ 1

Γ( 1
2 −H)

sH− 1
2

∫ s

0
u

1
2−H(s−u)−H− 1

2 Φ(u)du
∣∣∣.

By the definition of Φ and the Hypothesis (H) we have

|ϒ(s)| � K1

Γ( 1
2−H)

sH− 1
2

∣∣∣∫ s

0
u

1
2−H(s−u)−H− 1

2

(‖X �ε ,ξ
u −Yu‖2

(�ε)′(u)
+λ (u)|ξ (0)−η(0)|

)
du

∣∣∣.
Recalling that � is an sample path of the subordinator S with drift parameter κ � 0,
one have

(�ε)′(t) =
�(t + ε)− �(t)

ε
+ ε > κ ,

and therefore

|ϒ(s)| � K1

Γ( 1
2−H)

sH− 1
2

∣∣∣∫ s

0
u

1
2−H(s−u)−H− 1

2

( 1
κ
‖X �ε ,ξ

u −Yu‖2+λ (u)|ξ (0)−η(0)|
)
du

∣∣∣.
On the other hand, by view of the definition of ‖ · ‖2 we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 =
∫ 0

−r
|X �ε ,ξ (t + s)−Y(t + s)|2ds+ |ξ (0)−η(0)|2

=
∫ t

t−r
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

�
∫ 0

−r
|ξ (s)−η(s)|2ds+

∫ t

0
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

= ‖ξ −η‖2
2 +

∫ t

0
|X �ε ,ξ (s)−Y(s)|2ds.

Then, by (3.8) we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 � ‖ξ −η‖2
2 + |ξ (0)−η(0)|2

∫ T−r

0
γ(s)2ds

� ‖ξ −η‖2
2 +

e2K(T−r)−1
2K

|ξ (0)−η(0)|2,
(3.9)

where in the last inequality we have used γ(s) � eKs for s∈ [0,T −r] . By the definition
of λ (t) , it is easy to see that for all t � 0

|λ (t)| �
(∫ T−r

0
e−2Ktd�ε(t)

)−1
. (3.10)
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Thus, by (3.9) and (3.10) the compensator of the martingale Mt satisfies for all t � 0,

〈M〉t =
∫ t

0
|ϒ(s)|2ds �

(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

·
∫ t

0
s2H−1

∣∣∣∫ s

0
u

1
2−H(s−u)−H− 1

2 du
∣∣∣2ds

=
(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

·B2
(3

2
−H,

1
2
−H

)∫ t

0
s1−2Hds

�
(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

· B2( 3
2 −H, 1

2 −H)
2−2H

T 2−2H .

(3.11)

Let

R := exp
[
M(�ε(T ))− 1

2
〈M〉�ε (T )−�ε(0)

]
.

By Novikov’s criterion, we have ER = 1. According to Girsanov’s theorem, W̃t :=∫ Ψ
0 (u)du+Wt is a d -dimensional Brownian motion and W̃H

t :=
∫ Ψ
0 (u)du+WH

t is a d -
dimensional fractional Brownian with H ∈ (0,1/2) under the new probability measure
RP . Rewrite (3.6) as

dY (t) = b(Y (t))dt +B(Yt)dt +dW̃H
�ε(t)−�ε(0).

Thus, the distribution of {Yt}0�t�T under RP coincides with that of {X �ε ,η
t } under P ;

in particular, it holds that for any f ∈ Bb(L ) ,

E f (X �ε ,η
T ) = ERP f (YT ) = E[R f (YT )] = E[R f (X �ε ,ξ

t )]. (3.12)

By (3.12) and the Young inequality, and the observation that

logR = −
∫ �ε (T )−�ε(0)

0
〈ϒ(s),dWs〉− 1

2

∫ �ε(T )−�ε (0)

0
|ϒ(s)|2ds

= −
∫ �ε (T )−�ε(0)

0
〈ϒ(s),dW̃s〉+ 1

2
〈M〉�ε (T)−�ε (0),

we get that, for any f ∈ Bb(L ) with f � 1,

P�ε
T log f (η) = E log f (X �ε ,η

T )

= E[R log f (X �ε ,ξ
T )]

� logE f (X �ε ,ξ
T )+E[R logR]

= logP�ε
T f (ξ )+ERP logR

= logP�ε
T f (ξ )+

1
2

ERP〈M〉�ε (T )−�ε(0).
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Combining this with (3.11), we obtain the desired log-Harnack inequality.
Next, we prove the second assertion of the proposition. For any non-negative

f ∈ Bb(L ) we can obtain from (3.12) and the Hölder’s inequality

(P�ε
T f )p(η) = (E f (X �ε ,η

T ))p

= (E[R f (X �ε ,ξ
T )])p

� P�ε
T f p(ξ ) · (E[Rp/(p−1)])p−1.

(3.13)

Furthermore, by (3.11) we get

Rp/(p−1)

=exp
[ p

p−1
M�ε (T )−�ε(0)−

p
2(p−1)

〈M〉�ε (T )−�ε (0)

]

=exp
[ p
2(p−1)2 〈M〉�ε (T)−�ε (0)

]
· exp

[ p
p−1

M�ε (T )−�ε(0)−
p2

2(p−1)2 〈M〉�ε (T )−�ε(0)

]
�exp

[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
2−2H

T 2−2H
]
· exp

[ p
p−1

M�ε (T)−�ε (0)−
p2

2(p−1)2 〈M〉�ε (T )−�ε(0)

]
,

and noting the fact that exp
[

p
p−1M�ε (T)−�ε (0)− p2

2(p−1)2 〈M〉�ε (T )−�ε(0)

]
, 0 � t � T is a

martingale with mean 1 due to Novikov’s criterion. Then, we have

E

[
Rp/(p−1)

]
�exp

[ p
2(p−1)2

(
C1(K1,H,κ)‖ξ −η‖2

2 +C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
2−2H

T 2−2H
]
.

Inserting this estimate into (3.13), we get the power-Harnack inequality. �
Proof of Proposition 3.1. Fix T > r . By a standard approximation argument, we

may assume that f ∈Cb(L ) .
Step 1: First, we assume that b is globally Lipschitzian: there exists a constant

C > 0 such that
|b(x)−b(y)|� C|x− y|, x,y ∈ Rd .

By the Lipschitz continuity of b and B , and noting that |X �ε ,ξ (u)−X �,ξ (u)|� ‖X �ε ,ξ (u)
−X �,ξ (u)‖2 , we have for t � 0

|X �ε ,,ξ (t)−X �,ξ (t)| �C
∫ t

0
|X �ε ,ξ (u)−X �,ξ (u)|du+K1

∫ t

0
‖X �ε ,ξ

u −X �,ξ
u ‖2du

+ |WH
�ε(t)−�ε (0)−WH

�(t)|

�(C+K1)
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2du+ |WH

�ε(t)−�ε (0)−WH
�(t)|.
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By the Hölder’s inequality we have for t ∈ [0,T ]

|X �ε ,ξ (t)−X �,ξ (t)|2 �2(C+K1)t
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2

2du+2|WH
�ε(t)−�ε (0)−WH

�(t)|2

�2(C+K1)T
∫ t

0
‖X �ε ,ξ (u)−X �,ξ (u)‖2

2du+2|WH
�ε(t)−�ε (0)−WH

�(t)|2.

Applying the Lemma 3.3 of [12] with g(ε)(t) = |X �ε ,ξ (t)− X �,ξ (t)| and h(ε)(t) =
2|WH

�ε(t)−�ε (0)−WH
�(t)|2 , we conclude that X �ε ,ξ

T → X �,ξ
T in L as ε ↓ 0, and so

lim
ε↓0

P�ε
T f = P�

T f , f ∈Cb(L ).

Since � is of bounded variation, it is easy to get from (3.4) that

lim
ε↓0

∫ T−r

0
e−2Ktd�ε(t) =

∫ T−r

0
e−2Ktd�(t).

Letting ε ↓ 0 in the Proposition 3.2, we obtain the desired results.

Step 2: For the general case, we shall make use of the approximation argument
proposed in [37]. Let

b̃(x) := b(x)−Kx, x ∈ Rd .

Then b̃ satisfies the dissipative condition:

〈b̃(x)− b̃(y),x− y〉 � 0, x,y ∈ Rd ,

and it is easy to see that the mapping id− εb : Rd → Rd is injective for any ε > 0. For
ε > 0, let b̃(ε) be the Yoshida approximation of b̃ , i.e.

b̃(ε)(x) :=
1
ε

[(
id− εb

)−1
(x)− x

]
, x ∈ Rd .

Then b̃(ε) is dissipative and globally Lipschitzian, |b̃(ε)| � |b̃| and limε↓0 b̃(ε) = b̃ . Let
b(ε)(x) := b̃(ε)(x)+Kx . Then b(ε) is also Lipschitzian and

〈x− y,b(ε)(x)−b(ε)(y)〉 � K|x− y|2, x,y ∈ Rd .

Let X �,(ε),ξ
t solve the SDE (1.1) with b replaced by b(ε) and X �,(ε),ξ

0 = ξ ∈L . Denote

by P�,(ε)
t the associated semigroup. Due to the first step of the proof, the statements of

the Proposition 3.1 hold with P�
t replaced by P�,(ε)

t . If

lim
ε↓0

P�,(ε)
T f = P�

T f , f ∈Cb(L ), (3.14)
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we complete the proof by applying the Proposition 3.1 with P�
t replaced by P�,(ε)

t and
letting ε ↓ 0. Indeed, noticing that

d|X �ε ,ξ (t)−X �,ξ (t)|2
=2〈X �ε ,ξ (t)−X �,ξ (t),b(ε)(X �ε ,ξ (t))−b(ε)(X �,ξ (t))〉dt

+2〈X �ε ,ξ (t)−X �,ξ (t),b(ε)(X �,ξ (t))−b(X �,ξ (t))〉dt

+2〈X �ε ,ξ (t)−X �,ξ (t),B(ε)(X �ε ,ξ
t )−B(ε)(X �,ξ

t )〉dt

�(2K +1)|X �ε ,ξ (t)−X �,ξ (t)|2dt + |b(ε)(X �,ξ (t))−b(X �,ξ (t))|2dt

+2K1‖X �ε ,ξ
t −X �,ξ

t ‖2
2dt

�(2|K|+2K1 +1)‖X �ε ,ξ
t −X �,ξ

t ‖2
2dt + |b(ε)(X �,ξ (t))−b(X �,ξ (t))|2dt,

one has for t ∈ [0,T ]

|X �ε ,ξ (t)−X �,ξ (t)|2

�(2|K|+2K1 +1)
∫ t

0
‖X �ε ,ξ

s −X �,ξ
s ‖2

2ds+
∫ t

0
|b(ε)(X �,ξ (s))−b(X �,ξ (s))|2ds

=(2|K|+2K1 +1)
∫ t

0
‖X �ε ,ξ

s −X �,ξ
s ‖2

2ds+
∫ t

0
|b̃(ε)(X �,ξ (s))− b̃(X �,ξ (s))|2ds.

Applying the Lemma 3.3 of [12] with g(ε)(t) = |X �ε ,ξ (t)− X �,ξ (t)| and h(ε)(t) =∫ t
0 |b̃(ε)(X �,ξ (s))− b̃(X �,ξ (s))|2ds , we know that X �ε ,ξ

T → X �,ξ
T in L as ε ↓ 0, and

thus (3.14) follows. �

Proof of Theorem 3.1. Since the processes S and WH are independent, we have

PT f (·) = E

[
P�

T f (·)|� = S
]
, f ∈ Bb(L ). (3.15)

By the first assertion of the Proposition 3.1, for all f ∈ Bb(L ) with f � 1,

PT log f (η)

=E

[
P�

T log f (η)|� = S
]

�E

[
P�

T log f (ξ )|� = S
]
+

(
C1(K1,H,κ)‖ξ −η‖2

2 +C2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2
)

B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H ,

which, together with the Jensen’s inequality and (3.15), implies the log-Harnack in-
equality. Analogously, by the second assertion of Proposition 3.1, for all non-negative
f ∈ Bb(L )
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PT f (η) =E

[
P�

T f (η)|� = S
]

�E

[
(P�

T f p(ξ ))1/pexp
[ 1
2(p−1)

(
C1(K1,H,κ)‖ξ −η‖2

2

+ |ξ (0)−η(0)|2C3(K,K1,H,T,r,κ)
∣∣∣
�=S

)B2( 3
2 −H, 1

2 −H)
4−4H

T 2−2H
]]

.

It remains to use the Hölder inequality and (3.15) to derive the power-Harnack inequal-
ity. �

4. Harnack inequality for (1.1) with H ∈ (1/2,1)

In this section, we consider the Harnack inequality for (1.1) with H ∈ (1/2,1) .

THEOREM 4.1. Let H ∈ (1/2,1) , T > r , the Hypothesis (H) holds and S be a
subordinator with Bernstein function of φ of the form (2.2). Then for any σ > 1 such
that max{0,2H− 3

2} < 1
σ < H− 1

2 we have

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

PT log f (η) � logPT f (ξ )+
1
2

E[ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)];

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
PT f (η)

)p
� PT f p(ξ )

(
Eexp

[ p
2(p−1)2 ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)

])
,

where
ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)

= C(K,K1,H,κ ,r,T,σ)
[S(T )2−2H

H− 1
σ

+2S(T)2−2HB
(
2H− 2

σ
,3−4H +

2
σ

)]
,

C(K,K1,H,κ ,r,T,σ)

=
C(K,K1,H,κ ,r,T )

Γ2(H − 1
2)|σ(1−2H)+1| 2

σ
c̃−2
H B

2(σ−1)
σ

(σ(H − 1
2)

σ −1
+1,

σ(− 3
2 +H)

σ −1
+1

)
,

c̃H =
( 2H

Γ(2H)Γ(3−2H)

) 1
2
,

C(K,K1,H,κ ,r,T ) =
( K1

Γ( 1
2 −H)

)−2
C1(K1,H,κ)‖ξ −η‖2

+
( K1

Γ( 1
2 −H)

)−2
C′

2(K,K1,H,T,r,κ)|ξ (0)−η(0)|2,
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C′
2(K,K1,H,T,r,κ) =

( K1

Γ( 1
2 −H)

)2(e2K(T−r)−1
Kκ2 +2

(∫ T−r

0
e−2KtdS(t)

)−2)
and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.

COROLLARY 4.1. Let the assumptions in Theorem 4.1 hold. Then the following
assertions hold.

(i) For any ξ ,η ∈ L and PT (ξ , ·) is equivalent to PT (η , ·) and

Ent(PT (ξ , ·)|PT (η , ·)) � 1
2

E[ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)],

which together with Pinsker’s inequality implies that

2‖PT (ξ , ·)−PT (η , ·)‖2
var � 1

2
E[ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)].

(ii) For any p > 1 , ξ ,η ∈ L

PT

{(dPT (ξ , ·)
dPT (η , ·)

)1/(p−1)}
(ξ )

�E

{
exp

[ p
2(p−1)2 [ρ(K,K1,H,κ ,r,T,σ ,ξ ,η)]

]}
.

PROPOSITION 4.1. Let H ∈ (1/2,1) , T > r and the Hypothesis (H) holds. Then
for any σ > 1 such that max{0,2H− 3

2} < 1
σ < H− 1

2 we have

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�
T log f (η) � logP�

T f (ξ )+
1
2

ρ(K,K1,H,κ ,r,T, �,σ ,ξ ,η);

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�

T f (η)
)p

� P�
T f p(ξ )exp

[ p
2(p−1)2 ρ(K,K1,H,κ ,r,T, �,σ ,ξ ,η)

]
,

where
ρ(K,K1,H,κ ,r,T, �,σ ,ξ ,η)

= C(K,K1,H,κ ,r,T, �,σ)
[�(T )2−2H

H− 1
σ

+2�(T)2−2HB
(
2H− 2

σ
,3−4H +

2
σ

)]
,

C(K,K1,H,κ ,r,T, �,σ)

=
C(K,K1,H,κ ,r,T, �)

Γ2(H − 1
2)|σ(1−2H)+1| 2

σ
c̃−2
H B

2(σ−1)
σ

(σ(H − 1
2)

σ −1
+1,

σ(− 3
2 +H)

σ −1
+1

)
,
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c̃H =
( 2H

Γ(2H)Γ(3−2H)

) 1
2
,

C(K,K1,H,κ ,r,T, �) =
( K1

Γ( 1
2 −H)

)−2
C1(K1,H,κ)‖ξ −η‖2

+
( K1

Γ( 1
2 −H)

)−2
C3(K,K1,H,T,r,κ)|ξ (0)−η(0)|2,

and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.

PROPOSITION 4.2. Let H ∈ (1/2,1) , T > r and the Hypothesis (H) holds. Then
for any σ > 1 such that max{0,2H− 3

2} < 1
σ < H− 1

2 we have

(i) for any ξ ,η ∈ L and f ∈ Bb(L ) with f � 1 ,

P�ε
T log f (η) � logP�ε

T f (ξ )+
1
2

ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η);

(ii) for any p > 1 , ξ ,η ∈ L and non-negative f ∈ Bb(L ) ,(
P�ε

T f (η)
)p

� P�ε
T f p(ξ )exp

[ p
2(p−1)2 ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η)

]
,

where
ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η)

= C(K,K1,H,κ ,r,T,ε,σ)
[ �ε(T )2−2H

H− 1
σ

+2�ε(T )2−2HB
(
2H− 2

σ
,3−4H +

2
σ

)]
,

C(K,K1,H,κ ,r,T,ε,σ)

=
C(K,K1,H,κ ,r,T,ε)

Γ2(H − 1
2)|σ(1−2H)+1| 2

σ
c̃−2
H B

2(σ−1)
σ

(σ(H − 1
2)

σ −1
+1,

σ(− 3
2 +H)

σ −1
+1

)
,

c̃H =
( 2H

Γ(2H)Γ(3−2H)

) 1
2
,

C(K,K1,H,κ ,r,T,ε) =
( K1

Γ( 1
2 −H)

)−2
C1(K1,H,κ)‖ξ −η‖2

+
( K1

Γ( 1
2 −H)

)−2
C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2,

and B(·, ·) and Γ(·) are the standard Beta and Gamma functions.

Proof. First of all, we will construct coupling as follows. Let Yt solve the equation

dY (t) = b(Y (t))dt +B(X �ε ,ξ
t )dt + λ (t)I[0,τ)(t)

X �ε ,ξ (t)−Y(t)
|X �ε ,ξ (t)−Y(t)| |ξ (0)−η(0)|d�ε(t)

+dWH
�ε(t)−�ε (0)

(4.1)
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with Y0 = η , where

λ (t) :=
e−Kt∫ T−r

0 e−2Ksd�ε(s)
, t � 0,

and
τ := T ∧ inf{t � 0;X �ε ,ξ (t) = Y (t)}

is the coupling time. It is clear that (X �ε ,ξ (t),Y (t)) is well defined for t < τ . By (H),
we have

d|X �ε ,ξ (t)−Y(t)| � K|X �ε ,ξ (t)−Y(t)|dt−λ (t)|ξ (0)−η(0)|d�ε(t), t ∈ [0,τ).

Thus, for t ∈ [0,τ) ,

|X �ε ,ξ (t)−Y(t)| � eKt |ξ (0)−η(0)|
(
1−

∫ t

0
e−Ksλ (s)d�ε(s)

)

� eKt ∫ T−r
t e−2Ksd�ε(s)∫ T−r

0 e−2Ksd�ε(s)
|ξ (0)−η(0)|

=: γ(t)|ξ (0)−η(0)|.

(4.2)

If τ(ω) > T − r for some ω ∈ Ω , we can take t = T − r in the above inequality to get

0 < |X �ε ,ξ (t)(ω)−Y(t)(ω)| � 0,

which is absurd. Therefore, τ � T − r . Letting Y (t) = X �ε ,ξ (t) for t ∈ [τ,T ] , Y (t)
solves (3.6) for t ∈ [τ,T ] . In particular, X �ε ,ξ

T =YT . Moreover, by (3.7) and τ � T − r ,
we have

|X �ε ,ξ (t)−Y(t)|2 � |ξ (0)−η(0)|2γ(t)2I[0,T−r](t), t ∈ [0,T ]. (4.3)

Denote by ζ ε : [�ε(0),∞) → [0,∞) the inverse function of �ε . Then �ε(ζ ε (t)) = t for
t � �ε(0) , ζ ε (�ε(t)) = t for t � 0, and t → ζ ε (t) is absolutely continuous and strictly
increasing. Let

Ψ(u) := Φ◦ ζ ε(u+ �ε(0)),

where

Φ(u) := [B(X �ε ,ξ
u )−B(Yu)]

1
(�ε)′(u)

+ λ (u)I[0,τ)(u)
X �ε ,ξ (u)−Y(u)
|X �ε ,ξ (u)−Y(u)| |ξ (0)−η(0)|.

Then, we have

∫ �ε (T )

0
(�ε(T )− v)1−2HΦ(v)dv

=
1

Γ( 3
2 −H)

∫ �ε (T )

0
(�ε(T )− v)

1
2−HΓ

(3
2
−H

)
(�ε(T )− v)

1
2−HΦ(v)dv

= (I
3
2−H
0+ Φ)(�ε(T ))
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where

Φ(v) = Γ
(3

2
−H

)
(�ε(T )− v)

1
2−HΦ(v).

Recalling that � is an sample path of the subordinator S with drift parameter κ �
0, one have for all t ∈ [0, �ε(T )]

(�ε)′(t) =
�(t + ε)− �(t)

ε
+ ε > κ .

by view of the definition of ‖ · ‖2 we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 =
∫ 0

−r
|X �ε ,ξ (t + s)−Y(t + s)|2ds+ |ξ (0)−η(0)|2

=
∫ t

t−r
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

�
∫ 0

−r
|ξ (s)−η(s)|2ds+

∫ t

0
|X �ε ,ξ (s)−Y (s)|2ds+ |ξ (0)−η(0)|2

= ‖ξ −η‖2
2 +

∫ t

0
|X �ε ,ξ (s)−Y(s)|2ds.

Then, by (4.2) we have for all t � 0

‖X �ε ,ξ
t −Yt‖2

2 � ‖ξ −η‖2
2 + |ξ (0)−η(0)|2

∫ T−r

0
γ(s)2ds

� ‖ξ −η‖2
2 +

e2K(T−r)−1
2K

|ξ (0)−η(0)|2,
(4.4)

where in the last inequality we have used γ(s) � eKs for s∈ [0,T −r] . By the definition
of λ (t) , it is easy to see that for all t � 0

|λ (t)| �
(∫ T−r

0
e−2Ktd�ε(t)

)−1
. (4.5)

Thus, combining (4.4) and (4.5) we have for all t ∈ [0, �ε(T )]

|Φ(t)|2 �
( K1

Γ( 1
2 −H)

)−2
C1(K1,H,κ)‖ξ −η‖2

2

+
( K1

Γ( 1
2 −H)

)−2
C4(K,K1,H,T,r,κ ,ε)|ξ (0)−η(0)|2

=:C(K,K1,H,κ ,r,T,ε).

(4.6)

Since 1−2H >−1 and Φ(v) is bound on [0, �ε(T )] , we know Φ(v)∈L2([0, �ε(T )];Rd) .

Thus we have that
∫ ·
0 c̃−1

H (�ε(T )− v)1−2HΦ(v)dv ∈ I
3
2−H
0+ (L2([0, �ε(T )];R)) . Note that

by means of the integral representation of fractional Brownian motion, the definition
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of the operator KH and transformation formulas for fractional Brownian motion (see
[19]), we get for any 0 � �ε(t) � �ε(T ) ,

W̃H
�ε(t) =

∫ �ε (t)

0
Φ(v)dv+WH

�ε(t)

=
∫ �ε (t)

0
Φ(v)dv+ c̃H

∫ �ε(t)

0
(�ε(t)− v)2H−1dW 1−H

v

=
∫ �ε (t)

0
c̃H(�ε(t)− v)2H−1[c̃−1

H (�ε(t)− v)1−2HΦ(v)dv+dW1−H
v ].

(4.7)

For any 0 � v � �ε(t) , let

W̃ 1−H
v =

∫ v

0
c̃−1
H (�ε(t)− s)1−2HΦ(s)ds+W 1−H

v

=
∫ v

0
c̃−1
H (�ε(t)− s)1−2HΦ(s)dv+

∫ v

0
K1−H(v,s)dWs

=
∫ v

0
K1−H(v,s)

[(
K−1

1−H

∫ ·

0
c̃−1
H (�ε(t)− z)1−2HΦ(z)dz

)
(s)ds+dWs

]

where c̃H =
(

2H
Γ(2H)Γ(3−2H)

) 1
2
.

Now, let

R(�ε(T )) = exp
[
−

∫ �ε(T )

0

(
K−1

1−H

∫ ·

0
c̃−1
H (�ε(T )− z)1−2HΦ(z)dz

)
(v)dW (v)

− 1
2

∫ �(T)

0

(
K−1

1−H

∫ ·

0
c̃−1
H (�ε(T )− z)1−2HΦ(z)dz

)2

(v)dv
]
.

Using Corollary 5.2 of [19], we immediately know that (W̃H
�ε (t))0�t��ε (T ) is an FBH

�ε(t) -

fractional Brownian motion with Hurst parameter H ∈ ( 1
2 ,1) under the new probability

Q(dω) = R(�ε(T ))P(dω) if (W̃ 1−H
�ε (t) )0�t��ε(T ) is an FW 1−H

�ε (t) -fractional Brownian mo-

tion with Hurst parameter 1−H under the new probability Q(dω) = R(�ε(T ))P(dω) .

Next we want to show (W̃ 1−H
t )0�t��ε (T ) is an FB1−H

�ε (t) -fractional Brownian motion

with Hurst parameter H ∈ ( 1
2 ,1) under the new probability Q(dω) = R(�ε(T ))P(dω) .

Due to [25], it suffices to show that EPR(�ε(T ))= 1. Since
∫ ·
0 c̃−1

H (�ε(T )−z)1−2HΦ(z)dz
is absolutely continuous, we have by (2.1) that

(
K−1

1−H

∫ ·

0
c̃−1
H (�ε(T )− z)1−2HΦ(z)dz

)
(v) = v

1
2−HI

H− 1
2

0+ vH− 1
2 c̃−1

H (�ε(T )− v)1−2HΦ(v),

v ∈ [0, �ε(T )].
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Hence, by the Hölder’s inequality and (4.6) we have further that for v ∈ [0, �ε(T )] ,

∣∣∣(K−1
1−H

∫ ·

0
c̃−1
H (�ε(T )− z)1−2HΦ(z)dz

)
(v)

∣∣∣
=

∣∣∣ 1

Γ(H− 1
2 )

c̃−1
H v

1
2−H

∫ v

0
zH− 1

2 (�ε(T )− z)1−2HΦ(z)(v− z)−
3
2 +Hdz

∣∣∣
�C1/2(K,K1,H,κ ,r,T,ε)

Γ(H − 1
2)

c̃−1
H v

1
2−H

{∫ v

0

(
zH− 1

2 (v− z)−
3
2 +H

) σ
σ−1

dz
} σ−1

σ

·
{∫ v

0
(�ε(T )− z)σ(1−2H)dz

} 1
σ

=
C1/2(K,K1,H,κ ,r,T,ε)

Γ(H − 1
2)

c̃−1
H B

σ−1
σ

(σ(H − 1
2)

σ −1
+1,

σ(− 3
2 +H)

σ −1
+1

)

· �ε(T )1−2H+ 1
σ +(�ε(T )− v)1−2H+ 1

σ

|σ(1−2H)+1| 1
σ

vH− 1
2− 1

σ .

(4.8)

Then, we can further obtain that for the fixed T > 0,

∫ �ε (T)

0

∣∣∣(K−1
1−H

∫ ·

0
c̃−1
H (�ε(T )− z)1−2HΦ(z)dz

)
(v)

∣∣∣2dv

�C(K,K1,H,κ ,r,T,ε,σ)
∫ �ε(T )

0
v2H−1− 2

σ
[
�ε(T )1−2H+ 1

σ +(�ε(T )− v)1−2H+ 1
σ
]2

dv

� C(K,K1,H,κ ,r,T,ε,σ)
[ �ε(T )2−2H

H − 1
σ

+2�ε(T )2−2HB
(
2H− 2

σ
,3−4H +

2
σ

)]
=:ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η).

(4.9)

As a consequence, we get

Eexp
[1
2

∫ �ε (T )

0

(
c̃−1
H K−1

1−H

∫ ·

0
(�ε(T )− z)1−2HΦ(z)dz

)2
(v)dv

]
� exp [

1
2

ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η)].
(4.10)

Using the well-known Novikov criterion, one can have EPR(�ε(T )) = 1. Then we can
rewrite (4.1) as

dY (t) = b(Y (t))dt +B(Yt)dt +dW̃H
�ε(t)−�ε(0).

Thus, the distribution of {X �ε ,η
t }0�t�T under P coincides with the law of {Yt}0�t�T

under R(�ε(T ))P . Therefore, we conclude from the definition of P�ε
t that for all

bounded Borel functions f : Rd → L

P�ε
T f (η) = EQ f (YT (η)) = EQ f (X �ε ,ξ

T (ξ )) = EPR(�ε(T )) f (X �ε ,ξ
T (ξ )). (4.11)
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By the Jensen’s inequality, we obtain for any random variable F � 1,

E

[
R(�ε(T )) log

F
R(�ε(T ))

]
= ER(�ε(T ))P

[
log

F
R(�ε(T ))

]
� logER(�ε(T ))P

[ F
R(�ε(T ))

]
= logE[F ].

Then we have

E

[
R(�ε(T )) logF

]
� logE[F ]+E[R(�ε(T )) logR(�ε(T ))].

Let η(s) =
(
K−1

1−H

∫ ·
0 c̃−1

H (�ε(T )− z)1−2HΦ(z)dz
)
(s) . By the definition of R(�ε(T )) ,

combining with (4.10), we have

logR(�ε(T )) = −
∫ �ε(T )

0
〈η(s),dWs〉− 1

2

∫ �ε (T )

0
|η(s)|2ds

= −
∫ �ε(T )

0
〈η(s),dW̃s〉+ 1

2

∫ �ε (T )

0
|η(s)|2ds

� −
∫ �ε(T )

0
〈η(s),dW̃s〉+ 1

2
ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η).

Thus, for all bounded Borel functions f � 1 on L , we have

P�ε
T log f (η) =E[log f (X �ε

T (η))] = E[R(�ε(T )) log f (X �ε ,ξ
T (ξ ))]

� logE[ f (X �ε ,ξ
T (ξ ))]+E[R(�ε(T )) logR(�ε(T ))]

= logP�ε
T f (ξ )+ER(�ε(T ))P[logR(�ε(T ))]

� logP�ε
T f (ξ )+

1
2

ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η).

The proof of the log-Harnack inequality is complete.
For all bounded Borel functions f � 1 on L , by (4.11) and the Hölder’s inequal-

ity, we can obtain

(P�ε
T f (η))p = (E f (X �ε ,ξ

T (η)))p = (ER f (X �ε ,ξ
T (ξ )))p � (P�ε

T f p(ξ ))(ER
p

p−1 (�ε(T )))p−1.
(4.12)

Let Mt := −∫ t
0〈η(s),dWs〉 , t � 0. By using (4.10) we get

R
p

p−1 (�ε(T ))

=exp
[ p

p−1
M�ε (T )−

p
2(p−1)

〈M〉�ε (T)

]

=exp
[ p
2(p−1)2 〈M〉�ε (T)

]
× exp

[ p
p−1

M�ε (T )−
p2

2(p−1)2 〈M〉�ε (T )

]
�exp

[ p
2(p−1)2 ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η)

]

× exp
[ p

p−1
M�ε (T) −

p2

2(p−1)2 〈M〉�ε (T )

]
.
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Notice that exp
[

p
p−1M�ε(T ) − p2

2(p−1)2 〈M〉�ε (T )

]
is a martingale with mean 1. Then,

using Novikov’s criterion we get

E[R
p

p−1 (�ε(T ))] � exp
[ p
2(p−1)2 ρ(K,K1,H,κ ,r,T,ε,σ ,ξ ,η)

]
.

Thus, we get the power-Harnack inequality by plugging the above expression into
(4.12). The proof is complete. �

According to the Proposition 4.2, we can easily prove the Proposition 4.1 and the
Theorem 4.1 by using the same way as H ∈ (0,1/2) . Thus, we omit them.
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