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ON SOME SUFFICIENT CONDITIONS
FOR p-VALENTLY STARLIKENESS

MAMORU NUNOKAWA AND JANUSZ SOKOL

(Communicated by M. Krni¢)

Abstract. In this paper we prove some properties for functions that are multivalent in the unit
disc |z| < 1 in the complex plane. As a corollary we obtain that if f(z) is p-valent, p > 10, and

os{710) <

in |z < 1,then f(z) is p-valent starlike.

1. Introduction

A function f(z) analytic in a domain D € C is called p-valentin D, if for every
complex number w, the equation f(z) = w has at most p roots in D, so that there
exists a complex number wy such that the equation f(z) = wy has exactly p roots in
D. We denote by .77 the class of functions f(z) which are holomorphic in the open unit
unit D= {z € C: |z| < 1}. Denote by «7,, p € N={1,2,...}, the class of functions
f(z) € 2 given by

fle)=2"+ i a?', (z€D).
n=p+1

Let &/ = ). Let . denote the class of all functions in .&Z which are univalent. Also
let (o) and %, (ax) be the subclasses of @7, consisting of all p-valent functions
which are strongly starlike and strongly convex of order &, 0 < o < 1, defined as

{0} o).

Cp(0) = {f(2) € :2f (1) /p € T ()}

Note that .7 (1) =.* and 61 (1) =€, where .”’* and € are usual classes of starlike
and convex functions respectively.

(o) = {f(z) € ).
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2. Preliminaries

In this paper we need the following lemmas.

LEMMA 2.1. [2, Th.5] If f(z) € %), then for all z € D, we have

(») o
me{;{:il)((%}m = Vke{l,...p}: %e{;({_il)%}w. 2.1)

LEMMA 2.2. [4] Let p(z) be analytic function in |z| < 1 with p(0) =1, p(z) #
0. If there exists a point zg, |z0| < 1, such that

larg{p(2)}| < B for [z] < |zo|

and
larg {p(z0)} | = 7B

for some 0 < B, then we have

p(z0)
where
1 1
k> 3 <a+ —> when arg{p(z0)} = nf8
a
and
1 1
k<=3 <a+ 5) when arg{p(z0)} = —7p,
where

{p(Zo)}l/(2ﬁ) = +ia, and a > 0.

LEMMA 2.3. [2, Th.1] If f(2) € <), then for all z € D, we have

(p+1)
%e{p+w}>0 (ze D), (2.2)

then f(z) is p-valent in D and

' Zf(kH)(Z)
VkE{l,...,p—l}. Eﬁe{lﬂ—f(T(Z) >0 (ZED).
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3. Main results
THEOREM 3.1. If q(z) € 7 and
larg{q(2)}| <am, (z€D),

for some a € (0,1], and

> [awar 2o, (e,

arg { % /qu(t)dt}

where [, is the unique root of of the equation

then
<Brn<orm, (zeD),

Br+tan ' (2B) = aur.

Proof. 1f we put
1 4
s0)= - [(aar, (zeD),
z.Jo

then it follows that
q(z) = s(z) +25'(2).

If there exists a point z; € D, such that
larg {s(2)}| < Bm, (2l <l|z1l)

and

arg{s(z1)}| = B,

then from Lemma 2.2, we have

s(z1)

where

1 1

k> <a+ 5) when arg{p(z1)} = nf8

and

1 1

k<=3 <a+ 5) when arg{p(z1)} = —7B,

where

{p(m)}l/(zﬁ) = +ia, and a > 0.

3.1)

(3.2)

(3.3)
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Therefore, we have

larg{q(z1)}| = |arg {S(Zl) (1 * les(/z(f)n) }

— arg{S(Zl)}+arg{l+ les(/z(f)l) }'

215 (21)
= ﬁn—i—arg{l—i— S@) H
|Br+arg {1+ 2iBk}|
> Br+tan~ ! (2B)
=uan

because of (3.3) but this contradicts hypothesis (3.1). This shows that

|arg{s(z)}|=‘% /qu(t)dt <Br, (zeD). O (3.4)

If we take o = 1/2 then Theorem 3.1 becomes the following corollary.
COROLLARY 3.2. If q(z) € A, q(z) #0 in D and

arg{g@}| <. (z€D) (35)

and

> [awar o, (e

arg { é /OZ q(t)dt}

where B =0.319161 ..., is the unique root of of the equation

then
T
<Br< > (zeD),

Br+tan~'(28) = g (3.6)
Putting ¢(z) = ") (2), f(z) € <7, in Corollary 3.2 gives us the following result.
COROLLARY 3.3. If f(z) € &, and

)arg { 7 (z)}) < g (zeD) 3.7)

and

———#0, (zeD),
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77V@)
arg{ Z }

where B =0.319161 ..., is the unique root of of the equation

then

<Bn<§7 (zeD),

Br+tan~'(2B) = g (3.8)

Notice here the well-known Noshiro-Warschawski theorem and some related re-
sults. The Noshiro-Warschawski theorem [ 1, 6], says that if f € JZ satisfies

Re{e’f'(z)} >0, (zeD) (3.9)

for some real o, then f(z) is univalentin . Ozaki [5], generalized the above theorem
for f € ), if

Re {e""‘ 7 (z)} >0, (zeD) (3.10)

for some real o, then f(z) is at most p-valentin D). Also in [3, 454] it was shown that
if fe,, p>2,and

arg{P@H < (D), @1

then f is at most p-valentin D.

THEOREM 3.4. If f(z) € <), and

(p—s)
Vs e€{0,1,...,p} fzis(z) #0, (zeD)
and
‘arg{f(”)(z)}’ <opm, (zeD), (3.12)
for some ap € (0,1], then
(p—s)
Vse{l,...,p} arg{fis(@} <oxm, (zeD), (3.13)
Z
where {0y}, n=0,1,2,..., is the number sequence such that
20y,
Ops 170+ tan ™! <ﬂ> — 0,7 (3.14)
n+1

Proof. Tf we put ¢(z) = fP)(z), & = o, B = oy in Theorem 3.4 then we have:

<om, (zeD), (3.15)
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where ¢ is the unique root of of the equation (3.14) with n = 0 namely
oqm+tan~! (20) = o

This proves Theorem 3.4 for the case s = 1.
For the case s =2, let us put

21
2@ =570, £0)=1, (D),

p
then it follows that fP~2)(z) = p!z2g2(z)/2! and
!
Fr@) =2 2202(2) + 265(2)
and so (r-1)
P=Y(z 1
fi,(z) = £2(2) + 5285 (). (3.16)
p'z 2

If there exists a point 7, € D, such that

larg{g2(2)}| < oam, (|z] <lz2l)

and
larg{g2(22)} | = ca,
then from Lemma 2.2, we have

/
Zzgz(Zz) =2ikoy
82(22)
where 1 ]
= (a+5) when arg {p(z2)} = 7as
and { |
k< -5 <a+ —) when arg{p(z2)} = —rma,

a

where

{p(z2)}"/®®) = Lia, and a>0.
Therefore, applying (3.16), we have

(p—1)
arg{fip 1(12)} = arg{gz(zz)( 22g2 = ) ‘
2 2g2(22)

= |arg{g2(22)} +arg{1 T 2em) o) }'

82(22)
282(22)}
282(22)
= |opm+arg{l + ionk}|
> opm+-tan ()

= oczn+arg{l+

=oqr
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because of (3.14) with n = 1. On the other hand this contradicts (3.15). This shows

that 2
-2
al‘g { f ’ 2 (Z) }
Z

this completes the proof of Theorem 3.4 for the case s = 2.
For the case s = 3, let us put

3!

<om, (zeD). (3.17)

g3(2) = p!—z3f(”_3)(2), g3(0)=1, (zeD),
it follows that
(r-2) 1,
szz(Z) =g3(2) + 383 (z)
_ 1285(2)
= 83(2) (1 +3 @) ) . (3.18)

If there exists a point zz € D, such that

larg{g3(2)} | < osm, (|z] <lz))
and
larg{g3(z3)} | = o3,
then from Lemma 2.2, we have

2385(23)

= 2iko;
23(z3) ’
where 1 i
= (a+—) when arg {p(z3)} = 7ot
a
and { |
k< -5 <a+ —) when arg{p(z3)} = —rmas,
a
where

{p(z3)}/?%) = +ia, and a> 0.
Therefore, applying (3.18), we have

— arg{g3(13)}+arg{l + Z;ggf%}’

2385(23)
3g3(z3) }'
= | +arg {1+ 2ionk/3}|
> oam+-tan ' (203/3)

= 0T

= ogn—i—arg{l—i—
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because of (3.14) with n = 2. On the other hand this contradicts (3.17). This shows

that )
-2
arg{pr2 (Z)}

This completes the proof of Theorem 3.4 for the case s = 3. The proof runs in the same
way for s =4,5,...,p. U

<om, (zeD). (3.19)

COROLLARY 3.5. If f(z) € @, p > 10 and

f(p—S) (2)

vs€{0,1,...,10} -
z

#0, (zeD)

and

’arg{f(p)(z)}‘ <z, (zeD),

2f P9 (2)
arg { f(p*l()) (Z) }

or fP=19)(z) is (p — 10)-valently starlike.

then

<7'E
2

Proof. The initial values of the sequence (3.14) with oy = 1 are

o =0.697887... 0p =0.540226... o3 =0.447868... oy =0.0.387023...
o5 =0.343553... 06 =0.310703... o7 =0.284854... g =0.263885...
o9 = 0.246468... oyg =0.231726...,

SO 0+ 019 < 1/2. On the other hand, from Theorem 3.4, we have

(r=9)
ar Z'if(pig) @) ar, ;Zp—ﬁ
8 Fe=10z) (| &Y 7o

prlO

f(p—9)
arg { Zp—Q(Z) }

< (o +ao)
T

<= O
2

< +

(p—10)
arg { f Zp—lO(Z) } ‘

COROLLARY 3.6. If f(z) € «),, p =5 and

Vs e€{0,1,...,5}

and
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z f(p—4) (z)
8 1)

or f(l’*s)(z) is (p — 10) -valently starlike.

then

<

YRS

Proof. The initial values of the sequence (3.14) with op = 1/2 are

o =0.382449... 0 =0.317129... o3 =0.273819...
oy =0.0.242979... o5 =0.219709.. .,

S0 04+ s < 1/2. On the other hand, from Theorem 3.4, we have

(p—4)
ar. 7@((1’74) @ ar f’;p—ﬁ
g =9 (| &\ 7090

>

Fr=4(z
()

COROLLARY 3.7. If f(z) € @,, p > 10 and

+

(p=5)
-{re)

(p—s)
Vs {0,1,...,10} %S(Z);Ao, (z€D)
and
‘arg{f(p)(z)}’<7r7 (zeD), (3.20)
then £
zf'(z T
{5 H<5

or f(z) is p-valently starlike.
Proof. By immediately applying Lemma 2.1 in Corollary 3.7, we get (3.20). [
Corollary 3.7 may be rewritten in the following form

COROLLARY 3.8. If f(z) € @, p > 10 and

f(p—S) (2)

vs€{0,1,...,10} -
z

#0, (zeD)

and arg {f(p) (z)} does not take its values in (—oo,0], then f(z) is p-valently starlike.
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