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A WEIGHTED QUANTITATIVE ISOPERIMETRIC INEQUALITY

FOR KORÁNYI SPHERE IN HEISENBERG GROUP H
n

GUOQING HE AND PEIBIAO ZHAO ∗

(Communicated by M. Krnić)

Abstract. It is well known that the Korányi sphere w.r.t. the Korányi distance is not an isoperi-
metric set in Heisenbeg group Hn . In this paper, we investigate Korányi sphere in a Heisenberg

group associated with a density |z|−(2n+1)e
− α

|z| (α > 0) , and derive a weighted isoperimet-
ric inequality and a weighted quantitative isoperimetric inequality for Korányi spheres in half-
cylinders. This note also shows that the Korányi sphere is the weighted isoperimetric set in the
weighted Heisenberg group Hn .

1. Introduction

The study of isoperimetric problems in Carnot-Carathéodory spaces has been an
active field over the past few decades. But even in Carnot groups, there is very few
known about the optimal constant in the isoperimetric inequality except for the fact
that isoperimetric sets exist and have at least some very weak regularity properties [16].
With the only exception of the Grushin plane [21], isoperimetric sets have been only
partially characterized in the Sub-Riemannian Heisenberg group Hn and are not known
at all in more general Carnot groups.

The isoperimetric problem in the Heisenberg group consists in minimizing H-
perimeter of sets with a given fixed volume. One could expect that the natural isoperi-
metric candidates sets in Hn are Carnot-Carathéodory sphere associated with the Car-
not-Carathéodorymetric, as they are the counterparts of the Euclidean sphere in the Eu-
clidean space Rn . However, Carnot-Carathéodory sphere are not isoperimetric [19, 20].

In 1983 Pansu [25] conjectured that, up to a left translation and a dilation, the
isoperimetric set is

Eisop = {(z,t) ∈ H
n : |t| < arccos |z|+ |z|

√
1−|z|2, |z| < 1}. (1.1)

The conjecture was made for dimension n = 1. This set is obtained by rotating a
Carnot-Carathéodory geodesic around the center of the group. Now the set Eisop is
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called Pansu sphere, bubble set or Heisenberg bubble. In H1 , Pansu’s conjecture is
proved assuming either the C2 regularity of the minimizer [27] or its convexity [23]. In
Hn with n � 1, the conjecture is proved assuming the axial symmetry of the minimizer
[17, 22] or assuming a suitable cylindrical structure [28]. About the isoperimetric prob-
lems and related celebrated geometric inequalities in Heisenberg groups, one can see
the book [2] or the works [3, 11, 18, 24] for details.

Recently, isoperimetric problems with density in sub-Riemannain manifolds have
been also studied. He and Zhao [12] proved a weighted isoperimetric-type inequality
for hypersurfaces in Carnot groups with smooth density. The weighted x -spherically
symmetric isoperimetric problem was studied in Grushin space with density |x|p in
[13]. And the weighted isoperimetric problem in Heisenberg group Hn with density
|x|p was solved in [15].

On the other hand, the quantitative isoperimetric inequality in the Euclidean space
and in Riemannian manifolds, which describes the stability of the isoperimetric in-
equality, has been object of intensive studies in recent years. The sharp quantitative
isoperimetric inequality in the Euclidean space Rn states that there exists a constant
C(n) > 0 depending only on the dimension n , such that for any Borel set F ⊂ Rn with
L n(F) = L n(B1) , the Lebesgue measure of a unit sphere B1 , one has the following
estimate for the difference of perimeters

P(F)−P(B1) � C(n) inf
x∈Rn

L n(F�(x+B1))2.

The related results, the techniques and the main ideas about this inequality have been
presented in the paper [10]. Several generalization have been recently obtained in Rie-
mannian manifolds with density, like the Gauss space [1, 5].

Recently, Franceschi, Leonardi and Monti [8] obtained quantitative isoperimetric
inequalities for the Pansu sphere Eisop in half-cylinders by the construction of sub-
calibrations. He and Zhao [14] also proved quantitative isoperimetric inequalities for
the isoperimetric set in Grushin space with density |x|p . Franceschi et al. [9] have
studied a family of spheres with constant mean curvature in the 3-dimensional Rie-
mannain Heisenberg group and also obtained quantitative isoperimetric inequalities for
these CMC spheres in half-cylinders.

The Korányimetric on the Heisenberg group Hn , which is equivalent to the Carnot-
Carathéodory distance, is defined by

dH(p,q) = ||q−1 ∗ p||H,∀p,q ∈ H
n

where the Korányi gauge || · ||H is given by

||p||H = (|z|4 + t2)
1
4 ,∀p = (z,t) ∈ H

n.

For any p = (z, t) ∈ Hn and R > 0, the Korányi sphere is defined by

Bp(R) = {q ∈ H
n : dH(p,q) < R}.

Let B = Bo(1) = {(z,t) : |z|4 + t2 < 1} be the Korányi unit sphere where o = (0, · · · ,0)
is the origin. By a left translation and a dilation, any Korányi sphere can be turned into
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the Korányi unit sphere. Obviously, the Korányi unit sphere ∂B = {(z, t) : |z|4 + t2 = 1}
is compact and of class C2 . It is also of class C3 . By a computation, we know that
the horizontal mean curvature of the Korányi unit sphere is given by HH = 2n+1

2n |z| ,
away from the characteristic set {(0,0,±1)} . The first variation formulas for area and
volume imply that the boundary of any C2 solution of the isoperimetric problem is a
compact hypersurface with constant mean curvature in sub-Riemannian sense, see [4]
and [26]. So the Korányi sphere are not isoperimetric in Hn .

In this paper, we endow the Heisenberg group with the density |z|−(2n+1)e
− α

|z|

where α > 0 is constant. With this density, the weighted horizontal mean curvature of
Korányi spheres ∂B is constant. This suggests the Korányi sphere perhaps is exactly

the weighted isoperimetric set in Heisenberg group with the density |z|−(2n+1)e
− α

|z| .
For any 0 � ε < 1, we define the half-cyclinder

Cε = {(z,t) ∈ H
n : |z| < 1 and t > tε},

where tε = f (1−ε) with f (r) =
√

1− r4 . Let Vφ (F) and PH,φ (F) be weighted volume
and weighted H -perimeter of a measurable set F ⊂ Hn , respectively. Their definitions
are seen in Section 2. We will prove a weighted quantitative isoperimetric inequality
for the Korányi sphere B with respect to compact perturbations in half-cylinders.

THEOREM 1.1. Let F be a measurable set in the Heisenberg group Hn with the

density |z|−(2n+1)e
− α

|z| (α > 0) , where F satisfies Vφ (F) = Vφ (B) .

(i) If F�B ⊂⊂C0 , then we have

PH,φ (F)−PH,φ (B) � αaα

3(2+
√

2)ω2
2n

Vφ (B�F)3

where ω2n is the Euclidean volume of the 2n-dimensional unit sphere and aα is
the minimum of the funtion r2(2n+1)e

2α
r on (0,1) .

(ii) If F�B ⊂⊂Cε with 0 < ε < 1 , then we have

PH,φ (F)−PH,φ (B) � αbα ,ε
√

1− (1− ε)4[
1+(1− ε)4 +

√
1+(1− ε)4

]
ω2n

Vφ (B�F)2

where ω2n is the Euclidean volume of the 2n-dimensional unit sphere and bα ,ε
is the minimum of the function r2n+1e

α
r on (0,1− ε) .

COROLLARY 1.2. Let F be a measurable set in the Heisenberg group Hn with

the density |z|−(2n+1)e
− α

|z| (α > 0) , where F satisfies Vφ (F) =Vφ (B) and F�B⊂Cε .
Then we have

PH,φ (F) � PH,φ (B).

This corollary states that the Korányi sphere are minimizers of the weighted H -
perimeter in the class of sets with the same weighted volume and with the symmetric
difference contained in half-cyclinders. In other words, we confirm that Korányi sphere
can be regarded as an isoperimetric set in weighted Heisenberg group H

n .
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2. Preliminaries

The (2n + 1)-dimensional Heisenberg group is the manifold Hn = Cn × R ∼=
R2n+1 , n ∈ N , endowed with the group product

(z,t)∗ (z′,t ′) = (z+ z′,t + t ′+2Imzz′),

where t, t ′ ∈ R , z = x+ iy,z′ = x′ + iy′ ∈ Cn with x,y,x′,y′ ∈ Rn and zz′ = ∑n
j=1 z jz′j .

The Lie algebra of the Heisenberg group is spanned by the following left-invariant
vector fields:

Xj =
∂

∂x j
+2y j

∂
∂ t

, Yj =
∂

∂y j
−2x j

∂
∂ t

, j = 1, · · · ,n; T =
∂
∂ t

.

The horizontal distribution at a point p ∈ Hn is defined by

Hp = span{Xi(p),Yi(p) : i = 1, · · · ,n}.

The horizontal distribution is nonintegrable. In fact there holds [Xi,Yi] = −4T 
= 0 for
any i = 1, · · · ,n . All other commutators vanish.

Let g = 〈·, ·〉 be the (left-invariant) Riemannian metric which makes the basis
{Xi,Yi,T : i = 1, · · · ,n} an orthornormal frame. The natural volume in Hn is the Haar
measure, which coincides with Lebesgue measure in R2n+1 . The horizontal gradient
∇H of a smooth function u is defined by ∇Hu = (X1u, · · · ,Xnu,Y1u, · · · ,Ynu) . Let Ω ⊂
Hn be an open set. The horizontal divergence of a vector field ϕ ∈ C1(Ω;R2n) is
defined by

divHϕ =
n

∑
i=1

(Xiϕi +Yiϕn+i).

The horizontal perimeter of a Lebesgue measurable set E ⊂ Hn in Ω is given by

PH(E;Ω) = sup
{∫

E
divHϕdzdt : ϕ ∈C1

c (Ω;R2n), ||ϕ ||∞ � 1
}
.

DEFINITION 2.1. Let the Heisenberg group Hn be endowed with a density eφ .
Then the weighted volume of a measurable set E ⊂ Hn is defined by

Vφ (E) =
∫

E
eφ dzdt

and the weighted H -perimeter of E in an open set Ω ⊂ Hn is defined by

PH,φ (E;Ω) = sup
{∫

E
(divH,φ ϕ)eφ dzdt : ϕ ∈C1

c (Ω;R2n), ||ϕ ||∞ � 1
}
, (2.1)

where divH,φ ϕ = e−φdivH(eφ ϕ) is called the weighted horizontal divergence of ϕ .
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If PH,φ (E;Ω) < ∞ , we say that E has finite weighted H -perimeter in Ω . Obvi-
ously, (2.1) can also be rewritten as

PH,φ (E;Ω) = sup
{∫

E
divH(eφ ϕ)dzdt : ϕ ∈C1

c (Ω;R2n), ||ϕ ||∞ � 1
}
. (2.2)

If PH,φ (E;Ω) < ∞ , by Proposition 2.3 [24] we have∫
E

divH,φ ϕdVφ = −
∫

Ω
〈ϕ ,vE〉dμE,φ , (2.3)

where vE is the measure theoretic inner horizontal normal of E , dVφ = eφ dzdt is the
weighted volume measure and dμE,φ = eφ dμE is called the weighted H -perimeter
measure where μE is H -perimeter measure. For any open set Ω ⊂ H2n+1 , we have
PH,φ (E;Ω) = μE,φ (Ω) . In the case of Ω = Hn , we set PH,φ (E) = PH,φ (E;Hn) .

Let Σ ⊂ Hn be a C2 regular hypersurface that can be locally given by the zero
set of a function u ∈ C1 . The characteristic locus Σ0 of Σ is defined as {p ∈ Σ :
|∇Hu(p)|= 0} . Then the horizontal mean curvature of Σ at the noncharacteristic point
(z,t) is given by

HΣ =
1
2n

divH
∇Hu(z,t)
|∇Hu(z,t)| . (2.4)

The definition depends on a choice of sign. We shall choose orientable embedded
hypersufaces such that HΣ � 0. A C2 regular hypersurface Σ∈Hn is called a horizontal
constant curvature surface if HΣ is constant along the noncharacteristic locus. For a set
E = {(z, t) ∈ Hn : u(z,t) > 0} , the inner unit horizontal normal in the formula (2.3) is
given on Σ = ∂E by the vector

vE = vΣ =
∇Hu(z,t)
|∇Hu(z,t)| .

Let the Heisenberg group Hn be endowed with a density eφ . The weighted hori-
zontal mean curvature of Σ is defined by

HΣ,φ = − 1
2n

divH,φ vΣ = − 1
2n

(divHvΣ + 〈vΣ,∇Hφ〉). (2.5)

By (2.4), (2.5) can also be written as

HΣ,φ = HΣ − 1
2n

〈vΣ,∇Hφ〉. (2.6)

REMARK 2.1. The definition (2.5) of the weighted horizontal mean curvature for-
mula can be obtained from the first variation formula for the weighted H -perimeter, see
[12, 15]. In fact, the first variation formula for the weighted H -perimeter of the set E
is given by

P′
H,φ (0) = −2n

∫
Σ
(divHvΣ + 〈vΣ,∇Hφ〉)〈U,v〉φdΣ−

∫
Σ
divΣ(〈U,v〉φv
H)dΣ,

where U is a C2 vector field with compact support on Σ = ∂E and associated with
one-parameter family of diffeomorphisms {ϕt}t∈R , v is a unit vector field normal to Σ
and dΣ is the Riemannian area element.
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Up to a left translation and a dilation, any Korányi sphere can be described as the
following

B = {(z,t) ∈ H
n : |t| <

√
1−|z|4, |z| < 1}.

From the equation of ∂B we deduce that the unit horizontal normal vectors of ∂B+

and ∂B− , respectively, are the following:

v∂B+ =
n

∑
i=1

[
(−xi|z|−

√
1−|z|4
|z| yi)Xi +(−yi|z|+

√
1−|z|4
|z| xi)Yi

]
,

v∂B− =
n

∑
i=1

[
(−xi|z|+

√
1−|z|4
|z| yi)Xi +(−yi|z|−

√
1−|z|4
|z| xi)Yi

]
.

Then it follows that

Xi

(
− xi|z|−

√
1−|z|4
|z| yi

)
= −|z|− x2

i

|z| +
2xiyi√
1−|z|4 ,

Yi

(
− yi|z|+

√
1−|z|4
|z| xi

)
= −|z|− y2

i

|z| −
2xiyi√
1−|z|4

and

Xi

(
− xi|z|+

√
1−|z|4
|z| yi

)
= −|z|− x2

i

|z| −
2xiyi√
1−|z|4 ,

Yi

(
− yi|z|−

√
1−|z|4
|z| xi

)
= −|z|− y2

i

|z| +
2xiyi√
1−|z|4 ,

respectively. So the horizontal mean curvature of ∂B is

H∂B = − 1
2n

divHv∂B =
2n+1

2n
|z|.

This shows the Korányi sphere is not the isoperimetric set in Heisenberg group Hn .

Now we endow the Heisenberg group Hn with density eφ = |z|−(2n+1)e
− α

|z|

(α > 0) . We find φ = − ln |z|2n+1− α
|z| and compute

∇Hφ =
n

∑
i=1

[−(2n+1)|z|+ α
|z|3 (xiXi + yiYi)

]
.

So the weighted horizontal mean curvature of ∂B is

H∂B,φ = H∂B −
1
2n

〈v∂B,∇Hφ〉 =
α
2n

.
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3. Proof of Theorem 1.1

In this section, we prove the weighted quantitative inequality for the Korányi
sphere by a sub-calibration argument. The proof of Theorem 1.1 is based on the fo-
liation of the half-cylinder Cε by a family of constant weighted horizontal mean curva-
ture surfaces with quantitative estimates on the mean curvature. We give the following
lemma first.

LEMMA 3.1. Let the Heisenberg group H
n be endowed with density

eφ = |z|−(2n+1)e
− α

|z| .

There exists a continuous function u :Cε →R with level sets Σε = {(z,t)∈Cε : u(z,t) =
s} , s ∈ R , such that:

(i) u ∈C1(Cε ∩B)∩C1(Cε \B) and ∇Hu
|∇Hu| is continuously defined on Cε \ {z = 0} ;

(ii) ∪s>1Σs = Cε ∩B and ∪s�1Σs = Cε \B;

(iii) Each Σs is a hypersurface of class C2 with constant weighted horizontal mean
curvature, and namely,

HΣs,φ =
α

2ns2 for s > 1

and
HΣs,φ =

α
2n

for s � 1;

(iv) For any point (z, f (|z|)− t) ∈ Σs with s > 1 , we have

1− 2n
α

HΣs,φ (z, f (|z|)− t) � 1

2+
√

2
t2 when ε = 0 (3.1)

and

1− 2n
α

HΣs,φ (z, f (|z|)− t) � 2
√

1− (1− ε)4

1+(1− ε)4 +
√

1+(1− ε)4
t when 0 < ε < 1.

(3.2)

Proof. The profile function of the set B is the function f : [0,1] → R

f (r) =
√

1− r4. (3.3)

Its first and second derivatives are

f ′(r) = − 2r3
√

1− r4
and f ′′(r) = −2r2(3−2r4)

(1− r4)
3
2

, 0 � r < 1. (3.4)
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We define the function g : [0,1) → R

g(r) = 2 f (r)− r f ′(r) =
2√

1− r4
. (3.5)

Its derivative is

g′(r) =
4r3

(1− r4)
3
2

� 0. (3.6)

Now we construct a foliation of Cε . In Cε \B , the leaves Σs of the foliation are
vertical translations of the top part of the boundary ∂B . In Cε ∩B , the leaves Σs are
constructed as follows: the surface ∂B is dilated by a factor larger than 1 where the
dilation is given by δλ (z,t) = (λ z,λ 2t) (∀λ > 0) , and then it is translated downwards
in such a way that the surface {t = tε = f (1− ε)} is also the leaf.

We construct a function u on the set Cε \B as

u(z,t) = f (|z|)− t +1, (z,t) ∈Cε \B. (3.7)

Then u satisfies u(z,t) � 1 for t � f (|z|) and u(z,t) = 1 for t = f (|z|) . Let Σs =
{(z,t) ∈Cε \B : u(z, t) = s} . Then we have s � 1 and Σ1 = ∂B . From (3.7), we know
u ∈C1(Cε \B) and ∪s�1Σs = Cε \B .

In the following we will define the function u on the set

Dε = Cε ∩B = {(z,t) ∈ B : |z| < 1− ε, tε < t < f (|z|)}.
Setting r = |z| and rε = 1− ε . Let Fε : Dε × (1,∞) → R be a function

Fε(z,t,s) = s2
[
f
( r

s

)
− f

(rε
s

)]
+ tε − t. (3.8)

For any (z, t) ∈ Dε we have

lim
s→1+

Fε(z,t,s) = f (r)− f (rε )+ tε − t = f (r)− t > 0,

lim
s→∞

Fε(z,t,s) = lim
s→∞

[ f ( r
s )− f ( rε

s )
( 1

s )
2

+ tε − t
]

= lim
l→0+

r f ′(rl)− rε f ′(rε l)
2l

+(tε − t)

= lim
l→0+

r2 f ′′(rl)− r2
ε f ′′(rε l)

2
+(tε − t)

= tε − t < 0.

On the other hand, using (3.5) and (3.8) we have

∂sFε = s
[
g
(r

s

)
−g

(rε
s

)]
< 0. (3.9)

So there exists a unique s > 1 such that Fε(z,t,s) = 0 for any (z,t)∈Dε . Consequently,
we can define a function u : Dε → R,s = u(z,t) which is determined by the equation
Fε(z,t,s) = 0.



INEQUALITY FOR KORÁNYI SPHERE IN HEISENBERG GROUP Hn 1501

Obviously we have u ∈ C1(Cε ∩B) and Cε ∩B = ∪s>1Σs , where Σs =
{
(z,t) ∈

Cε ∩B : s = u(z, t) is determined by the equation Fε(z,t,s) = 0
}

.
By (3.8), we find

∂xiFε(z, t,s) =
sxi

r
f ′

( r
s

)
, ∂yiFε(z,t,s) =

syi

r
f ′

( r
s

)
, i = 1, · · · ,n. (3.10)

By the implicit function theorem, the derivatives of u can be computed from the partial
derivatives of Fε . Namely using (3.4), (3.9) and (3.10), we obtain

∂xiu(z,t) = −∂xiFε

∂sFε
=

2r2xi

s
√

s4 − r4
[
g( r

s )−g( rε
s )

] ,

∂yiu(z,t) = −∂yiFε

∂sFε
=

2r2yi

s
√

s4 − r4
[
g( r

s )−g( rε
s )

] ,

∂tu(z,t) = − ∂tFε
∂sFε

=
1

s[g( r
s )−g( rε

s )]
. (3.11)

Then we have

Xiu = (∂xi +2yi∂t)u =
2r2xi +2yi

√
s4 − r4

s
√

s4− r4
[
g( r

s )−g( rε
s )

] ,

Yiu = (∂yi −2xi∂t)u =
2r2yi −2xi

√
s4 − r4

s
√

s4 − r4
[
g( r

s )−g( rε
s )

] .

So the squared length of the horizontal gradient of u on Dε is

|∇Hu|2 =
n

∑
i=1

(Xiu)2 +(Yiu)2 =
4r2s2

(s4 − r4)
[
g( r

s )−g( rε
s )

]2 .

Note that |∇Hu(z, t)| = 0 if and only if z = 0. So for any (z, t) ∈ Dε with z 
= 0, we
have

Xiu
|∇Hu| = − r2xi +

√
s4− r4yi

s2r
,

Yiu
|∇Hu| = − r2yi −

√
s4 − r4xi

s2r
, i = 1, · · · ,n. (3.12)

If (z, t) ∈Dε tends to (z,t) ∈ ∂B with z 
= 0 and t > 0, then s = u(z, t) converges
to 1. From (3.12), we have

lim
(z,t)→(z,t)

∇Hu(z,t)
|∇Hu(z,t)| =

n

∑
i=1

(−r2xi−
√

1− r4yi

r
Xi +

−r2yi +
√

1− r4xi

r
Yi

)

=
∇Hu(z,t)
|∇Hu(z,t)| ,

where the last equality is computed by the definition (3.7) of u . The above equality
shows that ∇Hu

|∇Hu| is continuous on Cε \ {z = 0} . We complete the proof of claims (i)
and (ii).
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In the case of eφ = |z|−(2n+1)e
− α

|z| , we get φ = −(2n+1) ln|z|− α
|z| and

∇Hφ =
n

∑
i=1

−(2n+1)r+ α
r3 (xiXi + yiYi), z 
= 0.

From (3.7), we know that the inner unit horizontal normal of Σs with s � 1 is

vΣs =
n

∑
i=1

(
− r2xi +

√
1− r4yi

r
Xi − r2yi −

√
1− r4xi

r
Yi

)
.

So the weighted horizontal mean curvature HΣs,φ of Σs with s � 1 is

HΣs,φ =
1
2n

(−divHvΣs −〈vΣs ,∇α φ〉) =
α
2n

.

From (3.12) we compute the inner unit horizontal normal of Σs with s > 1 as

vΣs =
n

∑
i=1

(
− r2xi +

√
s4− r4yi

sr
Xi − r2yi −

√
s4− r4xi

sr
Yi

)
.

So the weighted horizontal mean curvature HΣs,φ of Σs with s > 1 is

HΣs,φ =
α

2ns2 .

Thus we prove claim (iii). At last we prove claim (iv).
Fixing a point z with |z|< 1−ε and for 0 � t < f (|z|)− tε , we define the function

hz(t) = u(z, f (|z|)− t) = s =
1√

2n
α HΣs,φ

, (3.13)

where s � 1 is uniquely determined by (z, f (|z|)− t) ∈ Σs . Then the function t → hz(t)
is increasing and hz(0) = u(z, f (|z|) = 1.

From (3.11), for all 0 � t < f (|z|)− tε , we know

h′z(t) = −∂t u(z, f (|z|)− t) =
1

hz(t)
[
g( rε

hz(t)
)−g( r

hz(t)
)
] .

Since g is strictly increasing, hz(t) satisfies

h′z(t) � 1

hz(t)
[
g( rε

hz(t)
)−g(0)

] =
1

hz(t)
[
g( rε

hz(t)
)−2

] .

This is equivalent to

2hz(t)h′z(t)
[ hz(t)2√

hz(t)4− r4
ε
−1

]
� 1. (3.14)
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Integrating both sides of (3.14) on the interval [0,t] , we obtain√
hz(t)4− r4

ε −
√

1− r4
ε −hz(t)2 +1 � t.

It follows that

hz(t)2 �
√

[t +
√

1− r4
ε +hz(t)2−1]2 + r4

ε

�
√

t2 +1+2t
√

1− r4
ε .

(3.15)

From (3.13) and (3.15), we have

1− 2n
α

HΣs,φ (z, f (|z|)− t) = 1− 1
hz(t)2

� 1− 1√
t2 +1+2t

√
1− r4

ε

.
(3.16)

When ε = 0, we have rε = 1. So (3.16) turns into

1− 2n
α

HΣs,φ (z, f (|z|)− t) � 1− 1√
t2 +1

=
t2√

t2 +1(
√

t2 +1+1)

� t2

2+
√

2
.

When 0 < ε < 1, we have rε = 1− ε and 0 � t < 1−√
1− r4

ε . So (3.16) turns into

1− 2n
α

HΣs,φ (z, f (|z|)− t) � t(t +2
√

1− r4
ε)√

t2 +1+2t
√

1− r4
ε(

√
t2 +1+2t

√
1− r4

ε +1)

� 2t
√

1− r4
ε√

t2 +1+2t
√

1− r4
ε(

√
t2 +1+2t

√
1− r4

ε +1)

� 2
√

1− r4
ε√

1+ r4
ε(

√
1+ r4

ε +1)
t

=
2
√

1− (1− ε)4

1+(1− ε)4 +
√

1+(1− ε)4
t. �

Proof of Theorem 1.1. Let u : Cε → R be the function given by Lemma 3.1 and
let Σs = {(x,y) ∈Cε : u(z,t) = s} be the leaves of the foliation, s ∈ R . We define the
vector field X : Cε \ {z = 0}→ Hn by

X = − ∇Hu
|∇Hu| .

Then X satisfies the following properties:
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i) |X | = 1;

ii) For (z, t) ∈ ∂B∩Cε , we have X(z,t) = −vB(z,t) , where vB(z, t) is the unit inner
horizontal horizontal normal to ∂B ;

iii) For any point (z,t) ∈ Σs with s � 1, we have

divH,φ X(z,t) = α. (3.17)

For any point (z,t) ∈ Σs with s > 1, we have

divH,φ X(z,t) =
α
s2 < α. (3.18)

Let F ⊂ H2n+1 be a set with the finite weighted H -perimeter such that Vφ (F) =
Vφ (B) and F�B ⊂⊂Cε . By Theorem 2.2.2 in [7], without loss of generality we can
assume that the boundary ∂F of F is C∞ .

For δ > 0, let Bδ = {(z,t) ∈ B : |z| > δ} . By (3.18) and the generalized Gauss-
Green formula (2.3), we have

Vφ (Bδ \F) =
∫

Bδ \F
eφdzdt

�
∫

Bδ \F
divH,φ X

α
eφ dzdt

=
1
α

{∫
∂F∩Bδ

〈X ,vF〉dμF,φ −
∫

∂Bδ \F
〈X ,vBδ 〉dμBδ ,φ

}
.

Letting δ → 0+ and using the Cauchy-Schwarz inequality, we obtain

Vφ (B\F) =
∫

B\F
eφ dzdt

�
∫

B\F
divH,φ X

α
eφ dzdt

=
1
α

{∫
∂F∩B

〈X ,vF〉dμF,φ −
∫

∂B\F
〈X ,vB〉dμB,φ

}

� 1
α

{∫
∂B\F

dμB,φ −
∫

∂F∩B
dμF,φ

}

=
1
α

{
PH,φ (B;Cε \F)−PH,φ(F ;B)

}
.

(3.19)

By a similar computation, we also have

Vφ (F \B) =
∫

F\B
eφ dzdt

=
∫

F\B
divH,φ X

α
eφ dzdt
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=
1
α

{
−

∫
∂F\B

〈X ,vF〉dμF,φ +
∫

∂B∩F
〈X ,vB〉dμB,φ

}

� 1
α

{∫
∂F\B

dμF,φ −
∫

∂B∩F
dμB,φ

}

=
1
α

{
PH,φ (F ;Cε \B)−PH,φ(B;F)

}
. (3.20)

On the other hand , we have
∫

B\F
divH,φ X

α
eφdzdt =

∫
B\F

[
1+

(divH,φ X

α
−1

)]
eφ dzdt

=Vφ (B\F)−
∫
B\F

(
1− divH,φ X

α

)
eφ dzdt.

(3.21)

From (3.19), (3.20) and (3.21), we obtain

1
α

{
PH,φ (B;Cε \F)−PH,φ(F ;B)

}

�
∫

B\F
divH,φ X

α
eφ dzdt

=Vφ (B\F)−
∫
B\F

(
1− divH,φ X

α

)
eφ dzdt

=Vφ (F \B)−
∫
B\F

(
1− divH,φ X

α

)
eφ dzdt

� 1
α

{
PH,φ (F ;Cε \B)−PH,φ(B;F)

}−
∫
B\F

(
1− divH,φ X

α

)
eφ dzdt.

This is equivalent to

PH,φ (F)−PH,φ (B) � α
∫

B\F

(
1− divH,φ X

α

)
eφ dzdt. (3.22)

For any z with |z|< 1−ε , we define the vertical sections Bz = {t : (z, t) ∈ B} and
Fz = {t : (z, t) ∈ F} . By Fubini theorem, we have

∫
B\F

(
1− divH,φ X

α

)
eφ dzdt =

∫
{|z|<1−ε}

∫
Bz\Fz

(
1− divH,φ X

α

)
|z|−(2n+1)e

− α
|z| dtdz.

Let m(z) = L 1(Bz \ Fz) , where L 1 denotes the 1-dimensional Lebesgue measure,
then we obtain∫

B\F

(
1− divH,φ X

α

)
|z|−(2n+1)e

− α
|z| dzdt

=
∫
{|z|<1−ε}

∫ f (|z|)

f (|z|)−m(z)

(
1− divH,φ X

α

)
dt|z|−(2n+1)e

− α
|z| dz

=
∫
{|z|<1−ε}

∫ m(z)

0

(
1− 1

hz(t)2

)
dt|z|−(2n+1)e

− α
|z| dz,

(3.23)
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where hz(t) = u(z, f (|z|)− t) is the function introduced in (3.13).
So from (3.22) and (3.23) we have

PH,φ (F)−PH,φ (B) � α
∫
{|z|<1−ε}

∫ m(z)

0

(
1− 1

hz(t)2

)
dt|z|−(2n+1)e

− α
|z| dz. (3.24)

When ε = 0, by (3.1), (3.24) and Hölder inequality, we have

PH,φ (F)−PH,φ(B)

� α
∫
{|z|<1}

∫ m(z)

0

1

2+
√

2
t2dt|z|−(2n+1)e

− α
|z| dz

=
α

3(2+
√

2)

∫
{|z|<1}

m(z)3|z|−(2n+1)e
− α

|z| dz

� αaα

3(2+
√

2)

∫
{|z|<1}

(m(z)|z|−(2n+1)e
− α

|z| )3dz

� αaα

3(2+
√

2)ω2
2n

(∫
{|z|<1}

m(z)|z|−(2n+1)e
− α

|z| dz
)3

,

=
αaα

3(2+
√

2)ω2
2n

Vφ (B�F)3

where ω2n is the Euclidean volume of the 2n -dimensional unit sphere and aα is the

minimum of |z|2(2n+1)e
2α
|z| on (0,1) . In fact, when α � 2n+ 1, we have aα = e2α ;

when α < 2n+1, we have aα = ( αe
2n+1)2(2n+1) .

When 0 < ε < 1, by (3.2), (3.24) and Hölder inequality, we have

PH,φ (F)−PH,φ (B)

� α
∫
{|z|<1−ε}

∫ m(z)

0

2
√

1− (1− ε)4

1+(1− ε)4 +
√

1+(1− ε)4
tdt|z|−(2n+1)e

− α
|z| dz

=
α

√
1− (1− ε)4

1+(1− ε)4 +
√

1+(1− ε)4

∫
{|z|<1−ε}

m(z)2|z|−(2n+1)e
− α

|z| dz

� αbα ,ε
√

1− (1− ε)4

1+(1− ε)4 +
√

1+(1− ε)4

∫
{|z|<1−ε}

(m(z)|z|−(2n+1)e
− α

|z| )2dz

� αbα ,ε
√

1− (1− ε)4[
1+(1− ε)4 +

√
1+(1− ε)4

]
ω2n

(∫
{|z|<1−ε}

m(z)|z|−(2n+1)e
− α

|z| )dz
)2

=
αbα ,ε

√
1− (1− ε)4[

1+(1− ε)4 +
√

1+(1− ε)4
]
ω2n

Vφ (B�F)2,

where bα ,ε is the minimum of |z|2n+1e
α
|z| on (0,1− ε) . In fact, when α � (2n +

1)(1−ε) , we have bα ,ε = (1−ε)2n+1e
α

1−ε ; when α < (2n+1)(1−ε) , we have bα ,ε =
( αe

2n+1)2n+1 . �
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