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A MAP–TYPE GRONWALL INEQUALITY ON FUNCTIONAL
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Abstract. In this paper, in order to investigate a Gronwall inequality with state-dependence, an-
other auxiliary map-type Gronwall inequality is discussed by modifying the technique of sequen-
tial monotonization on functions into the one on maps. Then we employ the state-dependent
Gronwall inequality to give the estimate and boundedness of solutions for a functional differen-
tial equation with state-dependence. Finally, we exhibit a concrete example of bounded solutions
as application.

1. Introduction

As useful tools of studying existence, uniqueness, continuous dependence, bound-
edness and stability of solutions, invariant manifolds and invariant foliations for dif-
ferential equations, the development of integral inequalities is accompanied by the in-
vestigation of various sorts of differential equations, integral equations and difference
equations. In order to obtain estimate and stability of solutions for linear differential
equations, earliest integral inequalities were established by Gronwall ([4]) and Bellman
([2]) successively in early 1900’s. So this type of integral inequalities was also called
Gronwall inequalities or Gronwall-Bellman inequalities. Later, in 1956 Bihari ([3])
developed Gronwall inequality

u(t) � a+
∫ t

0
f (s)w(u(s))ds, t � 0, (1.1)

where constant a > 0, f is a nonnegative function and w is a nondecreasing positive
function, to discuss a form of nonlinear differential equations. Then (1.1) was further
improved to the case with a delay

u(t) � a+
∫ b(t)

b(t0)
f (s)w(u(s))ds, t � t0,
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where t0 � b(t) � t , by Lipovan ([6]) for the research of delay differential equations in
2000. To multi-delays differential equations, in 2005 a summed Gronwall inequality

u(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
fi(t,s)wi(u(s))ds, t0 � t < T,

was provided by Agarwal, Deng and Zhang ([1]), where {wi} is a functions sequence
satisfying the so-called sequential monotonicity motivated by Pinto ([9]). In 2016,
Zhou, Shen and Zhang ([13]) indicated that the powered Gronwall inequality

u(t) � a(t)+
n

∑
i=1

{
∫ bi(t)

bi(t0)
fi(t,s)φi(u(s))ds}pi , t0 � t < ∞,

where pi � 1, can be applied to singular integral equations and stochastic differential
equations, by modifying sequential monotonization raised by Wang ([11]) into powered
sequential monotonization. In 2020, Zhou, Shen and Zhang ([14]) still employed the
sequential monotonization to extend impulsive Gronwall inequalities to the following
formula

u(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
fi(t,s)φi(u(s))ds+ ∑

{t j}
⋂

(t0,t)
h j(t)ψ j(u(t−j )) (1.2)

for 0 � t0 � t < ∞ , which can be used in nonautonomous impulsive differential equa-
tions. Besides, one can see the monograph [8] and references therein to know many
other integral inequalities.

In this paper we discuss a map-type Gronwall inequality

x(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
fi(t,s)(wix)(s)ds, t ∈ [t0,∞), (1.3)

where map wi : C([t0,∞), [t0,∞)) →C([t0,∞),R+\{0}) is denoted by

(wix)(t) := wi(t,x(t)), x ∈C([t0,∞), [t0,∞)), i = 1, . . . ,n (1.4)

with wi ∈ C([t0,∞)2,R+\{0}) . It is raised for n = 1, bi(t) := t and fi(t,s) := fi(s)
in reference [15] as a preliminary to study asymptotic behaviors of a functional differ-
ential equation with state-dependence. Relying on inequality (1.3), we can discuss the
following Gronwall inequality with state-dependence

x(t) � α(t)+
n

∑
i=1

∫ t

t0
gi(t,s)ωi(x(Ti(s,x(s))))ds, t ∈ [t0,∞), (1.5)

where Ti ∈ C([t0,∞)2, [t0,∞)) and ωi ∈ C([t0,∞),R+\{0}) for all i = 1, . . . ,n , which
comes from a general functional differential equation with state-dependence

ẋ(t) = f (t,x(T1(t,x(t))), . . . ,x(Tn(t,x(t)))). (1.6)
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Equation (1.6) is called the one with state-dependence, since the unknown state x in
the right hand side of (1.6) does not depend on only time t but also itself. It is widely
concerned in many articles, e.g. [5, 7, 10, 12]. More precisely, inequality (1.5) is
significant to estimate the solutions of (1.6), and give the asymptotics of the solutions.
The ideas of sequential monotonicity and powered sequential monotonicity of functions
wi s are further generalized to sequential monotonicity of maps wi s by us. Moreover,
different from the previous works on Gronwall inequalities, here we do not need the
nonnegativity of all known and unknown functions.

This paper is arranged as follows. In section 2 we solve the map-type Gronwall
inequality (1.3) with sequential monotonicity of maps wi s and without nonnegativity
of functions known a and unknown x , and give the boundedness of its estimate. In
section 3, as a corollary, we get the estimate of Gronwall inequality (1.5) with state-
dependence and the boundedness of the estimate. Finally, as applications, we indicate
the estimate and boundedness of solutions to a concrete (1.6).

2. Map-type Gronwall inequality

In this section, we discuss inequality (1.3). First, we provide some basic assump-
tions. As usual, denote set of positive integers {1,2,3, . . .} and set of nonnegative real
numbers by N and R+ respectively. Denote sets of nondecreasing functions, nonde-
creasing continuous functions and nondecreasing and continuously differentiable func-
tions from R+ to itself by I (R+,R+) , CI (R+,R+) and C1

I (R+,R+) respectively.

2.1. Estimate of solutions

As preliminary, we exhibit the definition of maps sequential nondecreasing, which
is a generalization of functions sequential nondecreasing proposed in e.g. [1, 11, 14].

DEFINITION 2.1. An order relation ∝ is called maps sequential nondecreasing,
if w1 ∝ w2 for maps w1 and w2 defined as in (1.4), satisfying functions w1 and w2

are both nondecreasing in respect of their second variable, implies w2/w1 is also non-
decreasing in respect of its second variable.

In what follows, we consider set P =C([t0,∞), [t0,∞)) and its partial order relation
“�” is given by x � y iff x,y ∈ P and x(t) � y(t) for all t ∈ [t0,∞) . Considering
inequality (1.3), for i = 1, . . . ,n assume that

(A1) a ∈C1
I ([t0,∞), [t0,∞)) , fi ∈C([t0,∞)2,R+) and

wi : C([t0,∞), [t0,∞)) →C([t0,∞),R+\{0}) ;
(A2) bi ∈C1

I ([t0,∞), [t0,∞)) satisfies bi(t) � t on [t0,∞) ;

(A3) both functions wi and fi are nondecreasing with respect to their first variable;

(A4) maps sequence {wi}i=1,...,n defined as in (1.4) is sequential nondecreasing, i.e.,
wi ∝ wi+1 for all i = 1, . . . ,n−1.
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If function a is not nondecreasing, then one can monotonize them as done in [1]; if
functions fi and wi are not nondecreasing with respect to t , then one can monotonize
them as done as

f̃i(t,s) = sup
τ∈[t0,t]

fi(τ,s), w̃i(t,s) = sup
τ∈[t0,t]

wi(τ,s).

If maps sequence {wi}i=1,...,n is not sequential nondecreasing, we can enlarge the func-
tions sequence {wi} into a new sequence {υi} such that wi(t,s) � υi(t,s) for all
(t,s) ∈ [t0,∞)2 and i = 1, . . . ,n , where υi s are all nondecreasing with respect to s ,
and υi ∝ υi+1 for each i = 1, . . . ,n− 1. This replacement is called maps sequential
monotonization, which can be done by setting

υi(t,s) :=

⎧⎨
⎩

maxτ∈[t0,s] w1(t,τ), i = 1,

υi−1(t,s)maxτ∈[t0,s]
wi(t,τ)

υi−1(t,τ)
, i = 2, . . . ,n,

(2.7)

recursively as in [11, 13]. Let

(Wix)(t) = Wi(t,x(t)) :=
∫ x(t)

x∗

ds
wi(t,s)

, x ∈ P, i = 1, . . . ,n, (2.8)

where x∗ ∈ [t0,∞) is a given constant arbitrarily. The fact wi ∈ C([t0,∞)2,R+\{0})
given in (A1) guarantees that (2.7) and (2.8) are both meaningful for all (t,s)∈ [t0,∞)2 .
If wi(t,s) = 0 for some (t,s) ∈ [t0,∞)2 , only need to amplify wi a little like [13, 14] as

w̆i(t,s) := wi(t,s)+ ε (2.9)

with an arbitrarily chosen positive constant ε , which fulfills (A3) – (A4) as well. We
give the main theorem as follows

THEOREM 2.1. Suppose (A1)– (A4) hold and x ∈ P satisfies (1.3) for all t ∈
[t0,∞) . If Wi(t,∞) = ∞ for t ∈ [t0,∞) and i = 1, . . . ,n and ai s are determined recur-
sively by

a1(t) := a(t),

ai+1(t) := W −1
i {(Wiai)(t)+

∫ bi(t)

bi(t0)
fi(t,s)ds}, i = 1, . . . ,n−1,

then

x(t) � W −1
n {(Wnan)(t)+

∫ bn(t)

bn(t0)
fn(t,s)ds}, t ∈ [t0,∞). (2.10)

Remark that, similarly to [1], distinct choices of x∗ in Wi do not disturb the result
above. In fact, for positive constant y∗ �= x∗ , let

W̆i(t,x(t)) :=
∫ x(t)

y∗

ds
wi(t,s)

,
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then W̆i(t,x(t)) = Wi(t,x(t))+W̆i(t,x∗) . Let y(t) := W̆i(t,x(t)) , then y(t)−W̆i(t,x∗) =
Wi(t,x(t)) . We further get

W −1
i (y(t)−W̆i(t,x∗)) = x(t) = (W̆ −1

i y)(t).

It yields that

W̆ −1
i {(W̆ix)(t)+

∫ bi(t)

bi(t0)
fi(t,s)ds}

= W −1
i {(W̆ix)(t)+

∫ bi(t)

bi(t0)
fi(t,s)ds−W̆i(t,x∗)}

= W −1
i {(Wix)(t)+

∫ bi(t)

bi(t0)
fi(t,s)ds}.

Hence, the result (2.10) is independent of the choice of x∗ ∈ [t0,∞) in Wi .

Proof of Theorem 2.1. By (A3), it follows from (1.3) that

x(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
fi(T,s)wi(T,x(s))ds, ∀t ∈ [t0,T ], (2.11)

where T ∈ [t0,∞) is an arbitrarily chosen constant. We solve x from (2.11). Let

a1(T, t) := a(t), ai+1(T,t) := W−1
i {T,Wi(T,ai(T, t))+

∫ bi(t)

bi(t0)
fi(T,s)ds}

for i = 1, . . . ,n−1. We claim that solutions of (2.11) is

x(t) � W−1
n {T,Wn(T,an(T,t))+

∫ bn(t)

bn(t0)
fn(T,s)ds}, ∀t ∈ [t0,T ]. (2.12)

Clearly, recalling (A4), for u1,u2 ∈ P satisfying order relation u1 � u2 compute

Wi(T,u2(t))−Wi(T,u1(t)) =
∫ u2(t)

u1(t)

ds
wi(T,s)

� 0, (2.13)

which also holds reversely. It follows from positive function wi that Wi and W−1
i

are both strictly increasing in respect of their second variable, also implying invert-
ibility of Wi to its second variable. For each ai(T, ·) ∈ [t0,∞) , we have Wi(T,t0) �
Wi(T,ai(T, t))+

∫ bi(t)
bi(t0)

fi(T,s)ds < ∞ = Wi(T,∞) . By assumption of Theorem 2.1, the

sum Wi(T,ai(T, t))+
∫ bi(t)
bi(t0) fi(T,s)ds lies in domain of W−1

i (T, ·) for any T ∈ [t0,∞)
and t ∈ [t0,T ] . We prove the assertion (2.12) as follows.

First, we verify (2.12) holds for n = 1. For n = 1, inequality (2.11) can be rewrit-
ten as

x(t) � a(t)+ z1(t), (2.14)
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where

z1(t) :=
∫ b1(t)

b1(t0)
f1(T,s)w1(T,x(s))ds

is a nondecreasing function. From (A3) – (A4) we know

w1(T,x(b1(t))) � w1(T,z1(b1(t))+a(b1(t))) � w1(T,z1(t)+a(t)). (2.15)

Along with (2.15), for t ∈ [t0,T ] compute

(z1(t)+a(t))′

w1(T,z1(t)+a(t))
� f1(T,b1(t))w1(T,x(b1(t)))b′1(t)

w1(T,z1(t)+a(t))
+

a′(t)
w1(T,z1(t)+a(t))

� f1(T,b1(t))b′1(t)+
a′(t)

w1(T,a(t))
.

Integrating both sides of inequality above from t0 to t , by the fact z1(t0) = 0, we obtain

W1(T,z1(t)+a(t)) � W1(T,a(t))+
∫ b1(t)

b1(t0)
f1(T,s)ds, ∀t ∈ [t0,T ]. (2.16)

Recall that W1(T,a(t)) +
∫ b1(t)
b1(t0)

f1(T,s)ds lies in domain of W−1
1 (T, ·) . Combining

(2.16) with (2.14), we obtain (2.12) is true for n = 1.
In order to prove (2.12) by induction, suppose that (2.12) holds for n = m . Then

inequality (2.11) for n = m+1 can be rewritten as

x(t) � a(t)+ z2(t), (2.17)

where

z2(t) :=
m+1

∑
i=1

∫ bi(t)

bi(t0)
fi(T,s)wi(T,x(s))ds

is a nondecreasing function. Let

(ui+1x)(t) = ui+1(T,x(t)) :=
wi+1(T,x(t))
w1(T,x(t))

, i = 1, . . . ,m.

From (A3) – (A4) we see that z2 also satisfies (2.15) like z1 . Then

(z2(t)+a(t))′

w1(T,z2(t)+a(t))
�

m+1

∑
i=1

fi(T,bi(t))wi(T,x(bi(t)))b′i(t)
w1(T,z2(t)+a(t))

+
a′(t)

w1(T,z2(t)+a(t))

�
m+1

∑
i=1

fi(T,bi(t))wi(T,z2(bi(t))+a(bi(t)))b′i(t)
w1(T,z2(bi(t))+a(bi(t)))

+
a′(t)

w1(T,a(t))

� f1(T,b1(t))b′1(t)+
a′(t)

w1(T,a(t))

+
m

∑
i=1

fi+1(T,bi+1(t))ui+1(T,z2(bi+1(t))+a(bi+1(t)))b′i+1(t).
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Integrating both sides of the inequality above from t0 to t , by the fact z2(t0) = 0 we
have

W1(T,z2(t)+a(t)) � W1(T,a(t))+
∫ b1(t)

b1(t0)
f1(T,s)ds

+
m

∑
i=1

∫ bi+1(t)

bi+1(t0)
fi+1(T,s)ui+1(T,z2(s)+a(s))ds (2.18)

for any t ∈ [t0,T ] .
Let ξ (t) :=W1(T,z2(t)+a(t)) and γ1(T,t) :=W1(T,a(t))+

∫ b1(t)
b1(t0) f1(T,s)ds . Then

(2.18) can be rewritten as

ξ (t) � γ1(T,t)+
m

∑
i=1

∫ bi+1(t)

bi+1(t0)
fi+1(T,s)ui+1(T,W−1

1 (T,ξ (s)))ds. (2.19)

Recalling W−1
1 is nondecreasing in respect of its second variable and

ui+1(T,W−1
1 (T,x(t))) =

wi+1(T,W−1
1 (T,x(t)))

w1(T,W−1
1 (T,x(t)))

, i = 1, . . . ,m,

ui+1(T,W−1
1 (T,x(t)))

ui(T,W−1
1 (T,x(t)))

=
wi+1(T,W−1

1 (T,x(t)))
wi(T,W−1

1 (T,x(t)))
, i = 2, . . . ,m,

one can verify that {ui+1 ◦W −1
1 }i=1,...,m is sequential nondecreasing. It yields that

(2.19) is of same form as (2.11) for n = m and satisfies inductive assumption. Hence,

ξ (t) � U−1
m {T,Um(T,γm(T,t))+

∫ bm+1(t)

bm+1(t0)
fm+1(T,s)ds}, t ∈ [t0,∞), (2.20)

where

γi+1(T, t) := U−1
i {T,Ui(T,γi(T,t))+

∫ bi+1(t)

bi+1(t0)
fi+1(T,s)ds},

Ui(T,x(t)) :=
∫ x(t)

W1(T,xi+1(t0))

ds

ui+1(T,W−1
1 (T,s))

=
∫ x(t)

W1(T,xi+1(t0))

w1(T,W−1
1 (T,s))

wi+1(T,W−1
1 (T,s))

ds

=
∫ x(t)

W1(T,xi+1(t0))

dW−1
1 (T,s)

wi+1(T,W−1
1 (T,s))

=
∫ W−1

1 (T,x(t))

xi+1(t0)

ds
wi+1(T,s)

= Wi+1(T,W−1
1 (T,x(t))), i = 1, . . . ,m.

Here one can verify that Ui(T,∞) = ∞ . In fact, by the assumption Wi(T,∞) = ∞ we get
W−1

i (T,∞) = ∞ . From the formula of Ui above, we have

Ui(T,∞) = Wi+1(T,W−1
1 (T,∞)) = Wi+1(T,∞) = ∞.
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Then, like the fact Wi(T,ai(T,t))+
∫ bi(t)
bi(t0) fi(T,s)ds lies in domain of W−1

i (T, ·) , we

know that Ui(T,γi(T,t))+
∫ bi+1(t)
bi+1(t0) fi+1(T,s)ds is in the domain of U−1

i (T, ·) . There-
fore, we obtain from (2.17) and (2.20) that

x(t) � z2(t)+a(t) = W−1
1 (T,ξ (t))

� W−1
m {T,Wm(T,W−1

1 (T,γm(T,t)))+
∫ bm+1(t)

bm+1(t0)
fm+1(T,s)ds} (2.21)

for all t ∈ [t0,T ] . To simplify (2.21), we claim that W−1
1 (T,γi(T,t)) = ai+1(T, t) for

i = 1, . . . ,m . It is easy to testify that

W−1
1 (T,γ1(T, t)) = W−1

1 {T,W1(T,a1(T,t))+
∫ b1(t)

b1(t0)
f1(T,s)ds} = a2(T,t),

i.e., the assertion is true for i = 1. Suppose that the assertion holds for i = k . Then
from the inductive assumption,

W−1
1 (T,γk+1(T, t)) = W−1

1 {T,U−1
k {T,Uk(T,γk(T,t))+

∫ bk+1(t)

bk+1(t0)
fk+1(T,s)ds}}

= W−1
k+1{T,Wk+1(T,W−1

1 (T,γk(T,t)))+
∫ bk+1(t)

bk+1(t0)
fk+1(T,s)ds}

= W−1
k+1{T,Wk+1(T,ak+1(T,t))+

∫ bk+1(t)

bk+1(t0)
fk+1(T,s)ds}

= ak+2(T,t),

which proves the assertion by induction. It follows from the assertion and inequality
(2.21) that

x(t) � W−1
m+1{T,Wm+1(T,am+1(T,t))+

∫ bm+1(t)

bm+1(t0)
fm+1(T,s)ds}

for all t ∈ [t0,T ] . Thus, by induction the assertion (2.12) is true.
Further, letting t = T in inequality (2.12), we have

x(T ) � W −1
n {(Wnan)(T,T )+

∫ bn(T )

bn(t0)
fn(T,s)ds},

ai(T,T ) = W −1
i {(Wiai)(T,T )+

∫ bi(T)

bi(t0)
fi(T,s)ds},

a0(T,T ) = a(T ), ∀T ∈ [t0,∞),

implying (2.10) by the arbitrariness of T . Thus, Theorem 2.1 is proved. �
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2.2. Boundedness of estimate

In what follows we discuss boundedness of estimate (2.10) in Theorem 2.1. Sup-
pose that

(B1) a ∈C1
I ([t0,∞), [t0,∞)) is bounded;

(B2) all fi ∈C([t0,∞)2,R+) and bi ∈C1
I ([t0,∞), [t0,∞)) satisfy that

∫ bi(∞)
bi(t0)

fi(∞, s)ds <
∞ .

THEOREM 2.2. Suppose that (A1) – (A4) and (B1) – (B2) hold. If Wi(t,∞) = ∞
for i = 1, . . . ,n and t ∈ [t0,∞) , then x(t) in (2.10) is upper bounded for t ∈ [t0,∞) .

Proof. We claim that ai in Theorem 2.1 is bounded for i = 1, . . . ,n . It is true
for i = 1 from (B1). Assuming that ai is bounded for i = k , we verify it is true for
i = k+1. Note that

ak+1(t) = W−1
k {t,Wk(t,ak(t))+

∫ bk(t)

bk(t0)
fk(t,s)ds}, t ∈ [t0,∞). (2.22)

Recall below (2.13) that Wi and W−1
i are both nondecreasing in respect of their second

variable. Since Wi(t,∞) = ∞ , by inductive assumption we get

Wk(t,ak(t)) < Wk(t,∞) = ∞, t ∈ [t0,∞).

Along with (B2), we obtain

Wk(t,ak(t))+
∫ bk(t)

bk(t0)
fk(t,s)ds < ∞, t ∈ [t0,∞).

From the monotonicity of Wi in respect of its second variable, the fact Wk(t,∞) = ∞
follows that W−1

k (t,∞) = ∞ . By the monotonicity of W−1
i with respect to its second

variable, we get

W−1
k {t,Wk(t,ak(t))+

∫ bk(t)

bk(t0)
fk(t,s)ds} < W−1

k (t,∞) = ∞, t ∈ [t0,∞),

which follows from (2.22) that ak+1 is bounded for t ∈ [t0,∞) . By induction the asser-
tion is true. It follows from (2.10) that x(t) is bounded for any t ∈ [t0,∞) , and Theorem
2.2 is proved. �

3. Gronwall inequality with state-dependence

In this section, we generalize our result to the Gronwall inequality with state-
dependence, coming from a functional differential equations with state-dependence.
Considering inequality (1.5), for i = 1, . . . ,n suppose that
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(C1) α ∈ C1
I ([t0,∞), [t0,∞)) , gi ∈C([t0,∞)2,R+) , Ti ∈ C([t0,∞)2, [t0, ∞)) and ωi ∈

CI ([t0,∞),R+\{0}) ;
(C2) both gi and Ti are nondecreasing with respect to its first variable;

(C3) α is bounded on [t0,∞) ;

(C4) each gi satisfies that
∫ ∞
t0

gi(∞,s)ds < ∞ .

The following corollary give the estimate of x in inequality (1.5).

COROLLARY 3.1. Suppose (C1) – (C2) hold and x ∈ P satisfies (1.5) for any t ∈
[t0,∞) . If there exists a ϕ ∈ CI ([t0,∞), [a(t0),∞)) satisfying Vi(t,∞) = ∞ for i =
1, . . . ,n and t ∈ [t0,∞) , where

(Vix)(t) = Vi(t,x(t)) :=
∫ x(t)

x∗

ds
ϖi(t,s)

, x ∈ P, i = 1, . . . ,n, (3.23)

ϖi(t,s) :=

⎧⎨
⎩

maxτ∈[t0,s] ωi ◦ϕ ◦Ti(t,τ), i = 1,

ϖi−1(t,s)maxτ∈[t0,s]
ωi ◦ϕ ◦Ti(t,τ)

ϖi−1(t,τ)
, i = 2, . . . ,n,

(3.24)

and x∗ ∈ [t0,∞) is an arbitrarily given constant, then all x , satisfying x(t) � ϕ(t) for
t ∈ [t0,∞) , can be estimated by

x(t) � min{ϕ(t),V −1
n {(Vnαn)(t)+

∫ t

t0
gn(t,s)ds}}, t ∈ [t0,∞), (3.25)

where functions αi s are determined recursively by

α1(t) := α(t),

αi+1(t) := V −1
i {(Viαi)(t)+

∫ t

t0
gi(t,s)ds}, i = 1, . . . ,n−1.

Proof. Considering x(t) � ϕ(t) , it follows from inequality (1.5) and (3.24) that

x(t) � α(t)+
n

∑
i=1

∫ t

t0
gi(t,s)ωi(x(Ti(s,x(s))))ds

� α(t)+
n

∑
i=1

∫ t

t0
gi(t,s)ωi ◦ϕ ◦Ti(s,x(s))ds

� α(t)+
n

∑
i=1

∫ t

t0
gi(t,s)ϖi(s,x(s))ds, t ∈ [t0,∞). (3.26)

The function x(t) fulfills integral inequality (1.3), where

a(t) := α(t), fi(t,s) := gi(t,s), wi(s,x(s)) := ϖi(s,x(s)).
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It is easy to testify that (A1) holds by (C1). From (C2) and the monotonicity of ωi and
ϕi , it follows that (A3) is true. Through the transformation (3.24), one can verify that
(A4) is satisfied. Thus, employing Theorem 2.1 in (3.26), we get the estimate

x(t) � V −1
n {(Vnαn)(t)+

∫ t

t0
gn(t,s)ds}, t ∈ [t0,∞).

Along with the fact x(t) � ϕ(t) , (3.25) is gotten and Corollary 3.1 is proved. �

From Theorem 2.2 we can conclude result on boundedness of the estimate as fol-
lows.

COROLLARY 3.2. Suppose that (C1) – (C4) hold. If Vi(t,∞) = ∞ for i = 1, . . . ,n
and t ∈ [t0,∞) , then x(t) in (3.25) is upper bounded for t ∈ [t0,∞) .

4. Applications

In this section, we employ our integral inequality to estimate solutions of a con-
crete functional differential equation (1.6), and obtain the boundedness of its solutions.
Consider Cauchy problem as follows

{
ẋ(t) = f (t,x(T1(t,x(t))), . . . ,x(Tn(t,x(t)))), t ∈ [t0,∞),
x(t0) = x0,

(4.27)

where constant x0 � t0 , f ∈ C([t0,∞)n+1,R+) and Ti ∈ C([t0,∞)2, [t0,∞)) is nonde-
creasing in respect of its first variable for 1 � i � n . Suppose that

(D1) 0 � f (t,x1, . . . ,xn) � β (t)+ ∑n
i=1 γi(t)ωi(xi) for all (t,x1, . . . ,xn) ∈ [t0,∞)n+1 ;

(D2) f (t,x1, . . . ,xn) � ϕ ′(t) for all (t,x1, . . . ,xn) ∈ [t0,∞)n+1 ;

(D3) β satisfies
∫ ∞
t0

β (s)ds < ∞ ;

(D4) each γi satisfies that
∫ ∞
t0

γi(s)ds < ∞ ,

where β ∈C([t0,∞), [t0,∞)) , γi ∈C([t0,∞),R+) and ωi ∈CI ([t0,∞),R+\{0}) for all
1 � i � n . The following corollary give the estimate and boundedness of the solution x
of Cauchy problem (4.27).

COROLLARY 4.1. Suppose (D1)– (D2) hold and ϕ ∈CI ([t0,∞), [t0,∞)) satisfies
Vi(t,∞) = ∞ for i = 1, . . . ,n and t ∈ [t0,∞) , where Vi is defined as in (3.23). Then for
x0 ∈ [t0,ϕ(t0)) , all solutions x of (4.27) can be estimated by

x(t) � V −1
n {(Vnαn)(t)+

∫ t

t0
γn(s)ds}, t ∈ [t0,∞), (4.28)
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where functions αi s are determined recursively by

α1(t) := x0 +
∫ t

t0
β (s)ds,

αi+1(t) := V −1
i {(Viαi)(t)+

∫ t

t0
γi(s)ds}, i = 1, . . . ,n−1.

Additionally, if (D3) – (D4) hold, then all the solutions x are bounded.

Proof. The equivalent integral equation of Cauchy problem (4.27) is

x(t) = x0 +
∫ t

t0
f (s,x(T1(s,x(s))), . . . ,x(Tn(s,x(s))))ds, (4.29)

which follows from (D1) that

x(t) � x0 +
∫ t

t0
β (s)ds+

n

∑
i=1

∫ t

t0
γi(s)ωi(x(Ti(s,x(s))))ds. (4.30)

The function x(t) fulfills integral inequality (1.5), where

α(t) := x0 +
∫ t

t0
β (s)ds, gi(t,s) := γi(s).

One can verify (C1) holds by (D1). (C2) also holds naturally. Apply Corollary 3.1 to
(4.30), then all x , satisfying x(t) � ϕ(t) for t ∈ [t0,∞) , can be estimated by (4.28). On
the other hand, combining (4.27) with (D2), we get

x(t) � x0 + ϕ(t)−ϕ(t0) � ϕ(t), t ∈ [t0,∞).

Therefore, all solutions x of (4.27) can be estimated by (4.28).
It is easy to testify that (C3) – (C4) hold by (D3) – (D4). Applying Corollary 3.2

to (4.28), all solutions x of (4.27) is upper bounded for t ∈ [t0,∞) . Recalling the fact
f (t,x1, . . . ,xn) � 0, it follows from (4.29) that x(t) � x0 for all t ∈ [t0,∞) . Thus, all
these solutions x are bounded and Corollary 4.1 is proved. �

Next, we exhibit a concrete (4.27), that is Cauchy problem
⎧⎨
⎩ ẋ(t) =

1

4(t +1)2

{
2+

2arctan{x(tx(t))}
π

+
4arctan2{x(tx(t))}

π2

}
, t ∈ R+,

x(0) = x0,

(4.31)

where constant x0 � 0. Set

(Vix)(t) :=
∫ x(t)

0

ds

arctani
(
2− 1

ts+1

) , x ∈C(R+,R+), i = 1,2.
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CONCLUSION 1. For x0 ∈ [0,1) , all solutions x of (4.31) can be estimated by

x(t) � V −1
2

{
V2 ◦V −1

1

{
V1

(
x0 +

1
2
− 1

2(t +1)

)
+

1
2π

− 1
2π(t +1)

}

+
1

π2 −
1

π2(t +1)

}
,

for all t ∈ R+ , and these solutions are all bounded.

Proof. One can easily verify that (D1) – (D4) hold, where

β (t) =
1

2(t +1)2 , γ1(t) =
1

2π(t +1)2 , γ2(t) =
1

π2(t +1)2 ,

ωi(x) = arctani x, n = 2, ϕ(t) = 2− 1
t +1

, Ti(t,x(t)) = tx(t),
∫ ∞

0
β (s)ds =

1
2
,

∫ ∞

0
γ1(s)ds =

1
2π

,

∫ ∞

0
γ2(s)ds =

1
π2 ,

ϖi(t,s) = arctani
(
2− 1

ts+1

)
, i = 1,2.

One can verify that ϖ1 ∝ ϖ2 . In fact, the formula

ϖ2(t,s)
ϖ1(t,s)

= arctan
(
2− 1

ts+1

)

is nondecreasing in respect of the variable s for all (t,s) ∈ R
2
+ . One can also verify

that Vi(t,∞) = ∞ for all t ∈ R+ and i = 1,2. In fact,

(Vix)(t) :=
∫ x(t)

0

ds

arctani
(
2− 1

ts+1

)

�
∫ x(t)

0

ds
arctani 2

, x ∈C(R+,R+), i = 1,2,

which indicates that

Vi(t,∞) �
∫ ∞

0

ds
arctani 2

= ∞, ∀t ∈ R+, i = 1,2.

Applying Corollary 4.1, the proof of Conclusion 1 is completed. �
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