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A WEIGHTED QUANTITATIVE ISOPERIMETRIC INEQUALITY
FOR KORANYI SPHERE IN HEISENBERG GROUP H"

GUOQING HE AND PEIBIAO ZHAO*

(Communicated by M. Krni¢)

Abstract. 1t is well known that the Kordnyi sphere w.r.t. the Kordnyi distance is not an isoperi-
metric set in Heisenbeg group H". In this paper, we investigate Kordnyi sphere in a Heisenberg

group associated with a density \z\’(2"+l)e7% (o0 > 0), and derive a weighted isoperimet-
ric inequality and a weighted quantitative isoperimetric inequality for Kordnyi spheres in half-
cylinders. This note also shows that the Kordnyi sphere is the weighted isoperimetric set in the
weighted Heisenberg group H".

1. Introduction

The study of isoperimetric problems in Carnot-Carathéodory spaces has been an
active field over the past few decades. But even in Carnot groups, there is very few
known about the optimal constant in the isoperimetric inequality except for the fact
that isoperimetric sets exist and have at least some very weak regularity properties [16].
With the only exception of the Grushin plane [21], isoperimetric sets have been only
partially characterized in the Sub-Riemannian Heisenberg group H" and are not known
at all in more general Carnot groups.

The isoperimetric problem in the Heisenberg group consists in minimizing H-
perimeter of sets with a given fixed volume. One could expect that the natural isoperi-
metric candidates sets in H" are Carnot-Carathéodory sphere associated with the Car-
not-Carathéodory metric, as they are the counterparts of the Euclidean sphere in the Eu-
clidean space R". However, Carnot-Carathéodory sphere are not isoperimetric [19, 20].

In 1983 Pansu [25] conjectured that, up to a left translation and a dilation, the
isoperimetric set is

Eisop = {(z,1) € H" : || < arccos|z| + |z]y/1 — |z|?, |z < 1}. (1.1

The conjecture was made for dimension n = 1. This set is obtained by rotating a
Carnot-Carathéodory geodesic around the center of the group. Now the set Ejsop is
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called Pansu sphere, bubble set or Heisenberg bubble. In H!, Pansu’s conjecture is
proved assuming either the C? regularity of the minimizer [27] or its convexity [23]. In
H" with n > 1, the conjecture is proved assuming the axial symmetry of the minimizer
[17,22] or assuming a suitable cylindrical structure [28]. About the isoperimetric prob-
lems and related celebrated geometric inequalities in Heisenberg groups, one can see
the book [2] or the works [3, 11, 18, 24] for details.

Recently, isoperimetric problems with density in sub-Riemannain manifolds have
been also studied. He and Zhao [12] proved a weighted isoperimetric-type inequality
for hypersurfaces in Carnot groups with smooth density. The weighted x-spherically
symmetric isoperimetric problem was studied in Grushin space with density |x|? in
[13]. And the weighted isoperimetric problem in Heisenberg group H" with density
|x|? was solved in [15].

On the other hand, the quantitative isoperimetric inequality in the Euclidean space
and in Riemannian manifolds, which describes the stability of the isoperimetric in-
equality, has been object of intensive studies in recent years. The sharp quantitative
isoperimetric inequality in the Euclidean space R" states that there exists a constant
C(n) > 0 depending only on the dimension 7, such that for any Borel set F C R" with
LMF) = £"(B)), the Lebesgue measure of a unit sphere B, one has the following
estimate for the difference of perimeters

P(F)—P(By) = C(n) iG%D%"(FA(x—i-Bl))z.
X!
The related results, the techniques and the main ideas about this inequality have been
presented in the paper [10]. Several generalization have been recently obtained in Rie-
mannian manifolds with density, like the Gauss space [1, 5].

Recently, Franceschi, Leonardi and Monti [8] obtained quantitative isoperimetric
inequalities for the Pansu sphere Ejs, in half-cylinders by the construction of sub-
calibrations. He and Zhao [14] also proved quantitative isoperimetric inequalities for
the isoperimetric set in Grushin space with density |x|”. Franceschi et al. [9] have
studied a family of spheres with constant mean curvature in the 3-dimensional Rie-
mannain Heisenberg group and also obtained quantitative isoperimetric inequalities for
these CMC spheres in half-cylinders.

The Koranyi metric on the Heisenberg group H", which is equivalent to the Carnot-
Carathéodory distance, is defined by

1

du(p,q) = llqg *pllu,Yp,q € H"

where the Kordnyi gauge || - || is given by
Iplli = (|2* +12) 1, ¥p = (1) € H".
For any p = (z,#) € H" and R > 0, the Korényi sphere is defined by
By(R)={q € H" : du(p,q) <R}.

Let B=B,(1) = {(z,¢) : |z|* 41> < 1} be the Koranyi unit sphere where 0 = (0, ---,0)
is the origin. By a left translation and a dilation, any Kordnyi sphere can be turned into
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the Koranyi unit sphere. Obviously, the Kordnyi unit sphere B = {(z,¢) : |z|* + 1> =1}
is compact and of class C%. It is also of class C*>. By a computation, we know that
the horizontal mean curvature of the Koranyi unit sphere is given by 73 = 2’5—;1 4B
away from the characteristic set {(0,0,£1)}. The first variation formulas for area and
volume imply that the boundary of any C? solution of the isoperimetric problem is a
compact hypersurface with constant mean curvature in sub-Riemannian sense, see [4]

and [26]. So the Kordnyi sphere are not isoperimetric in H".

_o

In this paper, we endow the Heisenberg group with the density \z|‘(2"+1)e I
where o > 0 is constant. With this density, the weighted horizontal mean curvature of
Kordanyi spheres dB is constant. This suggests the Koranyi sphere perhaps is exactly

o
the weighted isoperimetric set in Heisenberg group with the density |z\’(2”+1)e E

For any 0 < € < 1, we define the half-cyclinder
Ce={(z,t) eH": |z| <1 and 1> 1},

where 7, = f(1—¢) with f(r) =+ 1—r*. Let Vy(F) and Py 4(F) be weighted volume
and weighted H -perimeter of a measurable set F C H", respectively. Their definitions
are seen in Section 2. We will prove a weighted quantitative isoperimetric inequality
for the Kordnyi sphere B with respect to compact perturbations in half-cylinders.

THEOREM 1.1. Let F be a measurable set in the Heisenberg group H" with the
density |z| 72" Ve E (a0 > 0), where F satisfies Vy(F) = Vy(B).
(i) If FAB CC Cy, then we have

Oldg 3
Py o(F)—Pys(B) > ——% _V,(BAF
H.6(F) — Pr o (B) s o( )

where @y, is the Euclidean volume of the 2n-dimensional unit sphere and ay, is
the minimum of the funtion r>2"1e  on (0,1).

(ii) If FAB CC Cg with 0 < € < 1, then we have

Obgey/1—(1—¢)* Vs (BAF)?

[1+(1—g)*+ 1+ (1—€) o

Py (F) —Puy(B) >

where @y, is the Euclidean volume of the 2n-dimensional unit sphere and by ¢
is the minimum of the function r*"*'e¥ on (0,1 —¢).

COROLLARY 1.2. Let F be a measurable set in the Heisenberg group H" with
the density |z\_(2”+1)ef‘%‘ (0t >0), where F satisfies Vy(F) =Vy(B) and FAB C Ce.
Then we have

Pii(F) = Pr o (B).

This corollary states that the Kordnyi sphere are minimizers of the weighted H -
perimeter in the class of sets with the same weighted volume and with the symmetric
difference contained in half-cyclinders. In other words, we confirm that Kordnyi sphere
can be regarded as an isoperimetric set in weighted Heisenberg group H".
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2. Preliminaries

The (2n+ 1)-dimensional Heisenberg group is the manifold H" = C" x R
R>"*1 n € N, endowed with the group product

(2,0) % (Z,1') = (z+ 251+ + 20,20,

where 1,1/ €R, z=x+1iy,7 =x +iy € C" with x,y,x,y € R" and 77 = 2?2121‘25-
The Lie algebra of the Heisenberg group is spanned by the following left-invariant
vector fields:

o o 0 )

The horizontal distribution at a point p € H" is defined by

HP = Span{Xl(p)le(p) A 1,"',71}.

The horizontal distribution is nonintegrable. In fact there holds [X;,Y;] = —4T # 0 for
any i = 1,---,n. All other commutators vanish.

Let g = (-,-) be the (left-invariant) Riemannian metric which makes the basis
{Xi,Y;,T :i=1,---,n} an orthornormal frame. The natural volume in H" is the Haar

measure, which coincides with Lebesgue measure in R2"+1  The horizontal gradient
Vg of a smooth function u is defined by Vyu = (Xju, -+, Xuu,Y1u, -, Yyu). Let Q C
H" be an open set. The horizontal divergence of a vector field ¢ € C'(Q;R?") is
defined by

divi @ = Y (Xi@i + Yigu1i).
i=1

The horizontal perimeter of a Lebesgue measurable set £ C H" in Q is given by

Pul(E;Q) = sup{/EdiVH(pdzdt L@ € CHQR™), ||o|l. < 1}.

DEFINITION 2.1. Let the Heisenberg group H" be endowed with a density e?.
Then the weighted volume of a measurable set E C H" is defined by

Vo (E) = / ¥ dzdt
E
and the weighted H -perimeter of E in an open set Q C H" is defined by
Puo(E:Q) = sup{/E(divM(p)e‘i’dzdt e CHQRM Jlpll-<1}, 1)

where divy @ = e ?divy (e @) is called the weighted horizontal divergence of ¢.
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If Py y(E;Q) < oo, we say that E has finite weighted H -perimeter in Q. Obvi-
ously, (2.1) can also be rewritten as

Pur o (E:Q) = sup{/EdivH(e%)dzdz Lo eCHQRM) |loll.<1}. (22

If Py (E;Q) < oo, by Proposition 2.3 [24] we have

/E divy @V = — /Q (@, vE)diig o, 2.3)

where vg is the measure theoretic inner horizontal normal of E, dVy = e%dzdt is the
weighted volume measure and dugy = e®dug is called the weighted H -perimeter
measure where g is H -perimeter measure. For any open set Q C H***!, we have
Pr o (E;Q) = g ¢(Q). In the case of Q =H", we set Py ¢(E) = Py ¢ (E;H").

Let X C H" be a C? regular hypersurface that can be locally given by the zero
set of a function u € C'. The characteristic locus £y of X is defined as {p € X :
|[Viu(p)| =0}. Then the horizontal mean curvature of X at the noncharacteristic point
(z,1) is given by

L .. Vyu(zi)
B = o WV S o)
The definition depends on a choice of sign. We shall choose orientable embedded
hypersufaces such that Hs > 0. A C? regular hypersurface ¥ € H" is called a horizontal
constant curvature surface if Hy is constant along the noncharacteristic locus. For a set
E ={(z,t) € H" : u(z,t) > 0}, the inner unit horizontal normal in the formula (2.3) is
given on X = JE by the vector

2.4)

VHM(Z7I)
Vau(z,t)|

Let the Heisenberg group H" be endowed with a density e?. The weighted hori-
zontal mean curvature of X is defined by

VE = Vy =

I . |
Hsy = —ﬂle[-Lq) vy = —%(dIVHVz + <V2,VH(Z)>). (2.5)

By (2.4), (2.5) can also be written as
1
H27¢ ZHz— %(vz,VH(z)). (2.6)

REMARK 2.1. The definition (2.5) of the weighted horizontal mean curvature for-
mula can be obtained from the first variation formula for the weighted H -perimeter, see
[12, 15]. In fact, the first variation formula for the weighted H -perimeter of the set E
is given by

P} (0) = —2n /Z (divavs + (vs, Vi o)) (U,v) 6dE — /)S divs((U,v)ov]))dE,

where U is a C? vector field with compact support on X = JE and associated with
one-parameter family of diffeomorphisms {¢; };cr, v is a unit vector field normal to £
and dX is the Riemannian area element.
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Up to a left translation and a dilation, any Kordnyi sphere can be described as the
following

B={(z,1) eH": |t| <y/1—|z* ]z| < 1}.

From the equation of dB we deduce that the unit horizontal normal vectors of dB™
and dB~, respectively, are the following:

n _ -4 — 7|4
vops = 3. [l — B VB o),

i=1 |2 |z|

von- = 3 (=t + LTy (e - ],

= 12

yi)Xi + (—yilz| +

Then it follows that

1—| x 2xiyi
X'(—X'\ZI— ) =—l2d| -+ ———
A ES 2l V1=
V1= Vi 2x;y;
—yile]+ ) = el - -
( 2] l2l  /1—|z*
and
VI1=z* x 2x;yi
X, (=l + =) = el - - =
A EI d /T—

i~y - Y — It x) = Yy P
AR T 2l VT

respectively. So the horizontal mean curvature of dB is

2n+1
2n

L.
Hyp = ——divygvgp = 2.
2n
This shows the Kordnyi sphere is not the isoperimetric set in Heisenberg group H".

Now we endow the Heisenberg group H" with density ¢ = \z|_(2"+1)67%

(00 >0). We find ¢ = —In |z — \%I and compute

2n+1)|z|+ «
Vi = E[T( xiXi+yiY) |-

So the weighted horizontal mean curvature of dB is

o

1
Hyp o = Hyp— 7= (vop, Vu ) = o

2n
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3. Proof of Theorem 1.1

In this section, we prove the weighted quantitative inequality for the Koranyi
sphere by a sub-calibration argument. The proof of Theorem 1.1 is based on the fo-
liation of the half-cylinder C by a family of constant weighted horizontal mean curva-
ture surfaces with quantitative estimates on the mean curvature. We give the following
lemma first.

LEMMA 3.1. Let the Heisenberg group H" be endowed with density
o0 — ‘Z|—(2n+1)e*%.

There exists a continuous function u : Ce — R with level sets e = {(z,1) € Ce¢ 1 u(z,t) =
s}, s € R, such that:

(i) uecCY(CeNB)NC(Ce\B) and ‘gzz‘ is continuously defined on C¢ \ {z=0};
(ii) Us=1Zs = CeNB and Uy 1%y = Ce \ By

(iii) Each X is a hypersurface of class C* with constant weighted horizontal mean
curvature, and namely,

o
HZS7¢ = w for s>1

and o
Hs o = o for s<1;
(iv) For any point (z, f(|z]) —t) € Zs with s > 1, we have

1
+v2

2
l—gnth(p(Z,f(\ZD—t)) S5t when £=0 3.1)

and

21— (1—¢)*
I+(1—g)*+/14+(1—g)*

t when 0 <e<1.

2
1— Enst,tﬁ(Z»f(\ZD —t) >
3.2)

Proof. The profile function of the set B is the function f: [0,1] = R

fr)=v1-rt (3.3)

Its first and second derivatives are

, 273 " 2r2(3 —2r%)
= d =2 =/ 0< 1. 3.4
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We define the function g: [0,1) — R

) =240 =11 (1) = = (5)
Its derivative is
'(r) = _4 0 (3.6)
§ (1—m)3 " '

Now we construct a foliation of C¢. In C¢ \ B, the leaves X of the foliation are
vertical translations of the top part of the boundary dB. In C, N B, the leaves X; are
constructed as follows: the surface dB is dilated by a factor larger than 1 where the
dilation is given by 8, (z,¢) = (Az,A?t) (VA > 0), and then it is translated downwards
in such a way that the surface {r =t = f(1 —¢€)} is also the leaf.

We construct a function u on the set C; \ B as

u(z,t) = f(|z]) =t +1, (z,1) €Ce\B. (3.7)

Then u satisfies u(z,t) <1 for t > f(|z|) and u(z,t) =1 for t = f(|z]). Let X, =
{(z,t) € C¢\ B: u(z,t) = s}. Then we have s < 1 and X; = dB. From (3.7), we know
u € C'(Ce \ B) and Us< I, = C¢ \ B.

In the following we will define the function u on the set

De=CeNB={(z,1) €B:|z| <1—¢e,1. <t < f(2])}.

Setting r = |z| and re = 1 — €. Let F; : D¢ X (1,00) — R be a function
Fe(zt,s) = 2 {f(f> —f(rf)} e —1. (3.8)

N

For any (z,¢) € D¢ we have

lim Fe(z,t,s) = f(r) = f(re) +te —t = f(r) =1 >0,

s—1t
. S5 - )
lim Fo(ats) = Jim [ e
o () —ref(rel)
= hm 2 (e =)
2 ¢l _ 2
_ hm I"f (rl) r{-:f (r£l)+(t£_t)
[—07F 2
=te—1<O.
On the other hand, using (3.5) and (3.8) we have
_ ™ _ (e
aSFg_s[g<S) g(s>}<0. (3.9)

So there exists a unique s > 1 such that F¢(z,7,s) =0 forany (z,¢) € D.. Consequently,
we can define a function u : D — R, s = u(z,#) which is determined by the equation
Fe(z,1,5) =0.
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Obviously we have u € C'(C¢NB) and C¢ NB = Uy~ %, where I, = {(z,1) €
CeNB:s=u(zt) is determined by the equation Fg(z,?,s) O}
By (3.8), we find

r

dFelz,t,5) = Sf’f(;), y Felz,1,5) = y’f(s), i=1,-.n.  (3.10)

By the implicit function theorem, the derivatives of u# can be computed from the partial
derivatives of Fy. Namely using (3.4), (3.9) and (3.10), we obtain

Oy, Fe 2r2x;
3)6' "[ = = s
M) O T A A e
oy, F; 2r2y;
du(z,t) = 25 = : :
 OF 1
8[M(Z,t) = _aSFS = m (311)
Then we have 2P+ 2/

Xiu = (0, +2yi0 )u = ; s4—r4[g(f,) —g(’—?)] ;
"y 2r2yi—2xi\/m
sVs = g(5) —g(%)]

N

Yiu = (dy, —2xi9;)

So the squared length of the horizontal gradient of u on D; is

\Vyul* = y (Xiu)? + (Yiu)? = .
" ,-:21 (s* = ) [g(5) —g(2))?

Note that |Vgu(z,7)| = 0 if and only if z =0. So for any (z,7) € D, with z #0, we
have
Xu r2xi + Vst —rty; Yu r2yi — Vst —rix;

|Vau| 52 2

i=1,--,n. (3.12)

r " |Vgu| s2r

If (z,t) € D¢ tends to (Z,7) € dB with 7#0 and 7 > 0, then s = u(z,7) converges
to 1. From (3.12), we have

L —r2%; — — V. — 2_. _ -
hm VL():Z( rxi— V1 ’Alei+ ryi+vV1 r4x,Yi>
(z,0)—(Z,7) ‘VHL{( l‘)‘ = r r
_ Vuu(zi)
\Viu(z,1)|’

where the last equality is computed by the definition (3.7) of u#. The above equality
shows that gﬁ is continuous on C; \ {z = 0}. We complete the proof of claims (i)
and (ii).
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In the case of ¢? = |z|~ "tV 1, we get ¢ = —(2n+1)In|z| — % and

2n+1)r+a
Vuo = Z—( iXi +yi¥i), z#0.

From (3.7), we know that the inner unit horizontal normal of X5 with s < 1 is

d < r2x,-+\/1—r4iX rzyi—\/l—rAxiY>
- i— i)
.

VZSZE

i=1 r

So the weighted horizontal mean curvature Hy, ¢ of X, with s <1 is

o

1 .
Hs, ¢ 25(—d1VHVzX—<VzH ad)) = "

From (3.12) we compute the inner unit horizontal normal of X with s > 1 as

- rPxi+ Vst —rt ix rzyi—\/s4—r4xiY
V= Z (_ sr o sr i>'

i=1

So the weighted horizontal mean curvature Hy, 4 of X, with s > 1 is

o

s = 2ns?’

Thus we prove claim (iii). At last we prove claim (iv).
Fixing a point z with |z| < 1—& and for 0 <7 < f(|z|) — ¢, we define the function

he(t) = u(e f(1d) —1) =5 = —— (3.13)

2 9
\ @Hzo0

where s > 1 is uniquely determined by (z, f(|z|) —7) € Z,. Then the function 7 — h,(t)
is increasing and h(0) = u(z, f(|z]) = 1.
From (3.11), for all 0 <7 < f(|z]) — ¢, we know

H(t) = =du(z, f(l2]) —1) =

(3.14)



INEQUALITY FOR KORANYI SPHERE IN HEISENBERG GROUP H" 1503

Integrating both sides of (3.14) on the interval [0,7], we obtain

Ve == 1= ()P 1 >0,

It follows that

he(1)? > \/[t+ 1—rd 4 hy(£)2 =12 474

(3.15)
> \/t2+1+2t\/1—r‘g.
From (3.13) and (3.15), we have
2n 1
1——H; —t)=1-
o Z.s7¢(zaf(|z‘> t) hz(t)z
1 (3.16)

21—

\/t2+1+2t 1—r¢
When € =0, we have r. = 1. So (3.16) turns into
1

241
1‘2

2n
1= D Hy ol () 1) > 1~

CVEF IV T+

2
> —.
242
When 0 < e <1,wehave re=1—¢€and 0 <7< 1—+/1—rf. So(3.16) turns into
2n t(t4+2/1—r)
N IR
\/t2+1—|—2t l—ré(\/t2+1+2t\/1—r§—|—1)
2t\/1—r2

>
B \/z2+1+2tM(\/t2+1+2zM+1)
> 2V1-re t
T VR T+ )
2/1T—(1—¢)?

= t~
I+ (1—g)*+/14+(1—¢)*

Proof of Theorem 1.1. Let u:Ce — R be the function given by Lemma 3.1 and
let Z; = {(x,y) € Ce : u(z,t) = s} be the leaves of the foliation, s € R. We define the
vector field X : C¢ \ {z=0} — H" by

- VHu
\Viul

Then X satisfies the following properties:
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i |X|=1;

ii) For (z,t) € dBNCe, we have X (z,¢t) = —vp(z,t), where vp(z,7) is the unit inner
horizontal horizontal normal to dB;

iii) For any point (z,7) € X, with s < 1, we have
divy o X (2,1) = 1. (3.17)

For any point (z,7) € X; with s > 1, we have

divy o X (z.1) = % <a. (3.18)

Let F C H*"™! be a set with the finite weighted H -perimeter such that Vy (F) =
Vs(B) and FAB CC C¢. By Theorem 2.2.2 in [7], without loss of generality we can
assume that the boundary JdF of F is C*.

For 8 >0, let B® = {(z,1) € B: |z] > §}. By (3.18) and the generalized Gauss-
Green formula (2.3), we have

VB‘SF:/ 0 dzds
o(B°\F) o &

- BS\F O
= &{,/ameé <X,VF>duF7¢ —/(935\F<X,v35>du357¢}.

Letting § — 0T and using the Cauchy-Schwarz inequality, we obtain
Vo(B\F) = / ¥ dzdt
B\F

di X
> / Me‘l)dzdt
B\F o

1

T { /BFQB<X’ vF)diiFg — /aB\F (X, VB>d.uB7q)} (3.19)

1
> — dug, —/ d
06{/93\F Hz.0 IFNB ,uw}

- é{PM(B;CS \F)— PH7¢(F;B)}.

By a similar computation, we also have

Vo(F\B) = /F y e?dzdt

divg ¢ X
= | 0% 0 dzar
F\B O
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1

i X, ve)d / X, vg)dug.
Ot{ /aF\B< vr)dire + aBmF< v8) uB’(p}
1

< duro~ [ dun
Ot{/anB Kre dBNF 'uB’(p}

= é{PH7¢(F;Cg\B) —PH7¢(B;F)}.

(3.20)

On the other hand , we have

divy oX divy o X
/ CVHOR 012t :/ [1+ (M . 1>}e¢dzdt
B\F B\F o 3.21)

o
- diVH7¢X 0
_V¢(B\F)—/B\F (1—T>e dzd.

From (3.19), (3.20) and (3.21), we obtain
1
E{PH,MB;C& \F) =Py ¢(F;B)}

di X
< / SVHOR 6 gy
B\F O

divr o X
:Vq)(B\F)—/B\F<1— ‘V’;"’ )e‘f’dzdt

divy o X
=Vy(F\B) —/B\F (1 - w%)eq’dzdt

1 diVHq)X
< —{Py 4(F:Cs\ B) — Py s(B:F)} — 1—7’) O dzdr.
o Pro(FsC\B) —Bg (B} = [ (1= S50E% )eta

This is equivalent to
P F)—P B) > (X/ (l —
.0 (F) — Pr g (B) o

For any z with |z| < 1 — €, we define the vertical sections B* =
={t:(z,t) € F}. By Fubini theorem, we have

divy 6 X
M) eddzdr. (3.22)

{t:(z,t) € B} and

di X di X _a
/ (1 — IVﬂ>e‘z’dzdt = / / <1 — M) |2/~ Ve H dtdz.
B\F a {lzl<1-¢} JBo\F= o
LY (B*\ F?), where #! denotes the 1-dimensional Lebesgue measure

Let m(z) =
then we obtain

d. X _o
[
B\F

o
f(z)) di X _a
= / (l - M)dﬂzrcnﬂ)e [dz (3.23)
{lzl<1-¢} Jf(je)—m(2) o

m(z)
— 1— dt|z| =D g
{\z|<1fs}/o ( hz(t) ) [l e de,
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where h.(t) = u(z, f(|z|) —¢) is the function introduced in (3.13).
So from (3.22) and (3.23) we have

Py y(F)— Py y(B) > a/ /m(Z) (l L )dt\ |‘(2"+1)e_ \?\d (3.24)
= z ddz. .
e e {lz|<1—-¢}JO hz(t)z
When € =0, by (3.1), (3.24) and Holder inequality, we have

Py (F) — Pu(B)

m(z) 1 _a
>a / / —d|z|" @ f g
{d<iyJo 242

m(z)3\z|7(2"+1)67%dz

o
T 3(24V2) /{|z\<1}
aaa

> %da —@nt+1) ,~ % 34
32+V2) /{|z\<1}(m(z)|z| ¢ H)ydz

Odo / —@nt1),~ % 5 \?
> m(z)|z e Hfdz)
3(2+\/§)w22n( {lz]<1} ()l )

Odg 3
—_ % vy (BAF
32+ V2)w?, o(BOF)

where @, is the Euclidean volume of the 2n-dimensional unit sphere and a, is the

20
minimum of |z[*?"*De® on (0,1). In fact, when o > 2n+ 1, we have ag = ¢2%;

when o < 2n+ 1, we have ay, = (%)2@#1)'
When 0 < € < 1, by (3.2), (3.24) and Holder inequality, we have

Puy ¢ (F) — P ¢ (B)

m(2) 2 /1—(1—¢)* _a
> o / / (1-¢) tdt|z] Ve T dz
{ld<1-¢} Jo 1—|—(1—£)4+ 1+ (1—¢)*

1— 1—
_ 8 / ‘ | 2n+le HdZ
1+(1—£) +/1+ (1 —&)* J{jz<1- s}
obaer/1—(1—¢€)* / (2n+1)e—%)2d2
1+(1—£) 1+ (1 —¢&)* J{lz<1- e}

WV

abms —(1—8) . _on )e,% 5
[1+(1_8)4+ 1+(1_8)4]a)2n</{|z<18} @)k " H)dz)

B Obger/1—(1—¢)* )
T +(—er+ 1+(1—s)4]a>2nv¢(BAF) ’

where by ¢ is the minimum of \z|2"+1e% on (0,1 —¢€). In fact, when o > (2n+
1)(1—¢€),wehave by e = (1 —8)2n+1€& ;when oo < (2n+1)(1—¢), we have by e =

(2:3& )2n+1 O



[1]

[2]

[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]

[25]

[26]

INEQUALITY FOR KORANYI SPHERE IN HEISENBERG GROUP H" 1507

REFERENCES

M. BARCHIESI, A. BRANCOLINI, V. JULIN, Sharp dimension free quantitative estimates for the
Gaussian isoperimetric inequality, Ann. Probab. 45 (2017), no. 2, 668-697.

L. CAPOGNA, D. DANIELLI, S. D. PAULS, J. TYSON, An introduction to the Heisenberg group and
the sub-Riemannian isoperimetric problem, Progress in Mathematics 259, Birkhduser Verlag, Basel,
2007.

L. CHEN, G. LU AND C. TAO, Existence of extremal functions for the Stein-Weiss inequalities on the
Heisenberg group, Journal of Functional Analysis 277 (2019), 1112-1138.

J.-H. CHENG, J.-F. HWANG, A. MALCHIODI, AND P. YANG, Minimal surfaces in pseudohermitian
geometry, Ann. Sc. Norm. Super. Pisa CI. Sci. (5) 4 (2005), no. 1, 129-177.

A. CIANCHI, N. Fusco, F. MAGGI, A. PRATELLI, On the isoperimetric deficit in Gauss space,
Amer. J. Math. 133 (2011), no. 1, 131-186.

D. DANIELLI, N. GAROFALO, D.-M. NHIEU, A partial solution of the isoperimetric problem for the
Heisenberg group, Forum Math. 20 (2008), no. 1, 99-143.

B. FRANCHI, R. SERAPIONI, F. SERRA CASSANO, Meyers-Serrin type theorems and relaxation of
variational integrals depending on vector fields, Houston J. Math. 22 (1996), no. 4, 859-890.

V. FRANCESCHI, G. P. LEONARDI, R. MONTI, Quantitative isoperimetric inequalities in H" , Calc.
Var. Partial Differential Equations 54 (2015), no. 3, 3229-3239.

V. FRANCESCHI, F. MONTEFALCONE, R. MONTI, CMC Spheres in the Heisenberg Group, Anal.
Geom. Metr. Spaces. 7 (2019), no. 1, 109-129.

N. Fusco, The quantitative isoperimetric inequality and related topics, Bull. Math. Sci. 5 (2015),
517-607.

X. HAN, G. LU AND J. ZHU, Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral
systems on the Heisenberg group, Nonlinear Anal. 75 (2012), no. 11, 4296-4314.

G. HE, P. ZHAO, The weighted isoperimetric-type and Sobolev-type inequalities for hypersurfaces in
Carnot groups, Nonlinear Analysis 135 (2016), 35-56.

G. HE, P. ZHAO, The isoperimetric problem in Grushin space R with density |x|”, Rend. Sem.
Mat. Univ. Padova, 139 (2018) 241-260.

G. HE, P. ZHAO, Weighted quantitative isoprimetric inequalities in the Grushin space R'"' with
density |x|P, J. Inequal. Appl. 162 (2017).

G. HE, P. ZHAO, The isoperimetric problem in Heisenberg group H2 L ywith density |x|P, Anal.
Math. Phys. 10 (2020), 24.

G. P. LEONARDI, S. RIGOT, Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), 609—
637.

G. P. LEONARDI, S. MASNOU, On the isoperimetric problem in the Heisenberg group H" , Ann. Mat.
Pura Appl. (4) 184 (2005), 533-553.

G. Lu, J. MANFREDI, B. STROFFOLINI, Convex functions on the Heisenberg group, Cal. Var. 19
(2004), 1-22.

R. MONTI, Some properties of Carnot-Carathéodory sphere in the Heisenberg group, Atti Accad.
Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2001), no. 3, 155-167.

R. MONTIL, Brunn-Minkowski and isoperimetric inequality in the Heisenberg group, Ann. Acad. Sci.
Fenn. Math. 28 (2003), 99-109.

R. MONTI, D. MORBIDELLI, Isoperimetric inequality in the Grushin plane, J. Geom. Anal. 14 (2),
(2004), 355-368.

R. MONTI, Heisenberg isoperimetric problem. The axial case, Adv. Calc. Var. 1 (2008), no. 1, 93—121.
R. MONTI, M. RICKLY, Convex isoperimetric sets in the Heisenberg group, Ann. Sc. Norm. Super.
Pisa CI. Sci. (5) 8 (2009), no. 2, 391-415.

R. MONTI, Isoperimetric problem and minimal surfaces in the Heisenberg group, Lecture notes of the
ERC school Geometric measure Theory and Real Analysis, 57-130, Edizioni SNS Pisa, 2014-2015.
P. PANSU, An isoperimetric inequality on the Heisenberg group, Conference on differential geometry
on homogeneous spaces (Turin, 1983), Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1983),
159-174.

M. RITORE AND C. ROSALES, Rotationally invariant hypersurfaces with constant mean curvature in
the Heisenberg group H", J. Geom. Anal. 16 (2006), no. 4, 703-720.



1508 G. HE AND P. ZHAO

[27] M. RITORE, C. ROSALES, Area-stationary surfaces in the Heisenberg group H', Adv. Math. 219
(2008), no. 2, 633-671.

[28] M. RITORE, A proof by calibration of an isoperimetric inequality in the Heisenberg group H", Calc.
Var. Partial Differential Equations 44 (2012), no. 1-2, 47-60.

(Received March 18, 2022) Guoqing He
School of Mathematics and Statistics

Anhui Normal University

Wuhu 241000, P.R. China

e-mail: hgg1001@mail.ahnu.edu.cn

Peibiao Zhao

School of Mathematics and Statistics

Nanjing University of Science and Technology
Nanjing 210094, PR. China

e-mail: pbzhao@njust.edu.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com



