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Abstract. Let �p ∈ (0, ∞)n , A be an expansive dilation on Rn , and H�p
A (Rn) be the anisotropic

mixed-norm Hardy space defined via the non-tangential grand maximal function. In this paper,
the authors establish its molecular decomposition. As an application, the authors obtain the
boundedness of a class of singular integral operators from H�p

A (Rn) to H�p
A (Rn) . These results

are still new even in the classical isotropic setting (in the case A := 2In×n ).

1. Introduction

As is well known, Hardy space Hp(Rn) is a good substitute for the Lebesgue space
Lp(Rn) when p ∈ (0,1] , and it plays an important role in various fields of analysis and
partial differential equation; see, for examples, [4, 5, 6, 7, 14, 16, 15, 17]. On the other
hand, the mixed-norm Lebesgue space L�p(Rn) , with the exponent vector �p ∈ (0, ∞]n ,
is a natural generalization of the classical Lebesgue space Lp(Rn) , via replacing the
constant exponent p by an exponent vector �p . The study of mixed-norm Lebesgue
spaces originated from Benedek and Panzone [2].

Let �p ∈ (0, ∞]n . Recently, Cleanthous et al. [3] introduced the anisotropic mixed-
norm Hardy space H�p

�a (Rn) , via the non-tangential grand maximal function, and then
obtained its maximal function characterization. Not long afterward, Huang et al. [8]
further completed some real-variable thier characterization, such as the characteriza-
tion in terms of the atomic characterization and the Littlewood-Paley characterization.
Moreover, they obtained the boundedness of δ -type Calderón-Zygmundoperators from
H�p(Rn) to L�p(Rn) or from H�p(Rn) to itself.

Very recently, Huang et al. [9] also introduced the new anisotropic mixed-norm
Hardy space H�p

A(Rn) associated with a general expansive matrix A , via the non-tan-
gential grand maximal function, and then established its various real-variable character-
izations of H�p

A , respectively, in terms of the atomic characterization and the Littlewood-

Paley characterization. Nevertheless, the molecular decompositions of H�p
A (Rn) has not

been established until now. Once its molecular decomposition is established, it can
be conveniently used to prove the boundedness of many important operators on the
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space H�p
A(Rn) , for example, one of the most famous operator in harmonic analysis,

Calderón-Zygmund operator. To complete the theory of the new anisotropic mixed-
norm Hardy space H�p

A(Rn) , in this article, we establish the molecular decomposition

of H�p
A(Rn) . Then, as application, we further obtain the boundedness of anisotropic

Calderón-Zygmund operators from H�p
A(Rn) to H�p

A(Rn) .
Precisely, this article is organized as follows.

In Section 2, we first recall some notation and definitions concerning expansive
dilations, the mixed-norm Lebesgue space L�p(Rn) and the anisotropic mixed-norm
Hardy space H�p

A(Rn) , via the non-tangential grand maximal function. Then, motivated
by Liu et al. [10, 11] and Huang et al. [9], we introduce the anisotropic mixed-norm
molecular Hardy space H�p,q,s,ε

A,mol (Rn) and establish its equivalence with H�p
A (Rn) in The-

orem 2.11. When it comes back to the isotropic setting, i.e., A := 2In×n , this result is
still new, see Remark 2.12 for more details.

Section 3 is devoted to the proof of Theorem 2.11 via the atomic characteriza-
tion of H�p

A(Rn) established in [9, Theorem 4.7] (see also Lemma 3.3 below). It is
worth pointing out that some of the proof methods of the molecular characterization
of Hp

A(Rn) = Hp, p
A (Rn) ([11, Theorem 3.9]) don’t work anymore in the present set-

ting. For example, we search out some estimates related to L�p(Rn) norms for some
series of functions which can be reduced into dealing with the Lq(Rn) norms of the
corresponding functions (see Lemma 3.4 below). Then, by using this key lemma and
the Fefferman-Stein vector-valued inequality of the Hardy-Littlewood maximal opera-
tor MHL on L�p(Rn) (see Lemma 3.5 below), we prove their equivalences with H�p

A(Rn)
and H�p,q,s,ε

A,mol (Rn) .
In Section 4, we first recall the definition of anisotropic Calderón-Zygmund opera-

tor of Bownik [1]. Then, as an application of the molecular characterization of H�p
A (Rn) ,

we obtain the boundedness of anisotropic Calderón-Zygmund operator from H�p
A to H�p

A
(see Theorem 4.5 below). Particularly, when A := 2In×n , this result is also new.

Finally, we make some conventions on notation. Let N := {1, 2, . . .} and Z+ :=
{0}∪N . For any α := (α1, . . . ,αn) ∈ Zn

+ := (Z+)n , let |α| := α1 + . . .+ αn and

∂ α :=
(

∂
∂x1

)α1

. . .

(
∂

∂xn

)αn

.

Throughout the whole paper, we denote by C a positive constant which is independent
of the main parameters, but it may vary from line to line. For any q ∈ [1, ∞] , we
denote by q′ its conjugate index, namely, 1/q+1/q′ = 1. For any a ∈ R , �a� denotes
the maximal integer not larger than a . The symbol D � F means that D � CF . If
D � F and F � D , we then write D ∼ F . If E is a subset of Rn , we denote by χE

its characteristic function. If there are no special instructions, any space X (Rn) is
denoted simply by X . For instance, L2(Rn) is simply denoted by L2 . Denote by S
the space of all Schwartz functions and S ′ its dual space (namely, the space of all
tempered distributions).
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2. Molecular decomposition of H�p
A

In this section, we first recall the notion of anisotropic mixed-norm Hardy space
H�p

A , via the non-tangential grand maximal function MN( f ) , and then given its molecu-
lar decomposition.

We begin with recalling the notion of expansive dilations on Rn ; see [1, p. 5]. A
real n×n matrix A is called an expansive dilation, shortly a dilation, if minλ∈σ(A) |λ |>
1, where σ(A) denotes the set of all eigenvalues of A . Let λ− and λ+ be two positive
numbers such that

1 < λ− < min{|λ | : λ ∈ σ(A)} � max{|λ | : λ ∈ σ(A)} < λ+.

It was proved in [1, p. 5, Lemma 2.2] that, for a given dilation A , there exist a
number r ∈ (1, ∞) and a set Δ := {x∈R

n : |Px|< 1} , where P is some non-degenerate
n× n matrix, such that Δ ⊂ rΔ ⊂ AΔ, and one can additionally assume that |Δ| = 1,
where |Δ| denotes the n -dimensional Lebesgue measure of the set Δ . Let Bk := AkΔ
for k ∈ Z. Then Bk is open, Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk , here and hereafter, b :=
|detA| . An ellipsoid x+Bk for some x ∈ Rn and k ∈ Z is called a dilated ball. Denote
by B the set of all such dilated balls, namely,

B := {x+Bk : x ∈ R
n, k ∈ Z}. (2.1)

Throughout the whole paper, let σ be the smallest integer such that 2B0 ⊂ AσB0 and,
for any subset E of Rn , let E� := Rn \E . Then, for all k, j ∈ Z with k � j , it holds
true that

Bk +Bj ⊂ Bj+σ , (2.2)

Bk +(Bk+σ )� ⊂ (Bk)�, (2.3)

where E +F denotes the algebraic sum {x+ y : x ∈ E, y ∈ F} of sets E, F ⊂ Rn .

DEFINITION 2.1. A quasi-norm, associated with dilation A , is a Borel measur-
able mapping ρA : Rn → [0,∞) , for simplicity, denoted by ρ satisfying

(i) ρ(x) > 0 for all x ∈ Rn \ {0} , here and hereafter, 0 denotes the origin of Rn ;

(ii) ρ(Ax) = bρ(x) for all x ∈ Rn , where as above b := |detA| ;
(iii) ρ(x + y) � H [ρ(x)+ ρ(y)] for all x, y ∈ R

n , where H ∈ [1, ∞) is a constant
independent of x and y .

In the standard dyadic case A := 2In×n , ρ(x) := |x|n for all x ∈ Rn is an example
of homogeneous quasi-norms associated with A , here and hereafter, In×n denotes the
n×n unit matrix, | · | always denotes the Euclidean norm in Rn .

It was proved, in [1, p. 6, Lemma 2.4], that all homogeneous quasi-norms associ-
ated with a given dilation A are equivalent. Therefore, for a given dilation A , in what
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follows, for simplicity, we always use the step homogeneous quasi-norm ρ defined by
setting, for all x ∈ Rn ,

ρ(x) := ∑
k∈Z

bkχBk+1\Bk
(x) if x �= 0, or else ρ(0) := 0.

By (2.2), we know that, for all x, y ∈ Rn ,

ρ(x+ y) � bσ (max{ρ(x), ρ(y)}) � bσ [ρ(x)+ ρ(y)].

Now we recall the definition of mixed-normLebesgue space. Let �p := (p1, . . . , pn)
∈ (0, ∞]n . The mixed-norm Lebesgue space L�p is defined to be the set of all measurable
functions f such that

‖ f‖L�p :=

{∫
R

. . .

[∫
R

| f (x1, . . . ,xn)|p1 dx1

] p2
p1

. . .dxn

} 1
pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . ,n} .
For any �p := (p1, . . . , pn) ∈ (0, ∞]n , let

p− := min{p1, . . . , pn} and p+ := max{p1, . . . , pn}. (2.4)

LEMMA 2.2. [9, Lemma 3.4] Let �p ∈ (0, ∞]n . Then, for any r ∈ (0, ∞) and
f ∈ L�p ,

‖| f |r‖L�p = ‖ f‖r
Lr�p .

In addition, for any μ ∈ C , γ ∈ [0, min{1, p−}] and f ,g ∈ L�p , ‖μ f‖L�p = |μ |‖ f‖L�p

and

‖ f +g‖γ
L�p � ‖ f‖γ

L�p +‖g‖γ
L�p ,

here and hereafter, for any α ∈ R , α�p := (α p1, . . . ,α pn) and

p := min{p−, 1} (2.5)

with p− as in (2.4).

A C∞ function ϕ is said to belong to the Schwartz class S if for every integer
� ∈ Z+ and multi-index α , ‖ϕ‖α ,� := sup

x∈Rn
[ρ(x)]�|∂ α ϕ(x)| < ∞ . The dual space of

S , namely, the space of all tempered distributions on Rn equipped with the weak-∗
topology, is denoted by S ′ . For any N ∈ Z+ , let

SN :=
{

ϕ ∈ S : ‖ϕ‖α ,� � 1, |α| � N, � � N
}

.

In what follows, for ϕ ∈ S , k ∈ Z and x ∈ R
n , let ϕk(x) := b−kϕ

(
A−kx

)
.
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DEFINITION 2.3. Let ϕ ∈ S and f ∈ S ′ . The non-tangential maximal function
Mϕ( f ) with respect to ϕ is defined by setting, for any x ∈ Rn ,

Mϕ ( f )(x) := sup
y∈x+Bk,k∈Z

| f ∗ϕk(y)|.

Moreover, for any given N ∈ N , the non-tangential grand maximal function MN( f ) of
f ∈ S ′ is defined by setting, for any x ∈ Rn ,

MN( f )(x) := sup
ϕ∈SN

Mϕ( f )(x).

The following anisotropic mixed-normHardy space H�p
A was introduced in [9, Def-

inition 2.5].

DEFINITION 2.4. Let �p∈ (0, ∞)n , A be a dilation and N ∈ [�(1/p−1) lnb/ lnλ−�
+2, ∞) , where p is as in (2.5). The anisotropic mixed-norm Hardy space H�p

A is defined
as

H�p
A :=

{
f ∈ S ′ : MN( f ) ∈ L�p

}
and for any f ∈ H�p

A , let ‖ f‖
H�p

A
:= ‖MN( f )‖L�p .

REMARK 2.5. Let �p ∈ (0, ∞)n .

(i) The quasi-norm of H�p
A in Definition 2.4 depends on N , however, by [9, Theorem

4.7], we know that the H�p
A is independent of the choice of N as long as N ∈

[�(1/p−1) lnb/ lnλ−�+2, ∞) .

(ii) When �p := {p, . . . , p} , where p ∈ (0, ∞) , the space H�p
A is reduced to the aniso-

tropic Hardy Hp
A studied in [1, Definition 3.11].

LEMMA 2.6. [9, Lemma 4.6] Let �p∈ (0, ∞)n and N ∈N∩ [�( 1
min{1, p−} −1) lnb

lnλ− �
+2, ∞) with p− as in (2.4). Then H�p

A ∩L�p/p− is dense in H�p
A .

LEMMA 2.7. [9, Proposotion 1] Let �p ∈ (0, ∞)n and N ∈ N ∩ [�( 1
min{1, p−} −

1) lnb
lnλ− �+2, ∞) with p− as in (2.4). Then H�p

A is complete.

Now we introduce the definition of anisotropic mixed-norm molecules as follows.

DEFINITION 2.8. Let �p ∈ (0, ∞)n , q ∈ (1, ∞] ,

s ∈
[⌊(

1
p−

−1

)
lnb

lnλ−

⌋
, ∞
)
∩Z+ (2.6)

and ε ∈ (0, ∞) . A measurable function M is called an anisotropic mixed-norm (�p,q,s,ε)-
molecule associated with a dilated ball x0 +Bi ∈ B if
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(i) for each j ∈ Z+ , ‖M‖Lq(Uj(x0+Bi)) � b− jε |Bi|1/q

‖χx0+Bi‖L�p
, where U0(x0 +Bi) := x0 + Bi

and for each j ∈ N , Uj(x0 +Bi) := x0 +(AjBi)\ (Aj−1Bi) ,

(ii) for all α ∈ Zn
+ with |α| � s ,

∫
Rn M(x)xαdx = 0.

REMARK 2.9. Let �p ∈ (0, ∞)n .

(i) When �p := {p, . . . , p} , where p ∈ (0, 1) , the definition of the molecule in Defi-
nition 2.8 is reduced to the molecule in [11, Definition 3.7].

(ii) When it comes back to the isotropic setting, i.e., A := 2In×n , and ρ(x) := |x|n for
all x ∈ R

n , the definition of the molecule in Definition 2.4 is also new.

In what follows, we call an anisotropic mixed-norm (�p, q, s, ε)-molecule sim-
ply by (�p, q, s, ε)-molecule. Via (�p, q, s, ε)-molecules, we introduce the following
anisotropic mixed-norm molecular Hardy space H�p,q,s,ε

A,mol .

DEFINITION 2.10. Let �p ∈ (0, ∞)n , q ∈ (1, ∞] , A be a dilation and let s be as in
(2.6). The anisotropic mixed-norm molecular Hardy space H�p,q,s,ε

A,mol is defined to be the
set of all distributions f ∈ S ′ satisfying that there exist {λi}i∈N ⊂ C and a sequence
of (�p, q, s, ε)-molecules {Mi}i∈N associated, respectively, with {B(i)}i∈N ⊂ B such
that

f = ∑
i∈N

λiMi in S ′.

Moreover, for any f ∈ H�p,q,s,ε
A,mol , let

‖ f‖
H�p,q, s,ε

A,mol
:= inf

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

,

where the infimum is taken over all the decompositions of f as above.

The following Theorem 2.11 shows the molecular characterization of H�p
A , whose

proof is given in the next section.

THEOREM 2.11. Let �p ∈ (0, 1]n and q ∈ (1, ∞]∩ (p+, ∞] with p+ as in (2.4), s
be as in (2.6), ε ∈ (max{1, (s+1) logb(λ+)}, ∞) and N ∈N∩ [�(1/p−1)lnb/ lnλ−�+
2, ∞) with p as in (2.5). Then

H�p
A = H�p,q,s,ε

A,mol

with equivalent quasi-norm.
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REMARK 2.12. Let �p ∈ (0, 1]n .

(i) Liu et al. [12] introduced the anisotropic Hardy-Lorentz space Hp,q
A , where

p ∈ (0, 1] and q ∈ (0,∞] . When �p := {p, . . . , p} with p ∈ (0, 1] , the molecular
characterization of H�p

A in Theorem 2.11 is reduced to the molecular characteri-
zation of anisotropic Hardy spaces Hp

A =Hp, p
A in [11, Theorem 3.9].

(ii) When it comes back to the isotropic setting, i.e., A := 2In×n , the molecular char-
acterization of H�p

A in Theorem 2.11 is still new.

3. Proof of Theorem 2.11

To show Theorem 2.11, we recall the following notion of anisotropic mixed-norm
(�p, q, s)-atoms introduced in [9, Definition 4.1].

DEFINITION 3.1. Let �p∈ (0, ∞)n , q∈ (1, ∞] and s∈ [�(1/p−−1)lnb/ lnλ−�, ∞)
∩Z+ with p− as in (2.4). An anisotropic mixed-norm (�p, q, s)-atom is a measurable
function a on Rn satisfying

(i) suppa ⊂ B , where B ∈ B and B is as in (2.1);

(ii) ‖a‖Lq � |B|1/q

‖χB‖L�p
;

(iii)
∫
Rn a(x)xαdx = 0 for any α ∈ Zn

+ with |α| � s .

Throughout this article, we call an anisotropic mixed-norm (�p, q, s)-atom simply
by a (�p, q, s)-atom. The following anisotropic mixed-norm atomic Hardy space was
introduced in [9, Definition 4.2]

DEFINITION 3.2. Let �p ∈ (0, ∞)n , q ∈ (1, ∞] , A be a dilation and s be as in
(2.6). The anisotropic mixed-norm atomic Hardy space H�p,q,s

A is defined to be the set
of all distributions f ∈ S ′ satisfying that there exist {λi}i∈N ⊂ C and a sequence of
(�p, q, s)-atoms {ai}i∈N supported, respectively, on {B(i)}i∈N ⊂ B such that

f = ∑
i∈N

λiai in S ′.

Moreover, for any f ∈ H�p,q,s
A , let

‖ f‖
H�p,q, s

A
:= inf

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

,

where the infimum is taken over all the decompositions of f as above.
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LEMMA 3.3. [9, Theorem 4.7] Let �p ∈ (0, 1]n , q ∈ (max{p+, 1}, ∞] with p+
as in (2.4), s ∈ [�(1/p− − 1)lnb/ lnλ−�, ∞)∩Z+ with p− as in (2.4) and N ∈ N∩
[�(1/p−1)lnb/ lnλ−�+2, ∞) . Then

H�p
A = H�p,q,s

A

with equivalent quasi-norms.

We also need the following useful technical lemma, whose proof is similar to [13,
Lemma 4.1] that the details being omitted.

LEMMA 3.4. Let �p∈ (0, 1)n , t ∈ (0, p] with p as in (2.5) and r∈ [1, ∞]∩(p+, ∞]
with p+ as in (2.4). Then there exists a positive constant C such that, for any se-
quence {B(k)}k∈N ⊂ B of dilated balls, numbers {λk}k∈N ⊂ C and measurable func-
tions {ak}k∈N satisfying that, for each k ∈ N , suppak ⊂ B(k) and ‖ak‖Lr � |B(k)|1/r ,
it holds true that ∥∥∥∥∥∥

(
∑
k∈N

|λkak|t
)1/t

∥∥∥∥∥∥
L�p

� C

∥∥∥∥∥∥
(

∑
k∈N

∣∣λkχB(k)

∣∣t)1/t
∥∥∥∥∥∥

L�p

.

We recall the definition of anisotropicHardy-Littlewoodmaximal function MHL( f ) .
For any f ∈ L1

loc and x ∈ Rn ,

MHL( f )(x) := sup
x∈B∈B

1
|B|
∫

B
| f (z)|dz, (3.1)

where B is as in (2.1).

LEMMA 3.5. [9, Lemma 4.4] Let �p ∈ (0, ∞)n and u ∈ (1, ∞] . Then there exists a
positive constant C such that, for any sequence { fk}k∈N of measurable functions,∥∥∥∥∥∥

{
∑
k∈N

[MHL( fk)]
u

}1/u
∥∥∥∥∥∥

L�p

� C

∥∥∥∥∥∥
(

∑
k∈N

| fk|u
)1/u

∥∥∥∥∥∥
L�p

with the usual modification made when u = ∞ , where MHL denotes the anistropic
Hardy-Littlewood maximal operator as in (3.1).

Proof of Theorem 2.11. By the definitions of (�p, q, s)-atom and (�p, q, s, ε)-mo-
lecule, we find that a (�p, ∞, s)-atom is also a (�p, q, s, ε)-molecule, which implies that

H�p,∞,s
A ⊂ H�p,q,s,ε

A,mol .

This combined with Lemma 3.3 further implies that to prove Theorem 2.11, it suffices
to show H�p,q,s,ε

A,mol ⊂ H�p
A .
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To show this, for any f ∈H�p,q,s,ε
A,mol , by Definition 2.10, we deduce that there exists a

sequence of (�p, q, s, ε)-molecules, {Mi}i∈N , associated with dilated balls {B(i)}i∈N ⊂
B where B(i) := xi +B�i with xi ∈ Rn and �i ∈ Z such that

f = ∑
i∈N

λiMi in S
′

and

‖ f‖
H�p,q, s,ε

A,mol
∼

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

. (3.2)

To prove f ∈H�p
A , it is easy to see that, for all N ∈N∩ [�(1/p−1)/ lnλ−�+2, ∞) ,

‖MN( f )‖p

L�p =

∥∥∥∥∥MN

(
∑
i∈N

λiMi

)∥∥∥∥∥
p

L�p

�
∥∥∥∥∥∑

i∈N

|λi|MN(Mi)

∥∥∥∥∥
p

L�p

�
∥∥∥∥∥∑

i∈N

|λi|MN(Mi)χA2σ B(i)

∥∥∥∥∥
p

L�p

+

∥∥∥∥∥∑i∈N

|λi|MN(Mi)χ(A2σB(i))�

∥∥∥∥∥
p

L�p

�

∥∥∥∥∥∥
{

∑
i∈N

[|λi|MN(Mi)χA2σ B(i) ]p
}1/p

∥∥∥∥∥∥
p

L�p

+

∥∥∥∥∥∑i∈N

|λi|MN(Mi)χ(A2σB(i))�

∥∥∥∥∥
p

L�p

=: I1 + I2,

where A2σB(i) is the A2σ concentric expanse on B(i) that is A2σB(i) := xi +A2σB�i .
To estimate I1 , for any q̃ ∈ ((max{p+, 1}, q) , by the boundedness of MN on Lr

for all r ∈ (1, ∞) and Hölder’s inequality, we have∥∥∥∥χB(i)

∥∥
L�p MN(Mi)χA2σ B(i)

∥∥
Lq̃ (3.3)

�
∥∥χB(i)

∥∥
L�p ‖MN(Mi)‖Lq̃ �

∥∥χB(i)

∥∥
L�p ‖Mi‖Lq̃

∼
∥∥χB(i)

∥∥
L�p sup

‖g‖
Lq̃′=1

∣∣∣∣∫
Rn

Mi(x)g(x)dx

∣∣∣∣
�
∥∥χB(i)

∥∥
L�p sup

‖g‖
Lq̃′=1

∑
j∈Z+

∫
Uj(B(i))

|Mi(x)| |g(x)|dx

�
∥∥χB(i)

∥∥
L�p sup

‖g‖
Lq̃′=1

∑
j∈Z+

‖Mi‖Lq(Uj(B(i)))

[∫
Uj(B(i))

|g(x)|q′dx

]1/q′

,

where for all i ∈ N , U0(B(i)) := B(i) and for any j ∈ N ,

Uj(B(i)) := xi +(AjB�i)\(Aj−1B�i). (3.4)



58 K. HU AND Q. GUO

From (3.4) and Hölder’s inequality, we have that, for any i ∈ N and j ∈ Z+ ,[∫
Uj(B(i))

|g(x)|q′dx

]1/q′

�
∣∣AjB�i

∣∣1/q′
[

1∣∣AjB�i

∣∣ ∫xi+AjB�i

|g(x)|q′dx

]1/q′

�
∣∣AjB�i

∣∣1/q′
inf

x∈xi+B�i

[
MHL

(
|g|q′

)
(x)
]1/q′

�
∣∣AjB�i

∣∣1/q′
{

1∣∣B�i

∣∣ ∫xi+B�i

[
MHL

(
|g|q′

)
(x)
]q̃′/q′

dx

}1/q̃′

.

From this the size condition of Mi , 1/q′ < 1 < ε and the fact that MHL is bounded on
Lr for all r ∈ (1, ∞) , we conclude that for any q̃ ∈ ((max{p+, 1}, q) and i ∈ N ,∥∥∥∥χB(i)

∥∥
L�p MN(Mi)χA2σ B(i)

∥∥
Lq̃

�
∥∥χB(i)

∥∥
L�p sup

‖g‖
Lq̃′=1

∑
j∈Z+

b j(1/q′−ε) |B(i)|1/q̃

‖χB(i)‖L�p

×
{∫

xi+B�i

[
MHL

(
|g|q′

)
(x)
]q̃′/q′

dx

}1/q̃′

�
∣∣∣B(i)

∣∣∣1/q̃
sup

‖g‖
Lq̃′=1

{∫
xi+B�i

[
MHL

(
|g|q′

)
(x)
]q̃′/q′

dx

}1/q̃′

�
∣∣∣B(i)

∣∣∣1/q̃
sup

‖g‖
Lq̃′=1

[∫
Rn

|g(x)|q̃′dx

]1/q̃′

∼
∣∣∣B(i)

∣∣∣1/q̃
.

By this Lemma 3.4, q̃ ∈ ((max{p+, 1}, q) and (3.2), we obtain

I1 =

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|
‖χB(i)‖L�p

∥∥χB(i)

∥∥
L�p MN(Mi)χAσ B(i)

]p
}1/p

∥∥∥∥∥∥
p

L�p

�

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|
‖χB(i)‖L�p

χB(i)

]p
}1/p

∥∥∥∥∥∥
p

L�p

∼ ‖ f‖p

H�p,q, s,ε
A

.

To deal with I2 , for any i ∈ N and x ∈ (xi +A2σB�i))
� , by MN( f )(x) ∼ M0

N( f )(x)
[1, Proposition 3.10] and proceeding as in the proof of [11, (3.48)], we know that

MN(Mi)(x) �
∥∥χB(i)

∥∥−1
L�p

∣∣∣B(i)
∣∣∣θ

[ρ(x− xi)]θ
�
∥∥χB(i)

∥∥−1
L�p

[
MHL(χB(i) )(x)

]θ
, (3.5)

where for any i ∈ N , xi denotes the centre of the dilated ball B(i) and

θ :=
(

lnb
lnλ−

+ s+1

)
lnλ−
lnb

>
1
p
. (3.6)
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From this Remark 2.2(i), Lemma 3.5 and (3.2), we deduce that

I2 �
∥∥∥∥∥∑

i∈N

|λi|
‖χB(i)‖L�p

[MHL(χB(i))]θ
∥∥∥∥∥

p

L�p

(3.7)

∼

∥∥∥∥∥∥
{

∑
i∈N

|λi|
‖χB(i)‖L�p

[MHL(χB(i))]θ
}1/θ

∥∥∥∥∥∥
θ p

Lθ�p

�

∥∥∥∥∥∥
{

∑
i∈N

|λi|χB(i)

‖χB(i)‖L�p

}1/θ
∥∥∥∥∥∥

θ p

Lθ�p

∼

∥∥∥∥∥∑
i∈N

|λi|χB(i)

‖χB(i)‖L�p

∥∥∥∥∥
p

L�p

�

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
p

L�p

∼ ‖ f‖p

H�p,q, s,ε
A

.

This together with I1 and I2 , shows that

‖ f‖
H�p

A
∼ ‖MN( f )‖L�p � ‖ f‖

H�p,q, s,ε
A

.

This implies that f ∈H�p
A and hence H�p,q,s,ε

A,mol ⊂H�p
A . This finishes the proof of Theorem

2.11. �

4. Applications

In this section, as an application of the molecular characterization of H�p
A in Theo-

rem 2.11, we obtain the boundedness of anisotropic Calderón-Zygmund operators from
H�p

A to itself. Particularly, when A := 2In×n , this result is still new. We recall that the
definition of anisotropic Calderón-Zygmund operators associated with dilation A .

DEFINITION 4.1. A locally integrable function K on Ω := {(x, y) ∈ Rn ×Rn :
x �= y} is called an anisotropic Calderón-Zygmund kernel (with respect to a dilation A
and a quasi-norm ρ ) if there exist positive constants C and δ such that

(i) |K(x,y)| � C
ρ(x−y) for all x �= y ;

(ii) if (x, y) ∈ Ω, x′ ∈ Rn and ρ(x′ − x) � b−2σ ρ(x− y) , then

∣∣K(x′, y)−K(x, y)
∣∣� C

[ρ(x′ − x)]δ

[ρ(x− y)]1+δ ;

(iii) if (x, y) ∈ Ω, ỹ ∈ Rn and ρ(ỹ− y) � b−2σ ρ(x− y) , then

|K(x, ỹ)−K(x, y)| � C
[ρ(ỹ− y)]δ

[ρ(x− y)]1+δ .
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We call that T is an anisotropic Calderón-Zygmund operator if T is a continuous
linear operator mapping S into S ′ that extends to a bounded linear operator on L2

and there exists an anisotropic Calderón-Zygmund kernel K such that, for all f ∈ C∞
c

and x �∈ supp( f ) ,

T f (x) :=
∫

Rn
K(x, y) f (y)dy.

To obtain the boundedness of anisotropic Calderón-Zygmund operators on H�p
A ,

we need to increase the smooth hypothesis on the kernel K . The following definition
was introduced by Bownik in [1, Definition 9.2].

DEFINITION 4.2. Let N ∈Z+ . We say that T is an anisotropic Calderón-Zygmund
operator of order N if T satisfies Definition 4.1 with the kernel K in the class CN as a
function of y . We also require that there exists a positive constant C such that for any
α ∈ Zn

+ with |α| � N and (x,y) ∈ Ω ,∣∣∣∂ α
y

[
K
(
·, A�·

)](
x, A−�y

)∣∣∣� C[ρ(x− y)]−1 = Cb−�, (4.1)

where � ∈ Z is the unique integer such that ρ(x− y) = b� with the implicit equivalent
positive constants independent of x, y and � . More formally,

∂ α
y

[
K
(
·, A�·

)](
x, A−�y

)
means (∂ α

y K̃)(x, A−�y), where K̃(x, y) := K(x, A�y) for all (x, y) ∈ Rn and x �= A�y .

REMARK 4.3. In Definition 4.2, when N ∈ Z+ , A := 2In×n and ρ(x) := |x|n for
all x ∈ Rn , then (4.1) becomes that for any α ∈ Zn

+ with |α| � N and (x,y) ∈ Ω ,

|∂ αK(x, y)| � C|x− y|−n−|α |, (4.2)

which is standard and well known. More examples of anisotropic Calderón-Zygmund
operator of order N as in Definition 4.1; see [1, p. 61].

To obtain the boundedness of anisotropic Calderón-Zygmund operators from H�p
A

to H�p
A , we need to prove that anisotropic Calderón-Zygmund operators T map atoms

into harmless constant multiples of molecules. Generally, we cannot expect this unless
we also assume that the considered operators preserve vanishing moments, which is
given in the following definition introduced by Bownik ([1, Definition 9.4]).

DEFINITION 4.4. We say that an anisotropic Calderón-Zygmund operator of or-
der N satisfies T ∗(xγ ) = 0 for all |γ| � s , where s < N lnλ−/ lnλ+ , if for any f ∈ Lq

with compact support, q ∈ [1, ∞]∩ (p+, ∞] with p+ as in (2.4) and∫
Rn

xα f (x)dx = 0 for all |α| < N,

we also have ∫
Rn

xγT ( f )(x)dx = 0 for all |γ| � s.



ANISOTROPIC MIXED-NORM HARDY SPACES 61

THEOREM 4.5. Let �p ∈ (0, 1]n . If N ∈ N and T is an anisotropic Calderón-
Zygmund operator of order N , then T can be extended to a bounded linear opera-
tor from H�p

A to H�p
A , provided that T ∗(xα) = 0 for all α ∈ Zn

+ with |α| � s, where
s ∈ [�(1/p− − 1)lnb/ lnλ−�, ∞) ∩ Z+ with p− as in (2.4) and s < N lnλ−/ lnλ+ .
Moreover, there exists a positive constant C such that for all f ∈ H�p

A ,

‖T ( f )‖
H�p

A
� C‖ f‖

H�p
A
. (4.3)

REMARK 4.6. (i) When �p := {p, . . . , p} with p ∈ (0, 1] , the space H�p
A is re-

duced to the anisotropic Hardy space Hp
A and now and Theorem 4.5 coincides

with [1, Theorem 9.8] of Bownik.

(ii) When A := 2In×n and ρ(x) := |x|n for all x ∈ Rn , the above result is still new.

To prove Theorem 4.5, we need some technical lemmas. The following conclusion
is from [9, Theorem 4.7] and its proof, which is needed in the proof of Theorem 4.5.

LEMMA 4.7. Let �p∈ (0, ∞)n and s ∈ [�(1/p−−1)lnb/ lnλ−�, ∞)∩Z+ with p−
as in (2.4). Then for any f ∈ H�p

A ∩L�p/p− , there exist {λi}i∈N ⊂ C , dilated balls {xi +
B�i}i∈N ⊂ B and (�p, ∞, s)-atoms {ai}i∈N such that

f = ∑
i∈N

λiai in S ′,

where the series also converges almost everywhere.

LEMMA 4.8. [9, Lemma 4.5] Let �p ∈ (0, ∞)n and q ∈ (1, ∞]∩ (p+, ∞] with p+
as in (2.4). Assume that {λi}i∈N ⊂ C , {B(i)}i∈N ⊂ B and {ai}i∈N ∈ Lq satisfy for any
i ∈ N , suppai ⊂ B(i) ,

‖a‖Lq � |B(i)|1/q

‖χB(i)‖L�p

and ∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

< ∞.

Then ∥∥∥∥∥∥
[
∑
i∈N

|λiai|p
]1/p

∥∥∥∥∥∥
L�p

� C

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

,

where p is as in (2.5) and C is a positive constant independent of {λi}i∈N , {B(i)}i∈N

and {ai}i∈N .
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LEMMA 4.9. Let �p ∈ (0, 1]n , q ∈ (1, ∞] and s ∈ [�(1/p−− 1)lnb/ lnλ−�, ∞)∩
Z+ with p− as in (2.4). Suppose that T is an anisotropic Calderón-Zygmund operator
of order N ∈ N satisfying T ∗(xα) = 0 , for all |α| � s with s < N lnλ−/ lnλ+ . Then
for any (�p, q, s)-atom a supported on some x0 +Bj0 with x0 ∈Rn and j0 ∈Z , T (a) is
a harmless constant multiple of a (�p, q, s, ε)-molecule associated with x0 +Bj0 where
ε := N lnλ−/ lnb+1/q′ .

Proof. Let a be a (�p, q, s)-atom with suppa⊂Bj0 , j0 ∈N . Then for the anisotro-
pic Calderón-Zygmundoperator T of order N satisfying T ∗(xα) = 0 for all |α|� s , by
Definition 4.4 and the vanishing moments of a , we obtain that T (a) has the vanishing
moments up to order s .

Let U0 := Bj0+σ and for any j ∈ Z+ , Uj := Bj0+ j+σ+1 \Bj0+ j+σ . To prove that
T (a) is a harmless constant multiple of a (�p, q, s, ε)-molecule, we only need to show
that

‖T (a)‖Lq(U0) � |Bj0 |1/q

‖χBj0
‖L�p

(4.4)

and for any j ∈ N and x ∈Uj ,

‖T (a)‖Lq(Uj) � b− jε |Bj0 |1/q

‖χBj0
‖L�p

. (4.5)

Indeed, for any x ∈ U0 , applying the fact that T is bounded on Lq for all q ∈
(1, ∞) , suppa ⊂ Bj0 and the size condition of a , we obtain that

‖T (a)‖Lq(U0) � ‖a‖Lr(Bj0
) � |Bj0 |1/q

‖χBj0
‖L�p

and hence (4.4) holds true.
For any (�p, q, s)-atom a , j ∈ N , x ∈ Bj0+ j+σ+1 \Bj0+ j+σ and y ∈ Bj0 , by (2.2)

and (2.3), we have x− y ∈ Bj0+ j+2σ+1 \Bj0+ j and hence ρ(x− y) ∼ b j0+ j . From this
and (4.1), we deduce that for all α ∈ Zn

+ with |α| � N ,∣∣∂ α [K (·, Aj0+ j·)](x, A− j0− jy
)∣∣� [ρ(x− y)]−1 ∼ b− j0− j. (4.6)

By the condition that suppa ⊂ Bj0 , we have

T (a)(x) =
∫

Bj0

K(x, y)a(y)dy =
∫

Bj0

K̃
(
x, A− j0− jy

)
a(y)dy, (4.7)

where K̃(x, y) := K(x, Aj0+ jy) for all x, y ∈ Rn with x �= Aj0+ jy . Now we expand
K̃(x, y) into the Taylor polynomial of degree N − 1 (only in y variable) at the point
(x, 0) that is

K̃(x, ỹ) = ∑
|α |�N−1

∂ α
y K̃(x, 0)

α!
(ỹ)α +RN(ỹ), (4.8)
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where ỹ := A− j0− jy with y∈ Bj0 , and hence ỹ∈ B− j . Then applying (4.8) for ỹ∈ B− j ,
using (4.6), we have

|RN(ỹ)| � sup
z∈B− j

sup
|α |=N

∣∣∣∂ α
y K̃(x, z)

∣∣∣ |ỹ|N � b−( j0+ j) sup
z∈B− j

|z|N . (4.9)

Notice that z ∈ B− j and hence ρ(z) < b− j � 1. From this and |z| � [ρ(z)]logb(λ−) (see
[1, p. 11, (3.3)]), we conclude that

sup
z∈B− j

|z|N � sup
z∈B− j

[ρ(z)]N logb(λ−) � b− jN logb(λ−).

By this and (4.9), we obtain

|RN(ỹ)| � b−( j0+ j+ jN logb(λ−)). (4.10)

From (4.7), (4.8), (4.10) and the Hölder inequality, we deduce that

|T (a)(x)| �
∫

Bj0

∣∣RN
(
A− j0− jy

)
a(y)

∣∣dy

� b−( j0+ j+ jN logb(λ−))
∫

Bj0

|a(y)|dy

� b− j[1+N logb(λ−)+ j0/q]‖a‖Lq(Bj0 ),

which together with the size condition of a and ε := N logb(λ−)+1/q′ , implies that

‖T (a)‖Lq(Uj) � b− j(1+N logb(λ−))b− j0/q‖a‖Lq(Bj0 )
∣∣Bj0+ j+σ+1

∣∣1/q

� b− j(1+N logb(λ−))b j/q |Bj0 |1/q

‖χBj0
‖L�p

∼ b− jε |Bj0 |1/q

‖χx0+Bj0
‖L�p

.

Thus for any j ∈ N , (4.5) holds true. This completes the proof of Lemma 4.9. �

Proof of Theorem 4.5. First, we show that (4.3) holds true for any f ∈H�p
A ∩L�p/p−

with r ∈ (1, ∞]∩ (p+, ∞] . For any f ∈ H�p
A ∩L�p/p− , by Lemma 4.7, we know that there

exist {λi}i∈N ⊂ C and a sequence of (�p, q, s)-atoms, {ai}i∈N , supported, respectively,
on {B(i)}i∈N ⊂ B , where B(i) := xi +B�i with xi ∈ Rn and �i ∈ Z , such that

f = ∑
i∈N

λiai in S ′ and almost everywhere,

and

‖ f‖
H�p,q, s

A
∼

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
L�p

. (4.11)
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It is easy to see that, for all N ∈ N∩ [�(1/p−1)/ lnλ−�+2, ∞) and x ∈ Rn ,

‖MN(T ( f ))‖p

L�p =

∥∥∥∥∥MN

(
T

(
∑
i∈N

λiai

))∥∥∥∥∥
p

L�p

�
∥∥∥∥∥∑

i∈N

|λi|MN(T (ai))

∥∥∥∥∥
p

L�p

(4.12)

�
∥∥∥∥∥∑

i∈N

|λi|MN(T (ai))χA2σ B(i)

∥∥∥∥∥
p

L�p

+

∥∥∥∥∥∑i∈N

|λi|MN(T (ai))χ(A2σ B(i))�

∥∥∥∥∥
p

L�p

�

∥∥∥∥∥∥
{

∑
i∈N

[|λi|MN(T (ai))χA2σ B(i)

]p}1/p
∥∥∥∥∥∥

p

L�p

+

∥∥∥∥∥∑
i∈N

|λi|MN(T (ai))χ(A2σ B(i))�

∥∥∥∥∥
p

L�p

= : K1 +K2,

where A2σ B(i) is the A2σ concentric expanse on B(i) that is A2σB(i) := xi +A2σB�i and
p as in (2.5).

For K1 , from the fact that MN and T are bounded on Lq for all q ∈ (1, ∞) , we
know that ∥∥MN(T (ai))χA2σ B(i)

∥∥
Lq � ‖aiχA2σB(i)‖Lq � |B(i)|1/q

‖χB(i)‖L�p
.

From this Lemma 4.8 and (4.11), we further deduce that

K1 �

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
p

L�p

∼ ‖ f‖p

H�p,q, s
A

.

For K2 , for any i ∈ N and x ∈ (A2σ B(i))� , by Lemma 4.9, for any (�p, q, s)-atom
ai(x) supported on a ball B(i) , we see that T (ai) is a harmless constant multiple of a
(�p, q, s, ε)-molecule associated with B(i) , where ε := N logb(λ−) + 1/q′ . From this
and an argument similar to that used in the proof of (3.5), we know that

MN(T (ai))(x) �
∥∥χB(i)

∥∥−1
L�p

[
MHL(χB(i))(x)

]θ
, (4.13)

where, for any i ∈ N , xi denotes the centre of the dilated ball B(i) and θ as in (3.6).
By (4.13) and an argument same as that used in the proof of (3.7), we obtain

K2 �

∥∥∥∥∥∥
{

∑
i∈N

[ |λi|χB(i)

‖χB(i)‖L�p

]p
}1/p

∥∥∥∥∥∥
p

L�p

∼ ‖ f‖p

H�p,q, s
A

.

Combining (4.12) and the estimates of K1 and K2 , we further conclude that

‖T ( f )‖
H�p

A
� ‖ f‖

H�p,q, s
A

∼ ‖ f‖
H�p

A
.

Next, we prove that (4.3) also holds true for any f ∈ H�p
A . Let f ∈ H�p

A , by Lemma

2.6, we know that there exists a sequence { f j} j∈Z+ ⊂ H�p
A ∩L�p/p− with p− as in (2.4),
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such that f j → f as j → ∞ in H�p
A . Therefore, { f j} j∈Z+ is a Cauchy sequence in H�p

A .
By this, we see that for any j , k ∈ Z+ ,

‖T ( f j)−T ( fk)‖H�p
A

= ‖T ( f j − fk)‖H�p
A

� ‖ f j − fk‖H�p
A
.

Notice that {T ( f j)} j∈Z+ is also a Cauchy sequence in H�p
A . Applying Lemma 2.7, we

conclude that there exist a g∈H�p
A such that T ( f j)→ g as j→∞ in H�p

A . Let T ( f ) := g .

We claim that T ( f ) is well defined. Indeed, for any other sequence {h j} j∈Z+ ⊂ H�p
A ∩

L�p/p− with p− as in (2.4) satisfying h j → f as j → ∞ in H�p
A , by Remark 2.2(i), we

have

‖T (h j)−T ( f )‖p

H�p
A

� ‖T (h j)−T ( f j)‖p

H�p
A

+‖T( f j)−g‖p

H�p
A

� ‖h j − f j‖p

H�p
A

+‖T ( f j)−g‖p

H�p
A

� ‖h j − f‖p

H�p
A

+‖ f − f j‖p

H�p
A

+‖T ( f j)−g‖p

H�p
A

→ 0 as j → 0,

which is wished.
From this, we see that, for any f ∈ H�p

A ,

‖T ( f )‖
H�p

A
= ‖g‖

H�p
A

= lim
j→∞

‖T ( f j)‖H�p
A

� lim
j→∞

‖ f j‖H�p
A

∼ ‖ f‖
H�p

A
,

which implies that (4.3) also holds true for any f ∈ H�p
A and hence completes the proof

of Theorem 4.5. �
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