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A REFINED HARDY–LITTLEWOOD–POLYA

INEQUALITY AND THE EQUIVALENT FORMS

FENGONG WU, YONG HONG ∗ AND BICHENG YANG

(Communicated by Q.-H. Ma)

Abstract. In this article, by the Euler-Maclaurin summation formula, we construct proper weight
coefficients and use them to establish a refined Hardy-Littlewood-Polya inequality with multi pa-
rameters. Based on this inequality, the equivalent statements of the best possible constant factor
related to several parameters are discussed. The equivalent forms, some particular inequalities
and the operator expressions of the obtained inequalities are considered.

1. Introduction

Suppose that p > 1, 1
p + 1

q = 1, am,bn � 0, 0 < ∑∞
m=1 ap

m < ∞ and 0 < ∑∞
n=1 bq

n <

∞. The Hardy-Hilbert inequality with the best possible constant factor π
sin(π/p) was

provided as follows (cf. [5], Theorem 315):

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

π
sin(π/p)

(
∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

. (1)

With the same assumption, we still have the following Hardy-Lottlewood-Polya in-
equality with the best possible constant factor pq (cf. [5], Theorem 341):

∞

∑
m=1

∞

∑
n=1

ambn

max{m,n} < pq

(
∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

. (2)

Also, a refined form of (1) was provided as follows (cf. [5], Theorem 323):

∞

∑
m=1

∞

∑
n=1

ambn

m+n−1
<

π
sin(π/p)

(
∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

, (3)

where, the constant factor π
sin(π/p) is still the best possible.
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By introducing multi parameters λi ∈ (0,2] (i = 1,2) , λ1 + λ2 = λ ∈ (0,4], and
using the Euler-Maclaurin summation formula, an extension of (1) was provided by
Krnić et al. [17] in 2006 as follows:

∞

∑
m=1

∞

∑
n=1

ambn

(m+n)λ

< B(λ1,λ2)

[
∞

∑
m=1

mp(1−λ1)−1ap
m

] 1
p
[

∞

∑
n=1

nq(1−λ2)−1bq
n

] 1
q

, (4)

where, the constant factor B(λ1,λ2) is the best possible (B(u,v) =
∫ ∞
0

tu−1dt
(1+t)u+v (u,v >

0) is the beta function). For p = q = 2, λ1 = λ2 = λ
2 , (3) reduces to Yang’s published

inequality in [27]. In 2019, applying inequality (2), Adiyasuren et al. [1] gave a new
Hardy-Hilbert inequality with the kernel of (4) involving two partial sums.

If f (x),g(y) � 0, 0 <
∫ ∞
0 f p(x)dx < ∞ , and 0<

∫ ∞
0 gq(y)dy < ∞ , then we still have

the following integral analogue of (1) named in the Hardy -Hilbert integral inequality
(cf. [5], Theorem 316):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy <
π

sin(π/p)

(∫ ∞

0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

. (5)

Inequalities (1)–(5) have many extensions (cf. [28], [18], [20], [6], [7], [23], [24], [32],
[25], [2], [3] and [21]).

A half-discrete Hilbert-type inequality was given in 1934 as follows (cf. [5], The-
orem 351): Assuming that K(t) (t > 0) is decreasing, p > 1, 1

p + 1
q = 1, 0 < φ(s) =∫ ∞

0 K(t)ts−1dt < ∞ , we have

∫ ∞

0
xp−2

(
∞

∑
n=1

K(nx)an

)p

dx < φ p
(1

q

) ∞

∑
n=1

ap
n . (6)

Some new extensions of (6) were provided by [30], [29], [22] and [31]. In 2016, by
means of the technique of real analysis, Hong [8]considered some equivalent statements
of the extensions of (1) with the best possible constant factor related to several parame-
ters. Some other similar results on the extensions of (1), (5) and (6) were given by [9],
[10], [26], [11], [12], [13], [4], [14], [15] and [16].

In this paper, following the way of [17] and [8], by the Euler-Maclaurin summa-
tion formula and the techniques of real analysis, we will establish a refined Hardy-
Littlewood-Polya inequality with multi parameters. Based on this inequality, the equiv-
alent statements of the best possible constant factor related to several parameters are
discussed. The equivalent forms and the operator expressions of the obtained inequali-
ties are considered. We also illustrate how the new equivalent inequalities obtained can
generate some interested particular cases.
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2. Some lemmas

In what follows, we suppose that p > 1 (q > 1) , 1
p + 1

q = 1, α ∈ [0, 1
4 ] . λ ∈ (0,9

4 ],

λi ∈ (0,1]∩ (0,λ ) (i = 1,2), λ̂1 := λ−λ2
p + λ1

q , λ̂2 := λ−λ1
q + λ2

p . We also assume that
am,bn � 0 (m,n ∈ N = {1,2, · · ·}), such that

0 <
∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m < ∞ and 0 <

∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n < ∞.

LEMMA 1. For λ ∈ (0, 9
4 ] , α ∈ [0, 1

4 ] . λ2 ∈ (0,1]∩ (0,λ ) , define the following
weight coefficient:

ϖ(λ2,m) := (m−α)λ−λ2
∞

∑
n=1

(n−α)λ2−1

(max{m,n}−α)λ (m ∈ N). (7)

We have the following inequalities:

kλ (λ2)

[
1− (λ −λ2)(1−α)λ2

λ (m−α)λ2

]

< ϖ(λ2,m) < kλ (λ2) :=
λ

λ2(λ −λ2)
(m ∈ N), (8)

Proof. For fixed m ∈ N , we set the following real function:

gm(t) :=
(t−α)λ2−1

(max{m,t}−α)λ (t > α).

Then we find

gm(t) =

⎧⎨⎩
(t−α)λ2−1

(m−α)λ , α < t � m,

(t−α)λ2−λ−1, t > m
,

g′m(t) =

⎧⎨⎩
(λ2−1)(t−α)λ2−2

(m−α)λ , α < t < m,

(λ2 −λ −1)(t−α)λ2−λ−2, t > m
,

gm(1) =
(1−α)λ2−1

(m−α)λ ,

∫ 1

0
gm(t)dt =

∫ 1

0

(t−α)λ2−1

(m−α)λ dt =
(1−α)λ2

λ2(m−α)λ .

∫ ∞

α
gm(t)dt =

∫ m

α

(t−α)λ2−1

(m−α)λ dt +
∫ ∞

m
(t −α)λ2−λ−1dt

=
λ

λ2(λ −λ2)(m−α)λ−λ2
.
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For λ2 ∈ (0,1]∩(0,λ ) , 0 < ε,ε1 < 1, by the Euler-Maclaurin summation formula
(cf. [17], [28]), we find

m

∑
n=1

gm(n) =
∫ m

1
gm(t)dt +

1
2
gm(t)|m1 +

∫ m

1
P1(t)g′m(t)dt

=
∫ m

1
gm(t)dt +

1
2
gm(t)|m1 +

λ2−1

(m−α)λ

∫ m

1
P1(t)(t −α)λ2−2dt

=
∫ m

1
gm(t)dt +

1
2
gm(t)|m1 +

λ2−1

(m−α)λ
ε
12

(t−α)λ2−2|m1
∞

∑
n=m+1

gm(n) =
∫ ∞

m
gm(t)dt +

1
2
gm(t)|∞m +

∫ ∞

m
P1(t)g′m(t)dt

=
∫ ∞

m
gm(t)dt +

1
2
gm(t)|∞m +

ε1

12
(λ2−λ −1)(t−α)λ2−λ−2|∞m ,

where, P1(t) = t − [t]− 1
2 (t ∈ R = (−∞,∞)) is the Bernoulli function of 1-order. For

the assumption, (−1)i+1 di

dti
g′m(t) > 0 (i = 0,1,2,3; t ∈ [1,m) or t ∈ (m,∞)), it follows

that ∫ m

1
P1(t)g′m(t)dt =

ε
12

g′m(t)|m1 ,∫ ∞

m
P1(t)g′m(t)dt =

−ε1

12
g′m(m) (0 < ε,ε1 < 1).

Then, we have
∞

∑
n=1

gm(n) =
∫ ∞

1
gm(t)dt +

1
2
gm(1)

+
[

1−λ2

12(1−α)1−λ2(m−α)λ − 1−λ2

12(m−α)1+λ−λ2

]
ε

+
λ −λ2 +1

12(m−α)2+λ−λ2
ε1. (9)

By (9), we have

∞

∑
n=1

gm(n) <

∫ ∞

1
gm(t)dt +

1
2
gm(1)+

1−λ2

12(1−α)1−λ2(m−α)λ

− 1−λ2

12(m−α)1+λ−λ2
+

λ −λ2 +1

12(m−α)2+λ−λ2

�
∫ ∞

α
gm(t)dt−

[∫ 1

α
gm(t)dt]− 1

2
gm(1)

− (1−λ2)(1−α)λ2−1

12(m−α)λ − λ −λ2 +1

12(m−α)2+λ−λ2

]

=
1

(m−α)λ−λ2

[
λ

(λ −λ2)λ2
−hm(λ2)

]
,
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hm(λ2) :=
(

1−α
λ2

− 1
2
− 1−λ2

12

)
(1−α)λ2−1

(m−α)λ2
− λ +1−λ2

12(m−α)2 .

We obtain that for λ2 ∈ (0,1]∩ (0,λ ) , α ∈ [0, 1
4 ] , λ ∈ (0, 9

4 ],

hm(λ2) � 12(1−α)−7+1
12λ2

(m−α)λ2−1

(m−α)λ2
−

13
4 −λ2

12(m−α)2

=
6−12α

12λ2(m−α)
−

13
4 −λ2

12(m−α)2 =
(6−12α)(m−α)− 13

4 λ2 + λ 2
2

12λ2(m−α)2

�
(6−12α)(1−α)− 13

4 λ2 + λ 2
2

12λ2(m−α)2 �
(6−12α)(1−α)− 13

4 +1

12λ2(m−α)2

�
(6−12× 1

4)(1− 1
4 )− 9

4

12λ2(m−α)2 = 0.

Hence, we have

ϖ(λ2,m) = (m−α)λ−λ2
∞

∑
n=1

gm(n)

< (m−α)λ−λ2

∫ ∞

α
gm(t)dt = kλ (λ2) =

λ
(λ −λ2)λ2

.

On the other hand, by (19), we find

∞

∑
n=1

gm(n) >

∫ ∞

1
gm(t)dt

=
∫ ∞

α
gm(t)dt −

∫ 1

α
gm(t)dt

=
λ

(λ −λ2)λ2(m−α)λ−λ2
− (1−α)λ2

λ2(m−α)λ

=
λ

(λ −λ2)λ2(m−α)λ−λ2

[
1− (λ −λ2)(1−α)λ2

λ (m−α)λ2

]
.

Therefore, we obtain (8).
The lemma is proved. �

LEMMA 2. We have the following refined Hardy-Littlewood-Polya inequality:

I :=
∞

∑
n=1

∞

∑
m=1

ambn

(max{m,n}−α)λ < k
1
p

λ (λ2)k
1
q

λ (λ1)

×
[

∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m

] 1
p
[

∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n

] 1
q

. (10)
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Proof. In the same way of obtaining (8), for n ∈ N , α ∈ [0, 1
4 ] , λ ∈ (0, 9

4 ] ,
λ1 ∈ (0,1)∩ (0,λ ), we have the following inequalities for the another weight coef-
ficient: [

1− (λ −λ1)(1−α)λ1

λ (n−α)λ1

]

< ω(λ1,n) := (n−α)λ−λ1
∞

∑
m=1

(m−α)λ1−1

(max{m,n}−α)λ < kλ (λ1). (11)

By the Hölder inequality (cf. [19]), we obtain

I =
∞

∑
n=1

∞

∑
m=1

1

(max{m,n}−α)λ

[
(n−α)(λ2−1)/p

(m−α)(λ1−1)/q
am

][
(m−α)(λ1−1)/q

(n−α)(λ2−1)/p
bn

]

�
[

∞

∑
m=1

∞

∑
n=1

1

(max{m,n}−α)λ
(n−α)λ2−1

(m−α)(λ1−1)(p−1) a
p
m

] 1
p

×
[

∞

∑
n=1

∞

∑
m=1

1

(max{m,n}−α)λ
(m−α)λ1−1

(n−α)(λ2−1)(q−1) b
q
n

] 1
q

=

[
∞

∑
m=1

ϖ(λ2,m)(m−α)p(1−λ̂1)−1ap
m

] 1
p
[

∞

∑
n=1

ω(λ1,n)(n−α)q(1−λ̂2)−1bq
n

] 1
q

.

Then by (8) and (11), we have (10).
The lemma is proved. �

REMARK 1. By (10), for λ1 + λ2 = λ ∈ (0,2] (⊂ (0, 9
4 ]) , λi ∈ (0,1]∩ (0,λ ) we

find

0 <
∞

∑
m=1

(m−α)p(1−λ1)−1ap
m < ∞,0 <

∞

∑
n=1

(n−α)q(1−λ2)−1bq
n < ∞.

and the following refined Hardy-Littlewood-Polya inequality:

∞

∑
n=1

∞

∑
m=1

ambn

(max{m,n}−α)λ

<
λ

λ1λ2

[
∞

∑
m=1

(m−α)p(1−λ1)−1ap
m

] 1
p
[

∞

∑
n=1

(n−α)q(1−λ2)−1bq
n

] 1
q

. (12)

LEMMA 3. The constant factor λ
λ1λ2

in (12) is the best possible.

Proof. For any 0 < ε < pλ1 , we set ãm := mλ1− ε
p−1 , b̃n := nλ2− ε

q−1 (m,n ∈ N).
If there exists a constant M � λ

λ1λ2
, such that (12) is valid when we replace λ

λ1λ2
by M ,
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then in particular, for α = 0, substitution of am = ãm and bn = b̃n in (12), we have

Ĩ :=
∞

∑
n=1

∞

∑
m=1

ãmb̃n

(max{m,n})λ

< M

[
∞

∑
m=1

mp[1−λ1)−1ãp
m

] 1
p
[

∞

∑
n=1

nq[1−λ2)−1b̃q
n

] 1
q

. (13)

By (13) and the decreasingness property of series, we obtain

Ĩ < M

[
∞

∑
m=1

mp[1−λ1)−1mp(λ1− ε
p−1)

] 1
p
[

∞

∑
n=1

nq[1−λ2)−1nq(λ2− ε
q−1)

] 1
q

= M

(
∞

∑
m=1

m−ε−1

) 1
p
(

∞

∑
n=1

n−ε−1

) 1
p

= M

(
1+

∞

∑
m=2

m−ε−1

)

< M

(
1+

∫ ∞

1
x−ε−1dx

)
=

M
ε

(ε +1).

By (11) (for α = 0, setting λ̃1 := λ1 − ε
p ∈ (0,1)∩ (0,λ ) (0 < λ̃2 = λ2 + ε

p =

λ − λ̃1 < λ )), we find

Ĩ =
∞

∑
n=1

[
nλ2+ ε

p

∞

∑
m=1

m(λ1− ε
p )−1

(max{m,n})λ

]
n−ε−1 =

∞

∑
n=1

ω(λ̃1,n)n−ε−1

> kλ (λ̃1)
∞

∑
n=1

(
1− λ̃2

λnλ̃1

)
n−ε−1

= kλ (λ̃1)

(
∞

∑
n=1

n−ε−1− λ̃2

λ

∞

∑
n=1

1

nλ1+ ε
q +1

)

> kλ (λ̃1)
(∫ ∞

1
y−ε−1dy−O(1)

)
=

kλ (λ̃1)
ε

(1− εO(1)).

Then we have the following inequality:

kλ (λ1 − ε
p
)(1− εO(1)) � ε Ĩ < M(ε +1).

For ε → 0+ , we have kλ (λ1) = λ
λ1λ2

� M . Hence, M = λ
λ1λ2

is the best possible
constant factor of (12).

The lemma is proved. �

REMARK 2. For λ̂1 = λ−λ2
p + λ1

q , λ̂2 = λ−λ1
q + λ2

p , we find

λ̂1 + λ̂2 =
λ −λ2

p
+

λ1

q
+

λ −λ1

q
+

λ2

p
= λ ,

0 < λ̂i < λ (i = 1,2).
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If λ −λi � 1 (i = 1,2), then we have λ̂i � 1 (i = 1,2), and we can rewrite (12) as
follows:

I =
∞

∑
n=1

∞

∑
m=1

ambn

(max{m,n}−α)λ

< kλ (λ̂1)

[
∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m

] 1
p
[

∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n

] 1
q

. (14)

LEMMA 4. If the constant factor k
1
p

λ (λ2)k
1
q

λ (λ1) in (11) is the best possible, then
for λ −λi � 1 (i = 1,2), we have λ1 + λ2 = λ .

Proof. If the constant factor k
1
p

λ (λ2)k
1
q

λ (λ1) in (10) is the best possible, then in
view of the assumption and (14), we have the following inequality:

k
1
p

λ (λ2)k
1
q

λ (λ1) � kλ (λ̂1) =
λ

λ̂1λ̂2

(∈ R+ = (0.∞)) (15)

By the Hölder inequality (cf. [19]), we find

0 < kλ (λ̂1) = kλ

(λ −λ2

p
+

λ1

q

)
=
∫ ∞

0

1

(max{1,u})λ u
λ−λ2

p + λ1
q −1du

=
∫ ∞

0

1

(max{1,u})λ (u
λ−λ2−1

p )(u
λ1−1

q )du

�
[∫ ∞

0

uλ−λ2−1

(max{1,u})λ du

] 1
p
[∫ ∞

0

uλ1−1

(max{1,u})λ du

] 1
q

=

[∫ ∞

0

vλ2−1

(max{1,v})λ dv

] 1
p
[∫ ∞

0

uλ1−1

(max{1,u})λ du

] 1
q

= k
1
p

λ (λ2)k
1
q

λ (λ1). (16)

In view of (15), we have

k
1
p

λ (λ2)k
1
q

λ (λ1) = kλ (λ̂1),

namely, (16) keeps the form of equality. We observe that (16) keeps the form of equality
if and only if there exist constants A and B , such that they are not both zero and (cf.
[19])

Auλ−λ2−1 = Buλ1−1 a.e. in R+.
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Assuming that A �= 0, we have

uλ−λ2−λ1 =
B
A

a.e. in R+,

and λ −λ2−λ1 = 0, namely, λ1 + λ2 = λ .
The lemma is proved. �

3. Main results

THEOREM 1. We have the following inequality equivalent to (10):

J :=

{
∞

∑
n=1

(n−α)pλ̂2−1

[
∞

∑
m=1

am

(max{m,n}−α)λ

]p} 1
p

< k
1
p

λ (λ2)k
1
q

λ (λ1)

[
∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m

] 1
p

. (17)

If the constant factor in (10) is the best possible, then so is the constant factor in (17) .

Proof. Suppose that (10) is valid. By thr Hölder inequality (cf. [19]), we have

I =
∞

∑
n=1

[
(n−α)λ̂2− 1

p

∞

∑
m=1

am

(max{m,n}−α)λ

]
[(n−α)

1
p−λ̂2bn]

� J

[
∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n

] 1
q

. (18)

Then by (17), we obtain (10).
On the other hand, assuming that (10) is valid, we set

bn := (n−α)pλ̂2−1

[
∞

∑
m=1

am

(max{m,n}−α)λ

]p−1

, n ∈ N.

If J = 0, then (10) is naturally valid; if J = ∞ , then it is impossible that makes (10)
valid, namely, J < ∞ . Suppose that 0 < J < ∞ . By (10), it follows that

∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n = Jp = I

< k
1
p

λ (λ2)k
1
q

λ (λ1)

[
∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m

] 1
p

×
[

∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n

] 1
q

,
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J =

[
∞

∑
n=1

(n−α)q(1−λ̂2)−1bq
n

] 1
p

< k
1
p

λ (λ2)k
1
q

λ (λ1)

[
∞

∑
m=1

(m−α)p(1−λ̂1)−1ap
m

] 1
p

,

namely, (17) follows, which is equivalent to (10).
If the constant factor in (10) is the best possible, then so is constant factor in (17).

Otherwise, by (18), we would reach a contradiction that the constant factor in (10) is
not the best possible.

The theorem is proved. �

THEOREM 2. The following statements (i), (ii), (iii) and (iv) are equivalent:

(i) Both k
1
p

λ (λ2)k
1
q

λ (λ1) and kλ (λ−λ2
p + λ1

q ) are independent of p,q;
(ii)

k
1
p

λ (λ2)k
1
q

λ (λ1) = kλ

(λ −λ2

p
+

λ1

q

)
; (19)

(iii) k
1
p

λ (λ2)k
1
q

λ (λ1) in (10) is the best possible constant factor;
(iv) if λ −λi � 1 (i = 1,2), then we have λ1 + λ2 = λ .
If the statement (iv) follows, namely, λ1 + λ2 = λ , then we have (12) and the

following equivalent inequality with the best possible constant factor λ
λ1λ2

:

{
∞

∑
n=1

(n−α)pλ2−1

[
∞

∑
m=1

am

(max{m,n}−α)λ

]p} 1
p

<
λ

λ1λ2

[
∞

∑
m=1

(m−α)p(1−λ1)−1ap
m

] 1
p

. (20)

Proof. (i) ⇒ (ii) . By (i), we have

k
1
p

λ (λ2)k
1
q

λ (λ1) = lim
p→∞

lim
q→1+

k
1
p

λ (λ2)k
1
q

λ (λ1) = kλ (λ1),

kλ

(λ −λ2

p
+

λ1

q

)
= lim

p→∞
lim

q→1+
kλ

(λ −λ2

p
+

λ1

q

)
= kλ (λ1),

namely, (19) follows.
(ii) ⇒ (iv) . If (19) follows, then (16) keeps the form of equality. In view of the

proof of Lemma 4, it follows that λ1 + λ2 = λ .
(iv) ⇒ (i) . If λ1 + λ2 = λ , then

k
1
p

λ (λ2)k
1
q

λ (λ1) = kλ

(λ −λ2

p
+

λ1

q

)
= kλ (λ1),
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which is independent of p,q .
Hence, we have (i) ⇔ (ii) ⇔ (iv) .
(iii) ⇒ (iv) . By the assumption and Lemma 4, we have λ1 + λ2 = λ .
(iv) ⇒ (iii) . By Lemma 3, for λ1 + λ2 = λ ,

k
1
p

λ (λ2)k
1
q

λ (λ1)
(

=
λ

λ1λ2

)
is the best possible constant factor of (12).

Therefore, we have (iii) ⇔ (iv) .
Hence, the statements (i), (ii), (iii) and (iv) are equivalent.
The theorem is proved. �

REMARK 3. (i) For λ = 1, λ1 = 1
q , λ2 = 1

p in (12) and (20), we have the follow-
ing equivalent inequalities with the best possible constant factor pq :

∞

∑
n=1

∞

∑
m=1

ambn

max{m,n}−α
< pq

(
∞

∑
m=1

ap
m

) 1
p
(

∞

∑
n=1

bq
n

) 1
q

, (21)

[
∞

∑
n=1

(
∞

∑
m=1

am

max{m,n}−α

)p] 1
p

< pq

(
∞

∑
m=1

ap
m

) 1
p

. (22)

For α = 0, (21) reduces to (2). Hence, (21) is a refinement of (2).

(ii) For λ = 1, λ1 = 1
p , λ2 = 1

q in (12) and (20), we have the following equivalent
dual inequalities with the best possible constant factor pq :

∞

∑
n=1

∞

∑
m=1

ambn

max{m,n}−α

< pq

[
∞

∑
m=1

(m−α)p−2ap
m

] 1
p
[

∞

∑
n=1

(n−α)q−2bq
n

] 1
q

, (23)

[
∞

∑
n=1

(n−α)p−2

(
∞

∑
m=1

am

max{m,n}−α

)p] 1
p

< pq

[
∞

∑
m=1

(m−α)p−2ap
m

] 1
p

. (24)

(iii) For p = q = 2, both (21) and (23) reduce to

∞

∑
n=1

∞

∑
m=1

ambn

max{m,n}−α
< 4

(
∞

∑
m=1

a2
m

∞

∑
n=1

b2
n

) 1
2

, (25)
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and both (22) and (24) reduce to the equivalent form of (25) as follows:⎡⎣ ∞

∑
n=1

(
∞

∑
m=1

am

max{m,n}−α

)2
⎤⎦ 1

2

< 4

(
∞

∑
m=1

a2
m

) 1
2

. (26)

(iv) For α = 0 in (12) and (20), we have the following equivalent inequalities with
the best possible constant factor λ

λ1λ2
(λ1 + λ2 = λ ∈ (0,2] , 0 < λi � 1 (i = 1,2)) :

∞

∑
n=1

∞

∑
m=1

ambn

(max{m,n})λ

<
λ

λ1λ2

[
∞

∑
m=1

mp(1−λ1)−1ap
m

] 1
p
[

∞

∑
n=1

nq(1−λ2)−1bq
n

] 1
q

. (27)

{
∞

∑
n=1

npλ2−1

[
∞

∑
m=1

am

(max{m,n})λ

]p} 1
p

<
λ

λ1λ2

[
∞

∑
m=1

mp(1−λ1)−1ap
m

] 1
p

. (28)

4. Operator expressions

We set functions ϕ(m) := (m−α)p(1−λ̂1)−1 , ψ(n) := (n−α)q(1−λ̂2)−1, then,

ψ1−p(n) = (n−α)pλ̂2−1 (m,n ∈ N).

Define the following real normed spaces:

lp,ϕ :=

⎧⎨⎩a = {am}∞
m=1; ||a||p,ϕ :=

(
∞

∑
m=1

ϕ(m)|am|p
) 1

p

< ∞

⎫⎬⎭ ,

lq,ψ :=

⎧⎨⎩b = {bn}∞
n=1; ||b||q,ψ :=

(
∞

∑
n=1

ψ(n)|bn|q
) 1

q

< ∞

⎫⎬⎭ ,

lp,ψ1−p :=

⎧⎨⎩c = {cn}∞
n=1; ||c||p,ψ1−p :=

(
∞

∑
n=1

ψ1−p(n)|cn|p
) 1

p

< ∞

⎫⎬⎭ .

Assuming that a ∈ lp,ϕ , setting

c = {cn}∞
n=1,cn :=

∞

∑
m=1

am

(max{m,n}−α)λ , n ∈ N,
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we can rewrite (17) as follows:

||c||p,ψ1−p < k
1
p

λ (λ2)k
1
q

λ (λ1)||a||p,ϕ < ∞,

namely, c ∈ lp,ψ1−p .

DEFINITION 1. Define an operator T : lp,ϕ → lp,ψ1−p as follows: For any a∈ lp,ϕ ,
there exists a unique representation c ∈ lp,ψ1−p , satisfying for any n ∈ N , Ta(n) = cn.
Define the dual pair Ta and b ∈ lq,ψ , and the norm of T as follows:

(Ta,b) :=
∞

∑
n=1

[
∞

∑
m=1

am

(max{m,n}−α)λ

]
bn,

||T || := sup
a( �=0)∈lp,ϕ

||Ta||p,ψ1−p

||a||p,ϕ
.

By Theorem 1 and 2, we have

THEOREM 3. If a ∈ lp,ϕ , b ∈ lq,ψ , ||a||p,ϕ , ||b||q,ψ > 0, then we have the follow-
ing equivalent inequalities:

(Ta,b) < k
1
p

λ (λ2)k
1
q

λ (λ1)||a||p,ϕ ||b||q,ψ , (29)

||Ta||p,ψ1−p < k
1
p

λ (λ2)k
1
q

λ (λ1)||a||p,ϕ . (30)

Moreover, if λ1 + λ2 = λ , then the constant factor k
1
p

λ (λ2)k
1
q

λ (λ1) in (29) and (30) is
the best possible, namely,

||T || = kλ (λ1) =
λ

λ1λ2
. (31)

On the other hand, if the constant factor k
1
p

λ (λ2)k
1
q

λ (λ1) in (29) and (30) is the best
possible, then for λ −λi � 1 (i = 1,2), we have λ1 + λ2 = λ .

5. Conclusions

In this paper, following the way of [17] and [8], by means of the weight coeffi-
cients, the idea of introduced parameters and the Euler-Maclaurin summation formula,
a refined Hardy-Littlewood-Polya inequality as well as the equivalent forms are given
in Lemma 2 and Theorem 1. The equivalent statements of the best possible constant
factor related to a few parameters and some particular cases are considered in Theorem
2 and Remark 3. The operator expressions are given in Theorem 3. The lemmas and
theorems provide an extensive account of this type of inequalities.
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