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ON MULTIPLICATIVE SUM ZAGREB INDEX OF
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(Communicated by L. Mihoković)

Abstract. The multiplicative sum Zagreb index of a graph G is the product of the sums of de-
grees of pairs of adjacent vertices. In this paper, the maximal and minimal multiplicative sum
Zagreb indices of trees with fixed domination number are presented. Furthermore, the corre-
sponding extremal trees are identified.

1. Introduction

In chemical graph theory and mathematical chemistry, a topological index is a
numerical parameter that can be applied in describing the properties or activities of
organic compounds, and it plays a substantial role in pharmacology, materials science
and chemistry, etc. (see [12], [13], [23]). One of the most studied topological indices is
the Zagreb indices. They first appeared within certain approximate expressions for the
total π -electron energy [14]. For a graph G , the first Zagreb index M1 and the second
Zagreb index M2 are defined as:

M1(G) = ∑
v∈V (G)

d(v)2, M2(G) = ∑
uv∈E(G)

d(u)d(v),

where d(v) is the degree of vertex v in G .
These two classical topological indices (M1 and M2 ) and their modified versions

have been used to study ZE-isomerism, heterosystems, complexity and chirality of
molecule, etc. [6], [19], [20]. Among the modified versions, the multiplicative Za-
greb indices, nemely, the first and second multiplicative Zagreb indices (denoted by Π1

and Π2 ) [24] and multiplicative sum Zagreb index (denoted by Π∗
1 ) [10] have attracted

considerable attention from researchers. The indices Π1 and Π2 are defined as below:

Π1(G) = ∏
u∈V (G)

d(u)2, Π2(G) = ∏
uv∈E(G)

d(u)d(v) = ∏
u∈V (G)

d(u)d(u),
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while the index Π∗
1 is defined as:

Π∗
1(G) = ∏

uv∈E(G)
(dG(u)+dG(v)).

In [10], Eliasi et al. obtained the minimum multiplicative sum Zagreb index of con-
nected graphs. Xu and Das [26] presented the minimum and maximum multiplicative
sum Zagreb indices of trees, unicylcic graphs and bicyclic graphs. The authors of this
paper [8] determined the maximal multiplicative sum Zagreb indices with given num-
ber of cut vertices/cut edges/vertex connectivity/edge connectivity of graphs. For other
mathematical investigations of multiplicative sum Zagreb index, the readers can refer
to [1], [5], [16], [22], [25].

In this work, we only consider the connected graphs without multiple edges and
loops. A graph G = (V (G),E(G)) consists of a set of vertices V (G) and a set of
edges E(G) . We denote the set of all neighbors of vertex x in G by NG(x) (N(x) for
short), and denote the number of vertices with degree i by ni . Let G−uv be the graph
obtained from G by deleting the edge uv ∈ E(G) . The subgraphs of G obtained by
deleting the vertex x (x ∈V (G)) as well as its incident edges is denoted by G− x . Let
Sn and Pn be the n -vertex star and the n -vertex path, respectively.

A dominating set D of a graph G is a subset of V (G) such that each vertex in
V (G)\D is adjacent to at least one vertex in D . The minimum number of |D| in G is
called the domination number, which is denoted by γ(G) . It is evident that γ(T ) = 1
for a tree T of order n if and only if T ∼= Sn . That, as we all know, for an n -vertex
graph G , γ(G) � n

2 [21]. Fink et al. [11] determined the n -vertex graphs G with
γ(G) = n

2 . Let TTTn,γ be the set of all n -vertex trees with domination number γ . One can
see [3] for other terminologies and notations.

At present, studying the properties of topological indices of graphs with given
different graph parameters is an important task. Furthermore, it is meaningful to study
the topological indices of trees with given parameters since the molecular graph of
alkanes is a tree. And many researchers have paid attention to the relation of topological
indices and domination number recently [2], [4], [7], [15], [17], [18]. Therefore, here
we provide the maximum and minimum multiplicative sum Zagreb indices of trees with
fixed domination number, and identify the corresponding extremal trees.

2. Some lemmas

In this section, we present some lemmas which are used to prove the forthcoming
section results. The proofs of unreferenced lemmas can be found in the appendix.

LEMMA 2.1. [9] The function h1(x) = x+c
x is strictly decreasing with respect to

x � 1 , where x is a real number and c � 1 is an integer.

LEMMA 2.2. [9] The function h2(x) = (x+c)x+c

xx is strictly increasing with respect
to x � 1 , where x is a real number and c � 1 is an integer.
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LEMMA 2.3. Let

h3(r) = (r+2)
(r+1

r

)r−2
,

where r � 2 is a real number. Then h3(r) is increasing for r .

LEMMA 2.4. Let

l1(n,γ) =
(n− γ)n−2γ(n−2γ +3)n−2γ(n−2γ +4)

(n− γ +1)n−3γ+2(n−2γ +2)n−2γ(n− γ +2)γ−1 ,

where n � 6 is a finite positive integer and 3 � γ � n
2 . Then l1(n,γ) < 1 .

LEMMA 2.5. Let

g(s,s1) =
(s+2)s−s1

ss1−1(s+1)s−2s1
,

where s1 � 2 , s � 4 are real numbers and s1 < s. Then g(s,s1) is increasing for s and
s1 , respectively.

LEMMA 2.6. Let

l2(n,γ) =
(n− γ)2n−5γ+3(n− γ +1)4γ−n−4

(n− γ −1)n−2γ(n− γ +2)γ−1 ,

where n � 8 is a finite positive integer and 3 � γ � n
2 . Then l2(n,γ) < 1 .

LEMMA 2.7. [11] A tree T on n vertices has γ(T ) = n
2 if and only if each vertex

with degree greater than 1 of T is adjacent to exactly one pendant vertex.

LEMMA 2.8. Let

g(s) =
(s+2)s−1

s(s+1)s−3 ,

where s � 2 is a real number. Then g(s) is increasing for s.

LEMMA 2.9. Let

l3(n,γ) =
(n− γ)2n−3γ−2

(n− γ −2)(n− γ −1)n−γ−5(n− γ +1)n−3γ+3(n− γ +2)γ−1 ,

where n � 7 is a finite positive integer and 3 � γ � n
2 . Then l3(n,γ) < 1 .

LEMMA 2.10. Let

ϕ(n) =
nn−1

3n−1( 5
4)3(n−3)

,

where n � 5 is an integer. Then ϕ(n) > 1 .
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LEMMA 2.11. Let

φ(x) =
(

x+2
x+1

)x−1

,

where x � 3 is a real number. Then φ(x) is increasing for x .

3. Maximal multiplicative sum Zagreb index of trees with
fixed domination number

Let TTT n,γ be the trees obtained from Sn−γ+1 by attaching a pendant edge to its
γ − 1 pendant vertices. Notice that if T ∈ TTTn,γ with maximum degree n− γ , then
T ∼= TTT n,γ . Let

f1(n,γ) = Π∗
1(TTT n,γ) = 3γ−1(n− γ +1)n−2γ+1(n− γ +2)γ−1.

THEOREM 3.1. Let T ∈TTTn,γ . Then

Π∗
1(T ) � f1(n,γ).

The equality occurs if and only if T ∼= TTT n,γ .

Proof. If n = 3, Π∗
1(P3) = 32 = f1(3,1) . If n = 4, Π∗

1(P4) = 4 ·32 = f1(4,2) and
Π∗

1(S4) = 43 = f1(4,1) . Now, suppose n � 5 and the result holds for any trees of order
n−1. Denoted by u1u2 · · ·ud+1 a diameter in T . If d = 2, then T ∼= Sn , γ(Sn) = 1 and
Π∗

1(Sn) = nn−1 = f1(n,1) , the result is verified. So in what follows, we suppose that
d � 3 and γ(T ) � 2. Let us denote d(u2) = r � 2, N(u2) = {u1,u3,x1,x2, · · · ,xr−2}
and d(u3) = s � 2, N(u3) = {u2,u4,y1,y2, · · · ,ys−2} . Set T1 = T −{u1} . We discuss
in two cases.

Case 1. γ(T1) = γ(T ) .
By induction hypothesis and Lemmas 2.1 and 2.3, we deduce that

Π∗
1(T ) =Π∗

1(T1) · (r+1)(r+ s)
r+ s−1

·
r−2

∏
i=1

r+1
r

� f1(n−1,γ) · (r+1)(r+2)
r+1

·
(r+1

r

)r−2

= f1(n,γ) · (n− γ)n−2γ(n− γ +1)γ−1

(n− γ +1)n−2γ+1(n− γ +2)γ−1 · (r+2)
(r+1

r

)r−2

� f1(n,γ) · (n− γ)n−2γ(n− γ +1)γ−1

(n− γ +1)n−2γ+1(n− γ +2)γ−1 · (n−2γ +4)
(n−2γ +3

n−2γ +2

)n−2γ

= f1(n,γ) · (n− γ)n−2γ(n−2γ +3)n−2γ(n−2γ +4)
(n− γ +1)n−3γ+2(n−2γ +2)n−2γ(n− γ +2)γ−1

since γ � n−(r−2)
2 , that is r � n−2γ +2.
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If γ = 2, Π∗
1(T )� f1(n,γ) . The equalities occur if and only if s = 2 and r = n−2.

This implies T ∼= TTT n,2 . If γ � 3, by lemma 2.4, one has Π∗
1(T ) < f1(n,γ) .

Case 2. γ(T1) = γ(T )−1.
In this case, we have r = 2, otherwise u2 belongs to each minimum dominating

set and implies γ(T1) = γ(T ) . If s = n− γ , then T ∼= TTT n,γ , and the theorem holds. So
in what follows, we assume that s � n− γ −1. By Case 1, we suppose that d(yi) � 2,
i ∈ {1,2, · · · ,s−2} . If u4 is a pendant vertex or a support vertex with d(u4) = 2, then
T ∼= TTT n,γ . In other cases, without loss of generality, we suppose that d(y1) = · · · =
d(ys1) = 1, d(ys1+1) = · · · = d(ys1+s2) = 2, where s1 + s2 = s−2.

Case 2.1. s1 � 2.
Set T2 = T −{y1} . Then γ(T2) = γ(T ) . By induction hypothesis and Lemma 2.1,

we arrive at

Π∗
1(T ) =Π∗

1(T2) · (s+1)(s+2)(s+d(u4))
(s+1)(s+d(u4)−1)

·
(

s1

∏
i=2

s+1
s

)
·
(

s2

∏
j=1

s+2
s+1

)

� f1(n−1,γ) · (s+2)(s+2)
s+1

·
(s+1

s

)s1−1 ·
( s+2

s+1

)s−s1−2

= f1(n,γ) · (n− γ)n−2γ(n− γ +1)γ−1

(n− γ +1)n−2γ+1(n− γ +2)γ−1 ·
(s+2)s−s1

ss1−1(s+1)s−2s1
.

It is easy to see that γ � n−(s1−1)
2 , that is s1 � n− 2γ + 1. Furthermore, since s �

n− γ −1 and γ � 3, n � 8 in this case, by Lemmas 2.5 and 2.6, we derive

Π∗
1(T ) � f1(n,γ) · (n− γ)n−2γ(n− γ +1)γ−1

(n− γ +1)n−2γ+1(n− γ +2)γ−1 ·
(n− γ +1)γ−2

(n− γ −1)n−2γ(n− γ)3γ−n−3

= f1(n,γ) · (n− γ)2n−5γ+3(n− γ +1)4γ−n−4

(n− γ −1)n−2γ(n− γ +2)γ−1

< f1(n,γ).

Case 2.2. s1 � 1.
In this case, one can see that γ � 3, n � 7, and n− γ � 4.
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� � �

���� �
�

��
u1 u2 u3 u4

· · ·
︷︸︸︷n−γ−4

T1 (n = 2γ +1)
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�

�

� � � �

� � �

����
���� �

�
��

u1 u2 u3 u4

· · ·
︷︸︸︷n−γ−4

T2 (n = 2γ +1)
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� � � �

� � �

�

���� �
�

�� ��
u1 u2 u3 u4

· · ·
︷︸︸︷n−γ−4

T3 (n = 2γ)

Figure 1. The graphs T1 , T2 and T3 .

Case 2.2.1. s = n− γ −1.
If s1 = 0, we have n � 6+2(n− γ −3) , that is n � 2γ . Since n � 2γ , it follows

that n = 2γ . By Lemma 2.7, u3 should be adjacent to exactly one pendant vertex, a
contradiction. Hence, s1 = 1. Now, we can get that n � 7+ 2(n− γ − 4) , that is n �
2γ +1. It is straightforward to check that T ∈ {T1,T2,T3} (see Figure 1). If n = 2γ +1,
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we can see that Π∗
1(T1)< Π∗

1(T2) , and for γ � 3, Π∗
1(T2)

f1(2γ+1,γ) = 42·3γ−2(γ+1)(γ+3)(γ+2)γ−2

3γ−1(γ+2)2(γ+3)γ−1 =

42

3(γ+3) · γ+1
γ+2 ·

(
γ+2
γ+3

)γ−3
< 1. For n = 2γ and γ � 3,

Π∗
1(T3)

f1(2γ,γ) = 4·5·3γ−2γ(γ+2)(γ+1)γ−3

3γ−1(γ+1)(γ+2)γ−1 =

4·5γ
3(γ+1)(γ+2) ·

(
γ+1
γ+2

)γ−3
< 1 ( 4·5γ

3(γ+1)(γ+2) � 1 since γ
(γ+1)(γ+2) is decreasing for γ � 3).

The Theorem holds.
Case 2.2.1. s < n− γ −1.
Set T3 = T −{u1,u2} . Then T3 ∈TTTn−2,γ−1 . Since s � n−γ−2 and γ � 3, n � 7,

by Lemmas 2.1, 2.8, 2.9 and induction hypothesis, we deduce that

Π∗
1(T ) =Π∗

1(T3) · (1+2)(s+2)(s+d(u4))(s+d(y1))
(s+d(u4)−1)(s+d(y1)−1)

·
(

s−2

∏
i=2

s+2
s+1

)

� f1(n−2,γ −1) · 3(s+2)(s+2)(s+1)
(s+1)s

·
(s+2

s+1

)s−3

= f1(n−2,γ −1) · 3(s+2)s−1

s(s+1)s−3

� f1(n,γ) · (n− γ)n−2γ+1(n− γ +1)γ−2

(n− γ +1)n−2γ+1(n− γ +2)γ−1 ·
(n− γ)n−γ−3

(n− γ −2)(n− γ−1)n−γ−5

= f1(n,γ) · (n− γ)2n−3γ−2

(n− γ −2)(n− γ−1)n−γ−5(n− γ +1)n−3γ+3(n− γ +2)γ−1

< f1(n,γ). �

4. Minimal multiplicative sum Zagreb index of trees with
fixed domination number

We define a class of trees TTT by recursion. We consider the path on 3a vertices
for any integer a � 1 in TTT and construct new trees in the class by the following two
ways.

(1) If T ∈TTT satisfies that there is u ∈ V (T ) (denote N(u) = {v1,v2} ) such that
d(v1) = d(v2) = 2 and u belongs to a minimal dominating set of T , and choose any
path P = z1z2 · · · z3b+1 (b � 1 is an integer), then the trees T ′ = (V (T ′),E(T ′)) with
V (T ′) =V (P)∪V(T ) and E(T ′) = E(P)∪E(T )∪{uz1} , belongs to TTT .

(2) If T ∈TTT , w is a pendant vertex of T and choose any path P = z1z2 · · ·z3b (b �
1 is an integer), then T ′′ = (V (T ′′),E(T ′′)) with V (T ′′) = V (P)∪V (T ) and E(T ′′) =
E(P)∪E(T )∪{wz1} , belongs to TTT .

Let TTT n,γ be the set of all n -vertex trees T ∈TTT with domination number γ . Let

f2(n,γ) = 3n−3γ+2 ·43(4γ−n−1) ·53(n−3γ).

LEMMA 4.1. Let T ∈TTT n,γ . Then

Π∗
1(T ) = f2(n,γ).
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Proof. Since T ∈TTT n,γ , then⎧⎨
⎩

n1 +n2 +n3 = n,
n1 +2n2 +3n3 = 2(n−1),
n3 + n−n3−3n3

3 = γ.

Thus n1 = n− 3γ + 2, n2 = 6γ − n− 2 and n3 = n− 3γ . By the definitions of multi-
plicative sum Zagreb index and TTT , we obtain

Π∗
1(T ) = (3+2)3n3 · (1+2)n1 · (2+2)(n−1−3n3−n1)

= 53(n−3γ) ·3(n−3γ+2) ·4n−1−(4n−12γ+2)

= 3n−3γ+2 ·43(4γ−n−1) ·53(n−3γ)

= f2(n,γ).

This finishes the proof. �

THEOREM 4.2. Let T ∈TTTn,γ . Then

Π∗
1(T ) � f2(n,γ).

The equality occurs if and only if T ∈TTT n,γ .

Proof. If n = 3, Π∗
1(P3) = 32 = f2(3,1) . If n = 4, Π∗

1(P4) = 4 ·32 > f2(4,2) = 49

56

and Π∗
1(S4) = 43 > f2(4,1) =

(
15
4

)3
. Suppose now that n � 5 and the result holds

for any trees of order n− 1. Denoted by u1u2 · · ·ud+1 a diameter in T . If d = 2,

T ∼= Sn and γ(Sn) = 1. By Lemma 2.10, for n � 5,
Π∗

1(Sn)
f2(n,1) = nn−1

3n−1( 5
4 )3(n−3) > 1 and

the theorem is verified. So in what follows, we assume that d � 3. For conve-
nience, we denote d(u2) = r , N(u2) = {u1,u3,x1,x2, · · · ,xr−2} and d(u3)= s , N(u3) =
{u2,u4,y1,y2, · · · ,ys−2} , where r,s � 2. Next, we consider two possible cases.

Case 1. d(u2) = r � 3.
Note that d(xi) = 1 for each i ∈ {1,2, · · · ,r− 2} . Set T1 = T − u1 . Then T1 ∈

TTTn−1,γ . By the definition of Sombor index and induction hypothesis, it follows that

Π∗
1(T ) =Π∗

1(T1) · (r+1)(r+1)r−2(r+ s)
rr−2(r+ s−1)

.

Case 1.1. r � 4.
By Lemma 2.2, we get

Π∗
1(T ) >Π∗

1(T1) · (r+1)r−1

rr−2

� f2(n−1,γ) · (r+1)r+1

rr · r2

(r+1)2

� f2(n,γ) · 43

3 ·53 ·
53

42

> f2(n,γ).
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Case 1.2. r = 3 and s � 8.
By Lemma 2.1, we derive

Π∗
1(T ) � f2(n,γ) · 43

3 ·53 ·
42

3
· s+3
s+2

� f2(n,γ) · 1024
1125

· 11
10

= f2(n,γ) · 11264
11250

> f2(n,γ).

Case 1.3. r = 3 and s � 9.
Set T ′

1 = T −{u1,u2,x1} . In this case, there is a domination set D with |D| = γ
in T such that u2 ∈ D , and u3 ∈ D or u3 ∈ N[D \ {u2}] , then γ(T ′

1) = γ(T )− 1 and
T ′
1 ∈TTTn−3,γ−1 . By the induction hypothesis, it follows that

Π∗
1(T ) =Π∗

1(T
′
1) ·

42(s+3)(s+d(u4))
(s+d(u4)−1)

·
s−2

∏
i=1

s+d(yi)
s+d(yi)−1

> f2(n−3,γ −1) ·42(s+3)

� f2(n,γ) · 1
43 ·42 ·12

> f2(n,γ).

Case 2. d(u2) = 2 for any diameter u1u2 · · ·ud+1 .
Case 2.1. d(u3) = s � 3.
Denote d(u4) = t . By Case 1, we suppose d(yi) � 2, i = 1,2, · · · ,s− 2. Set

T2 = T −{u1,u2} . Since there exists a dominating set D with |D| = γ in T such that
u2 ∈ D , and u3 ∈ D or u3 ∈ N[D \ {u2}] , then γ(T2) = γ(T )− 1 and T2 ∈ TTTn−2,γ−1 .
By induction hypothesis and Lemmas 2.1, 2.2, we deduce that

Π∗
1(T ) =Π∗

1(T2) · 3(s+2)(s+d(u4))
(s+d(u4)−1)

·
s−2

∏
i=1

s+d(yi)
s+d(yi)−1

> f2(n−2,γ −1) ·3(s+2) ·
(

s+2
s+1

)s−2

= f2(n−2,γ −1) ·3 · (s+2)s+2

(s+1)s+1 ·
(s+1)3

(s+2)3

� f2(n,γ) · 3 ·5
3

46 · 3 ·5
2

4

= f2(n,γ) · 28125
16384

> f2(n,γ).

Case 2.2. d(u3) = 2.
Denote N(u4) = {u3,u5,w1,w2, · · · ,wt−2} and d(u5)= k . For i∈{1,2, · · · , t−2} ,

if there are w′,w′′ ∈V (T ) such that w′ ∈ N(wi) and w′′ ∈ N(w′) , then w′′w′wiu4u5 · · · ,
ud+1 is a diameter of T ; if wi is a support vertex with d(wi) � 3, similarly to Case
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1, we can prove that Π∗
1(T ) > f2(n,γ) . So by the above cases, we may assume that

d(wi) � 2, i = 1,2, · · · ,t −2.
Case 2.2.1. d(u4) = t � 3.
Set T3 = T −{u1,u2,u3} . Then T3 ∈ TTTn−3,γ−1 . By induction hypothesis and

Lemmas 2.1, 2.2, we have

Π∗
1(T ) =Π∗

1(T3) · 4 ·3 · (t +2)(t + k)
(t + k−1)

·
t−2

∏
i=1

t +d(wi)
t +d(wi)−1

> f2(n−3,γ −1) ·12(t +2) ·
(

t +2
t +1

)t−2

= f2(n−3,γ −1) ·12 · (t +2)t+2

(t +1)t+1 ·
(t +1)3

(t +2)3

� f2(n,γ) · 1
43 ·

12 ·52

4

= f2(n,γ) · 75
64

> f2(n,γ).

Case 2.2.2. d(u4) = t = 2.
Case 2.2.2.1. There is a minimum dominating set D with u4 ∈ D in T .
Set T4 = T −{u1,u2} . Now we can get that

Π∗
1(T ) =Π∗

1(T4) · 4 ·4 ·33
�16 f2(n−2,γ −1)

=16 f2(n,γ) · 3 ·5
3

46

= f2(n,γ) · 375
256

> f2(n,γ).

Case 2.2.2.2. u4 /∈ D for each minimum dominating set D in T.
Denote N(u5) = {u4,v1,v2, · · · ,vk−1} .
If d(u5) = k = 2, set T5 = T −{u1,u2,u3} . Then T5 ∈TTTn−3,γ−1 . Thus

Π∗
1(T ) =Π∗

1(T5) · 4
3 ·3
3

� f2(n−3,γ −1) ·43

= f2(n,γ).

With the equality holds only if T5 ∈TTT n−3,γ−1 , which implies that T ∈TTT n,γ .
If d(u5) = k � 3 and for each i ∈ {1,2, · · · ,k − 1} , d(vi) � 2, set T6 = T −

{u1,u2,u3,u4} . Then T6 ∈ TTTn−4,γ−1 . By induction hypothesis and Lemma 2.11, one



92 X. SUN, Y. GAO AND J. DU

has

Π∗
1(T ) =Π∗

1(T6) ·3 ·42 · (k+2) ·
k−1

∏
i=1

k+d(vi)
k+d(vi)−1

� f2(n−4,γ −1) ·3 ·42 · (k+2) ·
(

k+2
k+1

)k−1

� f2(n−4,γ −1) ·3 ·42 ·5 · 5
2

42

= f2(n,γ).

With the equalities if and only if T6 ∈TTT n−4,γ−1 and d(u5) = k = 3, d(v1) = d(v2) = 2,
which implies that T ∈TTT n,γ .

If d(u5) = k � 3 and for p = max{d(v1),d(v2), · · · ,d(vk−1)} � 3, without loss of
generality, we assume that d(v1) = p . Denote N(v1) = {u5,z1,z2, · · · ,zp−1} . By the
above cases, we suppose that d(zi) � 2 for i∈ {1,2, · · · , p−1} . We discuss two disjoint
components T7 and T8 in T −u5v1 , containing the vertex u5 and v1 , respectively. By
induction hypothesis and Lemmas 2.1, 2.11, we deduce that

Π∗
1(T ) =Π∗

1(T7) ·Π∗
1(T8) · (k+2)(p+ k)

k+1
·
k−1

∏
i=2

k+d(vi)
k+d(vi)−1

p−1

∏
j=1

p+d(z j)
p+d(z j)−1

= f2(n,γ) · 3
2

43 ·
(k+2)(p+ k)

k+1
·
k−1

∏
i=2

k+d(vi)
k+d(vi)−1

p−1

∏
j=1

p+d(z j)
p+d(z j)−1

> f2(n,γ) · 3
2

43 ·
(k+2)(k+3)

k+1
·
(

p+2
p+1

)p−1

� f2(n,γ) · 3
2

43 ·
5 ·6
4

· 5
2

42

= f2(n,γ) · 6750
4096

> f2(n,γ).

The proof is completed. �

Appendix

Proof of Lemma 2.3. It is easy to see that h3(r) = (r+1)r+1

rr · r2(r+2)
(r+1)3 . Let h4(r) =

r2(r+2)
(r+1)3 . Then for r � 2,

d lnh4(r)
dr

=
2
r

+
1

r+2
− 3

r+1
=

r+4
r(r+1)(r+2)

> 0.

Hence h4(r) is increasing for r . Moreover, by Lemma 2.2, we deduce that h3(r)
is increasing for r . �
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Proof of Lemma 2.4. It is routine to check that ln l1(n,γ) = (n− 2γ) ln(n− γ)+
(n− 2γ) ln(n− 2γ + 3)+ ln(n− 2γ + 4)− (n− 3γ + 2) ln(n− γ + 1)− (n− 2γ) ln(n−
2γ +2)− (γ −1) ln(n− γ +2) . Thus,

∂ ln l1(n,γ)
∂n

= ln
(n− γ)(n−2γ +3)

(n− γ +1)(n−2γ +2)
+
( 2γ −1

n− γ +1
− γ

n− γ
− γ −1

n− γ +2

)
+
( 2

n−2γ +2
+

1
n−2γ +4

− 3
n−2γ +3

)

= ln
n−2γ+3
n−2γ+2
n−γ+1
n−γ

+
g1(n,γ)

(n− γ)(n− γ +1)(n− γ +2)(n−2γ +2)(n−2γ +3)(n−2γ +4)
,

where g1(n,γ) = 3n2γ2 − 3n2γ − 6n2 − 11nγ3 + 33nγ2− 16nγ − 12n+ 10γ4− 48γ3 +
74γ2−36γ . Since n � 2γ , then for γ � 3,

∂g1(n,γ)
∂n

=6n(γ2− γ −2)−11γ3 +33γ2−16γ −12

�12γ(γ2− γ −2)−11γ3 +33γ2−16γ −12

=γ3 +21γ2−40γ −12

=γ3 −12+ γ(21γ−40) > 0.

So g1(n,γ) � g1(2γ,γ) = 6γ(γ − 2)(γ + 5) > 0. Furthermore, for γ � 3, n− γ >

n− 2γ + 2, by Lemma 2.1, we have ln
n−2γ+3
n−2γ+2
n−γ+1
n−γ

> 0. Consequently, ∂ ln l1(n,γ)
∂n > 0 and

l1(n,γ) is increasing for n .
Notice that

∂ ln l1(n,γ)
∂γ

= ln
(n− γ +1)3(n−2γ +2)2

(n− γ +2)(n− γ)2(n−2γ +3)2 −
( 2γ −1

n− γ +1
− γ

n− γ
− γ −1

n− γ +2

)
−2
( 2

n−2γ +2
+

1
n−2γ +4

− 3
n−2γ +3

)
= ln

(n− γ +1)3(n−2γ +2)2

(n− γ +2)(n− γ)2(n−2γ +3)2 −
( 2

n−2γ +2
+

1
n−2γ +4

− 3
n−2γ +3

)
−
[( 2γ −1

n− γ +1
− γ

n− γ
− γ −1

n− γ +2

)
+
( 2

n−2γ +2
+

1
n−2γ +4

− 3
n−2γ +3

)]

= ln

[
n− γ +1
n− γ +2

·
( n−γ+1

n−γ
n−2γ+3
n−2γ+2

)2]
− n−2γ +6

(n−2γ +2)(n−2γ +3)(n−2γ +4)

− g1(n,γ)
(n− γ)(n− γ +1)(n− γ +2)(n−2γ +2)(n−2γ +3)(n−2γ +4)

.
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For γ � 3, by Lemma 2.1, we have ln
[

n−γ+1
n−γ+2 ·

( n−γ+1
n−γ

n−2γ+3
n−2γ+2

)2]
< 0. Consequently, ∂ ln l1(n,γ)

∂γ

< 0 and l1(n,γ) is decreasing for γ . So we conclude that

l1(n,γ) � l1(n,3) =
(n−3)2n−12

(n−2)n−8(n−4)n−6(n−1)2 .

Since

lim
n→+∞

l1(n,3) = lim
n→+∞

[(
1− 1

n−2

)−(n−2)]−1 ·
(
1+

1
n−4

)n−4 · (n−2)6(n−4)2

(n−3)6(n−1)2

= e−1 · e ·1 = 1,

then l1 = 1 is the horizontal asymptote of l1(n,3) . Furthermore, since 0 < l1(6,3) =
16
25 < 1, l1(n,3) is increasing for n and n is a finite positive integer, we deduce that
l1(n,3) < 1 and l1(n,γ) � l1(n,3) < 1. �

Proof of Lemma 2.5. Observe that lng(s,s1) = (s− s1) ln(s+ 2)− (s1 − 1) lns−
(s−2s1) ln(s+1) . So

∂ lng(s,s1)
∂ s

= ln
s+2
s+1

+
3s−2s1 +2

s(s+1)(s+2)
> 0

and

∂ lng(s,s1)
∂ s1

= ln
(s+1)2

s(s+2)
> 0.

Therefore, g(s,s1) is increasing for s and s1 , respectively. �

Proof of Lemma 2.6. Note that ln l2(n,γ) = (2n− 5γ + 3) ln(n− γ)− (n− 4γ +
4) ln(n− γ +1)− (n−2γ) ln(n− γ −1)− (γ −1) ln(n− γ +2) . Thus,

∂ ln l2(n,γ)
∂n

= ln
(n− γ)2

(n− γ −1)(n− γ +1)
+ (γ −1)

( 3
n− γ +1

+
1

n− γ −1
− 3

n− γ
− 1

n− γ +2

)
= ln

(n− γ)2

(n− γ)2−1
+

6(γ −1)
(n− γ)(n− γ −1)(n− γ +1)(n− γ +2)

> 0.

Hence l2(n,γ) is increasing for n .
Furthermore,

∂ ln l2(n,γ)
∂γ

= ln
(n− γ +1)4(n− γ −1)2

(n− γ)5(n− γ +2)
− (γ −1)

( 3
n− γ +1

+
1

n− γ −1
− 3

n− γ
− 1

n− γ +2

)
= ln

(n− γ +1)4(n− γ −1)2

(n− γ)5(n− γ +2)
− 6(γ −1)

(n− γ)(n− γ−1)(n− γ +1)(n− γ +2)
.
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For 3 � γ � n
2 , one can easily check that (n−γ)5(n−γ +2)−(n−γ+1)4(n−γ−1)2 =

n4 − 4n3γ + 4n3 + 6n2γ2 − 12n2γ + n2 − 4nγ3 + 12nγ2 − 2nγ − 2n + γ4 − 4γ3 + γ2 +
2γ −1 = n2(n−2γ)2 +2nγ2(n−2γ)+4n(n− γ)(n−2γ)+2nγ(γ−1)+2n(γ2−1)+
n2 + γ4 −4γ3 + γ2 +2γ −1 > 0 (n2 + γ4 −4γ3 + γ2 +2γ −1 � 4γ2 + γ4 −4γ3 + γ2 +
2γ − 1 = γ2(γ − 2)2 + γ2 + 2γ − 1 > 0). Thus ln (n−γ+1)4(n−γ−1)2

(n−γ)5(n−γ+2) < 0. Consequently,
∂ ln l2(n,γ)

∂γ < 0 and l2(n,γ) is decreasing for γ . So it can be concluded that

l2(n,γ) � l2(n,3) =
(n−3)2n−12

(n−2)n−8(n−4)n−6(n−1)2 .

The rest of the proof is similar to lemma 2.4. �

Proof of Lemma 2.8. One can write g(s)= (s+2)s+2

(s+1)s+1 · (s+1)4

s(s+2)3 . Let h(s)= ln (s+1)4

s(s+2)3 =
4ln(s+1)− lns−3ln(s+2) . Then for s � 2,

dh(s)
ds

=
4

s+1
− 1

s
− 3

s+2
=

2(s−1)
s(s+1)(s+2)

> 0.

Therefore, h(s) is increasing for s . Moreover, by Lemma 2.2, g(s) is increasing for
s . �

Proof of Lemma 2.9. Considering that ln l3(n,γ) = (2n−3γ−2) ln(n−γ)− ln(n−
γ − 2)− (n− γ − 5) ln(n− γ − 1)− (n− 3γ + 3) ln(n− γ + 1)− (γ − 1) ln(n− γ + 2) .
Thus,

∂ ln l3(n,γ)
∂n

= ln
(n− γ)2

(n− γ −1)(n− γ +1)
+
(

2γ −2
n− γ +1

+
4

n− γ −1
− γ +2

n− γ
− γ −1

n− γ +2
− 1

n− γ −2

)

= ln
(n− γ)2

(n− γ)2−1
+

g2(n,γ)
(n− γ −2)(n− γ −1)(n− γ)(n− γ +1)(n− γ +2)

,

where g2(n,γ) = 2n3−8n2γ +2n2 +10nγ2 +2nγ −20n−4γ3−4γ2 +16γ −8. Since
n � 2γ , then for γ � 4,

∂g2(n,γ)
∂n

=6n2−16nγ +4n+10γ2+2γ −20

=2(n− γ)(3n−5γ)+4n+2γ−20 > 0.

So g2(n,γ) � g2(2γ,γ) = 8(γ2 −3γ −1) = 8[(γ −4)(γ +1)+3] > 0.
For γ = 3,

∂ ln l3(n,γ)
∂n

∣∣∣
γ=3

= ln
(n−3)2

(n−3)2−1
+

2n3−22n2 +76n−104
(n−5)(n−4)(n−3)(n−2)(n−1)

.
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Since 2n3−22n2 +76n−104 = 2n(n−7)(n−4)+20n−104 > 0 for n � 7, we have
∂ ln l3(n,γ)

∂n

∣∣∣
γ=3

> 0.

Consequently, ∂ ln l3(n,γ)
∂n > 0 and l3(n,γ) is increasing for n .

If γ = 3,

l3(n,3) =
(n−3)2n−11

(n−2)n−6(n−4)n−8(n−1)2(n−5)
.

Since

lim
n→+∞

l3(n,3) = lim
n→+∞

[(
1− 1

n−2

)−(n−2)]−1 ·
(
1+

1
n−4

)n−4 · (n−2)4(n−4)4

(n−3)5(n−1)2(n−5)

= e−1 · e ·1 = 1,

then l3 = 1 is the horizontal asymptote of l3(n,3) . Furthermore, since 0 < l3(7,3) =
24
45 < 1, l3(n,3) is increasing for n and n is a finite positive integer, we deduce that
l3(n,3) < 1.

If γ � 4, one can obtain

∂ ln l3(n,γ)
∂γ

= ln
(n− γ −1)(n− γ +1)3

(n− γ +2)(n− γ)3 −
(

2γ −2
n− γ +1

+
4

n− γ −1
− γ +2

n− γ
− γ −1

n− γ +2
− 1

n− γ −2

)

= ln
(n− γ −1)(n− γ +1)3

(n− γ +2)(n− γ)3 − g2(n,γ)
(n− γ −2)(n− γ−1)(n− γ)(n− γ +1)(n− γ +2)

.

For γ � 4, (n− γ + 2)(n− γ)3 − (n− γ − 1)(n− γ + 1)3 = 2n− 2γ + 1 > 0, we have

ln (n−γ−1)(n−γ+1)3

(n−γ+2)(n−γ)3 < 0. As a consequence, ∂ ln l3(n,γ)
∂γ < 0 and l3(n,γ) is decreasing for

γ � 4. So we know that

l3(n,γ) � l3(n,4) =
(n−4)2n−14

(n−6)(n−3)n−9(n−5)n−9(n−2)3 .

Since

lim
n→+∞

l3(n,4) = lim
n→+∞

[(
1− 1

n−3

)−(n−3)]−1 ·
(
1+

1
n−5

)n−5 · (n−3)6(n−5)4

(n−6)(n−4)6(n−2)3

= e−1 · e ·1 = 1,

then l1 = 1 is the horizontal asymptote of l3(n,4) . Furthermore, since 0 < l3(8,4) =
5
9 < 1, l3(n,4) is increasing for n and n is a finite positive integer, we deduce that
l3(n,4) < 1 and l3(n,γ) � l3(n,4) < 1. �
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Proof of Lemma 2.10. It is clear that lnϕ(n) = (n− 1) lnn− (n− 1) ln3+ 3(n−
3) ln4−3(n−3) ln5. Hence

dlnϕ(n)
dn

= lnn+
n−1

n
+3ln4− ln3−3ln5

� ln5+
4
5

+3ln4− ln3−3ln5

= ln
320 · e0.8

375
≈ 0.6414 > 0.

Therefore, ϕ(n) is increasing for n , and ϕ(n) � ϕ(5) = 5446

3456 = 4096
2025 > 1. �

Proof of Lemma 2.11. We first prove that for t > 0, ln(1+ t) > t
1+t . Let ψ(t) =

ln(1+ t)− t
1+t , where t > 0. Then

dψ(t)
dt

=
1

t +1
− 1

(t +1)2 > 0.

Thus for t > 0, ψ(t) > ψ(0) = 0, that is ln(1+ t) > t
1+t .

Noting that lnφ(x) = (x−1)[ln(x+2)− ln(x+1)] . Hence, by the above inequality
we proved, for x � 3, one has

dφ(x)
dx

= ln
(
1+

1
x+1

)
+

x−1
x+2

− x−1
x+1

>
1

x+1

1+ 1
x+1

+
x−1
x+2

− x−1
x+1

=
x

x+2
− x−1

x+1
=

2
(x+1)(x+2)

> 0.

Therefore, φ(x) is increasing for x . �
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after, Croat. Chem. Acta, 76, (2003), 113–124.
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