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LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL
LANGEVIN DIFFERENTIAL EQUATIONS

ZAID LAADJAL AND QINGHUA MA*

(Communicated by M. Krni¢)
Abstract. In this paper, we establish some new Lyapunov-type inequalities for Langevin equa-

tions involving derivatives of fractional orders with two classes of two-point boundary condi-
tions, which have generalized some previous results.

1. Introduction

The first result in this field is due to the Russian mathematician A. M. Lyapunov
in 1907 [23], which can be formulated as follows:

THEOREM 1. ([23]) Let q: [a,b] — R is continuous function. If a nontrivial con-
tinuous solution to the boundary value problem

W' (t)+q(t)u(t)=0,a<t<b, (1.1)
u(a) =u(b) =0, (1.2)
exists. Then
b 4
/a lq(s)|ds > — (1.3)

Since Lyapunov-type inequality has been shown to be useful in studying various
properties of differential equations, which include bounds for eigenvalues, stability cri-
teria for periodic differential equations and estimates for disconjugation intervals, etc,
there have been a lot of generalizations and extensions of Lyapunov-type inequality in
the literature (see [8, 27, 29, 33, 28, 5, 32, 30] and the references therein).

Recently, many articles on Lyapunov-type inequality for fractional order differen-
tial equations have been published. The first work in this direction belongs to Ferreira
in [9], where he established a Lyapunov-type inequality for the differential equations
dependent to the fractional derivative of Riemann-Liouville type

RED u(t) +q(t)u(t) =0,a <t <b,1<n <2, (1.4)
u(a) =u(b) =0, (1.5)
and he reached to the following result:
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THEOREM 2. ([9]) If a nontrivial continuous solution to the fractional boundary
value problem (1.4)—(1.5) exists. Then

’ n"C(n)
Ld”WS>Kn—1Xb—®WI' (1.6)

Other noteworthy papers have been published on Lyapunov type inequalities for
boundary value problems involving fractional derivative, for example see [12, 36, 1, 24,
17, 26, 25] and references therein.

In 2016, Ferreira [10] discussed a Lyapunov-type inequality for the following se-
quential fractional boundary value problem with Liouville-Caputo derivative:

(SeD LD Y u(t) = —q(t)u(t), a <t <b, (1.7
u(a) =0=u(b), (1.8)

where 0 <1, u <1, (1 <n-+pu<2). Accordingly, he has reached the following
result:

THEOREM 3. ([10]) If a nontrivial continuous solution to the fractional boundary
value problem (1.7)—(1.8) exists. Then

(1.9)

/mq . (n+2u— D" 4 u+1)
[(n+u—1)B-a)™™  ur

In 2019, in [11], Ferreira discussed a Lyapunov-type inequality for the problem
(1.8) with the following fractional boundary conditions:

u(a)=0= 2" u(b), 0<y<1, (1.10)

and he got the following result:

THEOREM 4. ([11]) Ifa nontrivial continuous solution to the fractional boundary
value problem (1.7)—(1.10) exists. Then

b
[ o=y glas > £, (111)
where
Tu+1-y)
C = (b—a)"max ,
b=a) {F(n+u—7)r(u+1)
n+u—1

(1-1n) (Fw+1—wﬂn+u—w)n
)

, with Ly (112
ur(n+p) (n+u—yTu = } 41



LYAPUNOV-TYPE INEQUALITIES 69

In 1908, Langevin formulated his famous equation, with a derivative from the en-
teger order, which describes the evolution of certain physical phenomena, see [18]. The
Langevin equation has been recently developed to the fractional order, where Lim et
al. [19] introduced a new form of Langevin equations involving two different fractional
orders. Subsequent works on a fractional Langevin equation were developed. For ex-
ample see [4, 20, 35, 6, 22, 21]. In addition, other studies have reported outstanding
results on the existence of the solutions for the Langevin differential equations of frac-
tional order by using fixed point theorems, see [3, 34, 15, 16, 3, 2, 13, 37] and references
therein. The usefulness of the fractional Langevin equation is demonstrated in the de-
scription of the viscoelastic anomalous diffusion in complex liquids, herein the reader
may refer to (Subsection 2.1 in [31]) and the references cited therein for more details.

Motivated by the aforementioned works, especialy papers [10, 11] and [3, 2], in
this paper, we discuss Lyapunov-type inequalities for the following class of Langevin
equations involving two fractional orders:

cenn, (2%5@ +7L> w(t) = —qu(t), a<t<b, (1.13)

with one of the two-point boundary conditions:
u(a) =0=u(b), (1.14)
u(a)=0= <07 u(b), (1.15)

where (either O<pu<lorl<pu<2),0<n,y<1, A €R,suchthat I <n+u<2
and y < p; D", and D', denotes the Liouville-Caputo fractional derivative of
order 1 and p, respectively; g : [a,b] — R is a continuous function.

To the best of the authors’ knowledge, there are no generalizations of Lyapunov-
type inequality for fractional Langevin equations and our results also have generalized
the conclusions on [10, 11].

2. Preliminaries

In this section, we give some basic concepts of fractional calculus.

DEFINITION 1. ([14]) The Riemann-Liouville fractional integral of order n > 0
for a function f € L'[a,b] is defined by

1 ! —1
J tz—/ t—s)" s)ds, 2.1
SO =gy [ =T 1) @1

where ¢ € [a,b] and T" is Gamma Euler function.

DEFINITION 2. ([14]) The Liouville-Caputo fractional derivative of order n > 0
for a function f € C"[a,b] is defined by

SO0 =0 = i [ =T s @)

where n—1<n<n, neN.
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PROPOSITION 1. ([14]) Let g >0 and n >0 with n—1 <n < n, forall fe
L'[a,b], we have the following properties

Jg. S f () =330 (1) = 0 () 2.3)

SR I f (1) = f(1): (2.4)

RS0 =10 3 @)
In particular, when 0 < 7 < 1, we have
I SRS (1) = £ (1) = ) (2.6)
In case 1 <n <2, we have
3 EEDLf (1) = £ ()~ fla) — f(a)(t —a). 2.7)

LEMMA 1. ([14]) For n >0 with n—1 < n <n, n €N, the general solution of
fractional differential equation Ee@;hu(t) =0 is given by

u(t)=co+ci(t—a)+cot —a)2 + .t ep(t—a)" (2.8)

where c; € R, i=0,1,2,...,n—1.

LEMMA 2. Let 0 <y < 1, and u > 7. Then

semy (oo L+l
D (t—a) _71"(;14-1—)/)@ a)* 7. (2.9)

LEMMA 3. ([7]) Suppose that f € C*(|a,b],R) for some a < b and some k € N.
Moreover let , 0 > 0 be such that there exist some m € N with m <k and n+u, 1 €
[m—1,m]. Then

S SRR () = SRS (1),

3. Main results

This section is divided into two Subsections according to the value of u (Case
O<u<1andCase I <pu <2). Ineach case, we discuss two problems: (1.13)—(1.14)
and (1.13)—(1.15). By using the Green’s function and its properties for each problem,
we obtain the Lyapunov-type inequality associated.
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31. Case O< u <1
3.1.1. Discussion of problem (1.13)—(1.14)

LEMMA 4. Assume that 0 < i < 1. And let u(t) € C([a,b],R), the problem
(1.13)—(1.14) has equivalent to the fractional integral equation

b b
u(t):/a lGﬂ(Ls)u(s)ds—i—/a Gnyu(t,s)q(s)u(s)ds, (3.1)

where

with 6 € {u,n+u}.
Proof. Applying the operator J". on the equation “¢D, (S¢D! + A )u(r) =
—q(t)u(r), we get
CEDR u(t) = —Au(t) =37, (qu)(t)+co, co €R. (3.3)

Next, Applying the operator 35 . on the equation (3.3), we obtain

_ u ~NAU (t—a)t
u(t)——)LCia+u(t)—Ja+ (qu)(l)-i-COm +c1, c1 €R, (3.4)
by the boundary conditions u(a) = 0 = u(b), we get ¢; =0, and

_T(u+1)

0= [wgau(b) + 37 (qu) (b)] :

Substituting the value of ¢y and c¢; in (3.4), we obtain

4\ k A\
o) = (572 ) St~ a3+ (522 ) 3 () (6) =T () 0

ie.,
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st () 0o oo
1 t—a

b u
— )T g (s u(s)ds
i | (22) 9 i
b b
_ / AGu(t,s)u(s)ds + / G (t,5)q(s)u (s) ds,

where Gg (t,s) with 6 € {u,n+ u} is given by (3.2). The proof is complete. [

LEMMA 5. ([10]) Assume that O < < 1. Then, The functions Gg,6 € {t,n + u}
defined in Lemma 4, satisfy the following properties:

i)
b __-af
[lgfi)}i]/{; |Gﬂ(t7s)’dS— m, (35)
ii) 1
_ _ n+u—
max }GTIJFIJ(I S)| [(Tl +‘LL 1)(b a)] ,Ul'l (36)

tacla] (n+2u = 1" + )

Proof. 1) It’s clear that t — 1 < 0, so, we have

(b—s)* (t—s)“ !
u
(; ) t—s)”_1
t # {
(b ) () LI}
a

So,
max/ Gu(t,s)|ds = — —/t— r—a “(b—s)”*lds—k/t(t—s)“*lds
t€lab u te[ab]_u b—a a
+/ ) g
A h—a S S
r _ H AV M M
_ 1 max (t a) ((b 1) (b—a) )+(t a)
L(u)refap) [\b—a u It u

e ety

b [(t—a)(b—0)"

(b—a?\"
(b—a)“( 4 )
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ii) For the second property, see the proof in [10]. O

We have the following Lyapunov-type inequality.

THEOREM 5. Assume that 0 < u < 1. If a nontrivial continuous solution to the
fractional boundary value problem (1.13)—(1.14) exists. Then

n+2y DT 4+ 1) - A (b—a)
/|‘1 (M4 u—1)(b—a)]"TH ! yu (1 22#‘11“(,u+1)>' (3.7)

Proof. Using the above integral equation (3.1), we get
b b
O] < A [ 1Gue.9) [u)]ds+ [ |Gren(r.5)| ) ()] ds
A b b
< Gyul(t,s)|ds+ Gnult, / ds,
Al max [ |Gu(e.9)]ds + ] max, |G (0.5 [ a(o)]ds
which yields
b b
Jal < 1Al max [ |Gu(e,5)|ds-+ ] max. [G-u(r,5)] [ lq(s)]ds.
t€la,b] Ja t.s€[a,b] a

Because ||u|| # 0 then

=2l max ff}Gu(t,s)|ds ,
S/ q(s)|ds.
t.s€[a,b]

By using Lemma 5 to the last inequality, we get the inequality (3.7). The proof is
complete [

REMARK 1. Notice that, if A =0, we get the special case: Theorem 3.

3.1.2. Discussion of problem (1.13)—(1.15)

LEMMA 6. Assume that 0 <t < 1. And let u(t) € C([a,b],R), the problem
(1.13)—(1.15) has equivalent to the fractional integral equation

b _
:/ AG(t,5)u ds—l—/ ST LG (1, 5)q(s)u (s) ds, (3.8)
where
B | %(b—s)”ﬂ*l—u(t—s)ﬂfha<s<t<b,
Gt,s) = —— (3.9)

Cu+1) | wye—a*

—7-1
(b—a)E=7 (b—s)"77, a<t<s<b,
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and
Tt 1-y)(—a)* (1)~
IN(TERY) s R Gy A prwm T e RO S
G(t,s) = (3.10)

Mt -7)—a)
FETDIm TP b-aF? a<i<s<b

Proof. The general solution of the equation <@, (£¢D!. +A)u (1) = —q(1)u(r)
is given by

t—a)*

1) =—-A3" u@)-3"* Dtdo =" Ly

w(t) = ~23%u(0) = T (qu) () + do s
where dy,d; € R. From the boundary condition u(a) =0, we get d; =0, so

(r—a)t

u(t) = —2A3% u(t) — 30 (qu) (1) +do (3.11)

Applying the operator on 2¢©Y+7 on (3.11), we get

DY (1 — )
F(pu+1)
= 2 (D137, ) 9 Tl — (54297 ) AN (qu) (1)
26@7 t—a)M
+dy a+( a) ’
Fu+1)
using the property (2.4) and Lemma 2, we obtain

SEDT u(t) = 25D I u(e) DL I (qu) (1) +do

LEoY __aAHY A=Y (t—a)t?
Do u(t)=—AT3, Tu(t)=7,; (qu)(t)+d0m-
From the boundary condition EC’}Z)ng(la) =0, we get
Fu+1-7r,~ _
—ap T AT U (b)+ 30 (qu) (b)] :

Substituting the value of dy in (3.11), by means of the Proof of Lemma 3.1 [11]),
we obtain

O AT g O

(t—a)! T(u+1=7) nru- ~
TG Boap e @) =3 @) ()

— e | [ e b s [ na- o us)as

+/ TG, 5)q(s)u (s) ds

do =

:/ AG (1, s)u( ds+/ TG (1, 5)g(s)u (s) ds,
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where G (t,s) and G (z,s) are given by (3.9) and (3.10) respectively. The proof is
complete. [J

LEMMA 7. Assume that 0 < < 1. Then, The functions G and G defined in
Lemma 6, satisfy the following properties:
i) For any t € |a,b],

b2 2(b—a)*
/a G(t,s)‘dsg %; (3.12)
ii)
max |G(t,s)| =C, (3.13)
t,s€a,b]
where C is given by (1.12).
Proof. 1) For the first property, we have
b 1 ! (”_Y)(t_a)” u—y—1 u—1
/a G(1,5)] s < Sy {/ G g (b =) s
b (;,L _Y) (t—a)” u—y—1
+/t W(b—s) ds}
1 b (.U_Y) (t—a)“ u—y—1 ! u—1
< FaTm {/ G (b9 ds+/a 1 (i—s) ds}
_ 2(t—a)*
S T(u+1)
2(b—a)*
S T(u+1)

ii) For the second property, see the proofin [11]. [
We have the following Lyapunov-type inequality.

THEOREM 6. Assume that 0 < u < 1. If a nontrivial continuous solution to the
fractional boundary value problem (1.13)—(1.15) exists. Then

b Y 1 2|A1(b—a)*
_ ntu—r-1 _ [l kol B S
/a (b=s) la(s)lds > C (1 T(u+1) )’ -1

where C is given by (1.12).
Proof. Using the integral equation (3.8), we get
b _ b .
) < 121 [ |Ges)|lu@lds+ [ (6= 1G(15) q(o)] e (s) s

b, _ b
< [l max. [ |Gte,5)|ds-+ ) max GG.9)] [ (b —9)" T g(s)l s
a ts€la, a

t€la,b
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In the same way as proving theorem 5 we obtain

1= [A|n ts‘ds

b
< b— n+p—y-1 d
G S L e gt las,

t.s€[a,b]
where m?x |G(z,s)] = C with C is given by (1.12) (See Proposition 3.2 in [11]).
t,s€la,b
By Lemma 7 and the last inequality, we get the inequality (3.14). The proof is com-
plete. O

REMARK 2. Note that, if L =0, we get the special case: Theorem 4.

32. Case l <u<2
3.2.1. Discussion of problem (1.13)—(1.14)

LEMMA 8. Assume that 1 < u < 2. And let u(t) € C*([a;b],R), the problem
(1.13)—(1.14) has equivalent to the fractional integral equation

b b
- / AGu(t,5)u(s)ds + / G (t,5)a(s)u (s) ds, (3.15)
where

R ! };%Z(b—s)s_l—(t—s)é_l,aésgtéb,

Gs(t,s) = 5 (3.16)
t

with 6 € {u,n+u}.

Proof. Using Lemma 3, we can write the equation EC@Z} (SCQZ+ +/l) u(t) =
—q(t)u(r) as follows

DT (1) + 22D u (1) = —q(t)u(t), (3.17)

Applying the operator Cigf H

and (2.7), we get

u(t) —u(a) —u(a)(t —a) + A3} (u(t) = u(a)) = =77 (qu) ). (3.18)

on the equation (3.17), and using the properties (2.6)

Substituting the value of the boundary condition u(a) = 0 in (3.18) we get
u(t) = (@)(t — @) — A3 u (1) = 3 (qu) 1), (3.19)

and using the boundary condition u(b) = 0 we obtain

W' (a) =

o [Au(b) + 91 g )].



LYAPUNOV-TYPE INEQUALITIES 77
Substituting the value of u'(a) in (3.19), we get
t—a

ult) = b—a

Using the same method as in the above proofs, we obtain the required result. [J

A3 () + T (qu) (1) = 23w (1) = T (qu) ).

LEMMA 9. Assume that 1 < i < 2. The functions Gg,8 € {u,n+u} definedin
Lemma 8, satisfy the following properties:
i) For any t € |a,b] we have

b 2(b—a)“'
/u |Gp(t,s)|ds < Twr’ (3.20)
ii) 1
~ _ _ n+u—
max [Gsa (1,8)| = (I H= DB a)] 3.21)

t5€|ab] C(m+u)(n+p)nts

Proof. i) By the Green’s function (3.16), when 6 = u we have

(=) gt gt

1 t
/ |GH(I7S)\ds:m/u ] N
1 b (t —a) )
+W/r (b—a)(b -t ds
L t([_a) —su_l s ; t _su . ’
S ) Ju (b—a)(b o d +F(u)/a(’ olg
1 b(l—a)
+W/f =y o) ds
B F(ly) (/ah ((;:Z)) (b—s)“’lds+/at (t_s)lilds)
- r(ul+1) (O_a) (b—a)“‘l+(t_a)ﬂ>
2(b—a)t
ST+

ii) For the second property, see the paper [12]. [
We have the following Lyapunov-type inequality.

THEOREM 7. Assume that 1 < u < 2. If a nontrivial continuous 2nd derivative
on la,b] solution to the fractional boundary value problem (1.13)—(1.14) exists. Then

b C(n+p)(n+p)"* _2[Af(b—a)f
/a la(s)lds > (M+u—1)(b—a)]"H! (1 F(u+1) )

(3.22)

Proof. By Lemmas 8 and 9 and taking the similar procedures in the Proof of The-
orem 5, we can obtain (3.22). [J

REMARK 3. If A =0 and 1+ p =2, we get the classical case: Theorem 1.
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3.2.2. Discussion of problem (1.13)—(1.15)

LEMMA 10. Assume that 1 < p < 2. And let u(t) € C*([a,b],R), the problem
(1.13)—(1.15) has equivalent to the fractional integral equation

/ AGy(t,5)u ds—/ (b— )"V Gy (1, 5)q(s)u (s) ds, (3.23)

where
M _ IJ—)/—I 1 o u—1
~ T(u—y)(b—a)l=7 (b—s) T(u) (t—s) ,a<s<t<Db,
Gy (t,s) = e (3.24)
T'(2—y)(t—a u—y—1
T ne-at7 @) a<t<s<b,
and
re-—y(t—a) (t—s)1HH1
~ Ttnn a7 T b 14 SSS1sh,
G (t,5) = (3.25)
r2-y(t—a)

a7l 7 a<t<s<b

Proof. Because u(a) =0, we can use the equation (3.19). Then, by applying the
operator “*®7, on (3.19), we get

DY u(t) = u(a) “DL (1 —a) ~ AT Tu(r) = IV (qu)(1)
1

= ”/(a)m(t —a) = AT T (1) = 31 (qu) (),
using the boundary condition “¢D”, u(b) = 0, we obtain

= iy P )+ 3 ) 0)].

Substituting the value of «/(a) in (3.19), we obtain

(t) = %Jgﬂu (b) =AM u(r)
+r((2b_—y3)(iya)jg++ #77(qu) () (qu)(t)
i.e.,
ult) = A_TC=ypli—a) — )y (s S—L ' — )" Yy (s)ds
R YT R L /a(b ) (s)d r(y)/a(’ youls)d

I Te-p(-a

+ [ =9 g(syu(s)a
Ftu—7 (G-a 7 Jo " " e
1

e [ =T (s
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I R 1 R () (A PO
=), (F(u—y)(b—aw—r(b ) () ) e

+2 / T “2 yybt—a)l) y(b—s)“fyflu(s)ds

+/ 5)THHrd re-yt—-a (t— )K"
n+u=Nb=a™ T+ (-9
s 5)1HH y-1 22—y (t—a) D ls) ds
d +/ (Tl"‘ll—']/)(b—a)l_yq() ()d
= h@(”)“(s)m N Gt ds. O (326)

LEMMA 11. Assume that 1 < u < 2. The functions Gi and G, defined in Lemma
10, satisfy the following properties:

i) For any t € [a,b] we have

b~ r2-vy) 1 .
/a|G1(t,s)ds<(r(”_y_H)—i—r(MJrl))(b Q' (3.27)
ii) N
max |Gs(t,s)| = C, (3.28)
t.s€[a,b]

where C=C (here C is given by (1.12 with 1 < u <2)).

Proof. 1) For the first property, we have

b t _ _a
/a \Gl(t,s)|ds=/a r(l;(z_y)y&f’_a)ﬂ_y (b—s)“’y’l——r(lu) (t—s)* " ds
bl T(2- —a L
+/ (li( 7))870— a)l)y(b_s)u s

2 yt—a) v 4 1 ~1
b—s)h 1 1g /— _ gy
. Ta—pb—ai 7Y ot

re-pe-a''t-a (-a*

F(u—v+1) T(u+1)
r2—y)b—a ' b—a) (b-a
Fp—ry+1) T+ 1)
_ 2-v 1 y
- (F(u—y+1) +r(u+1)> (b—a). (3.29)

ii) For the second property, it can be derived by the fact that the proof of Proposi-
tion 3.2 in [11] also remains valid for u € (1,2]. O

We have the following Lyapunov-type inequality.
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THEOREM 8. Assume that 1 < u < 2. If a nontrivial continuous 2nd derivative
on la,b] solution to the fractional boundary value problem (1.13)—(1.14) exists. Then

) _
/u (b—s)"H T g (s)|ds > % (1 —[A(b—a) (r(fff yfn * 1"(,u1+ 1>)> ’
(3.30)

where C is given by (3.28).

Proof. By Lemmas 10 and 11 and taking the similar procedures in the Proof of
Theorem 5, we can obtain (3.30). [
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