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STABILITY OF ADDITIVE FUNCTIONAL
INEQUALITY IN VARIOUS NORMED SPACES
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(Communicated by A. Gildanyi)

Abstract. In this paper, we establish the general solution of the following functional inequality

12/ () +2f(3) +2f(2) = fx+y) = fy+ D < [l f x4+,

and then investigate the generalized Hyers-Ulam stability of this inequality in Banach spaces and
in non-Archimedean Banach spaces by using two different approaches.

1. Introduction

The study of stability problems for functional equations is related to a question of
Ulam [36] concerning the stability of group homomorphisms. A functional equation is
called stable if any approximate solution to the functional equation is near a true solu-
tion of that functional equation. Hyers [15] gave a first affirmative partial answer to the
question of Ulam for Banach spaces. Subsequently, Hyers’ result was generalized by
Aoki [3] and Bourgin [4] for additive mappings and by Rassias [32] for linear mappings
by considering the Cauchy difference operator CDf(x,y) = f(x+y) — [f(x) + f(y)] to
controlled by e(||x||” + ||y||?) (¢ >0, p €[0,1)). Gajda [9] answered the question
for the case p > 1, which was raised by Rassias. This new concept is known as gen-
eralized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations.
In 1994, a generalization of the Rassias’ theorem was obtained by Gavrutd [10] who
permitted the Cauchy difference to become arbitrarily unbounded. Moslehian and Ras-
sias [23] investigated the Hyers-Ulam stability of the Cauchy functional equation and
the quadratic functional equation in non-Archimedean normed space. Later, the sta-
bility results of various functional equations in non-Archimedean normed spaces have
been studied in [13, 14, 22, 24, 25]. During the last decades, the stability of several
functional equations has been extensively studied and generalized by a number of au-
thors, and there has been many interesting and applicable results obtained concerning
this problem (see [1, 2, 6, 16, 17, 18, 19, 20, 21, 26, 29, 30, 31, 33, 35] and references
therein).
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Gilanyi [1 1] and Rétz [34] showed that if f satisfies the functional inequality

12£(x) +2£ () = fay™ DI < LFG) I, (1.1)

then f satisfies the Jordan-Von Neumann functional equation

2f(x)+2f(y) = fxy) + fy™ ). (1.2)

Fechner [8] and Gildnyi [12] considered the functional inequality (1.1) and proved the
generalized Hyers-Ulam stability of this inequality. Park et al. [27] investigated the
generalized Hyers-Ulam stability of functional inequalities associated with Jordon-Von
Neumann type additive functional equations. In 2008, Park et al. [28] studied the A-
linear mapping associated with the following functional inequality

12 (x) +2f(y) +2f(2) = fx+y) = fFO+ )< || f(x+2) ] (1.3)

in Banach modules over a C* -algebra, and then proved the generalized Hyers-Ulam sta-
bility of A-linear mappings (1.3) in Banach A-modules associated with the functional
inequality (1.3) when f is an odd mapping. Furthermore, they applied these results
to investigate homomorphisms in complex Banach algebras and prove the generalized
Hyers-Ulam stability of homomorphisms in complex Banach algebras.

The main purpose of this paper is to determine the general solution of the func-
tional inequality (1.3), and then prove the generalized Hyers-Ulam stability of the func-
tional inequality (1.3) in Banach spaces and in non-Archimedean spaces by employing
the fixed point and direct methods.

2. Stability of (1.3): Fixed point method

In this section, assume that X is a normed space and Y is a Banach space. We will
prove the generalized Hyers-Ulam stability of the functional inequality (1.3) in Banach
spaces by using the fixed point method. First, we give the definition of a generalized
metric on a set E. A function d : E x E — [0,0| is called a generalized metric on E if
d satisfies the following:

(1) d(x,y) =0 if and only if x = y;

) d(xay) = d(y7x)’ Vx,y EE;

(3) d(x,z) <d(x,y)+d(y,z), Vx,y,z € E.

In [7], Diaz and Margolis constructed a method using a fixed point theory, which
is extensively applied to the stability theory of functional equations.

LEMMA 2.1. ([7]). Let (E,d) be a complete generalized metric space. Further
let J: E — E be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each fixed element x € E, either

d(J"x, J"x) = o

for all nonnegative integers n or there exists a positive integer ny such that
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() d(J"x,J"x) < oo, ¥n=ng;

(ii) the sequence {J"x} is convergent to a fixed point y* of J;

(iil) y* is the unique fixed point of J in the set E* :={y € E | d(J"0x,y) < 4o}
(iv) d(y,y") < fpd(».Jy), Yy E*.

Now, we present the general solution of the functional inequality (1.3) in real
vector spaces.

LEMMA 2.2. Let V and W be real vector spaces. Let f:V — W be a mapping
such that

12 (x) +2f(y) +2f(2) = fx+y) = fFO+ )< | f (x+2) ] (2.1)

forall x,y,z € V. Then the mapping f is Cauchy additive.

Proof. Putting x =y =z=0 in (2.1) yields ||4£(0)|| < ||f(0)||. So, f(0)=0.
Letting y =0 and z = —x in (2.1), we obtain

1FG)+ (=) < £ (0)] =0 (2.2)

forall x € V. It imply that f(—x) = —f(x) forall x € V. Letting z = —x in (2.1), we
get

12f(y) = fr+x) = fy=0)l < [|£(0)] =0, (2.3)
which yields f(y+x)+ f(y —x) =2f(y) forall x,y € V. And we infer that
flx+y)=fx)+fy) (2.4)

for all x,y € V. Thus the mapping f is additive. [

THEOREM 2.1. Let @ : X3 — [0,00) be a function such that there exists an 0 <
L <1 with

0(2x,2y,2z) <2Lo(x,y,2)

(0(333) < Soteranren)

Sorall x,y,z € X. Suppose that f: X — Y is a mapping with f(0) = 0 and satisfying
the functional inequality

12 (x) +2f () +2f(2)=f(x+y) = f O+ < [ f G+ [+ ok y,2)  (2:6)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

ﬁ{q)()@x, —x) +2¢(x,0,—x)}

(2.5)

[£(x) —AX)]| <
2.7)

(1769 =AW < 575 (905, —0) +20(x,0, )} resp )

L
2(1—-L
forall x € X.
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Proof. Letting y =x and z = —x in (2.6), we get

14 (x) + 2/ (—=x) — f(2x) || < @(x,x,—x) (2.8)
for all x € X. Putting y =0 and z = —x in (2.6), we have
Hf(x) +f(_x)H < q)(x707_x) (2.9)

forall x € X . It follows from (2.8) and (2.9) that

127 (x) = f(2x)]] < @(x,x,—x) +20(x,0,—x) := D(x) (2.10)
and so
Hf(x) - f(ix) ’ < %cp(x) (2.11)
forall x e X.

Consider the set S:= {g| g: X — Y,g(0) =0}, and introduce a generalized metric
d on S as follows:

d(g,h) = inf{S eRy

lg(x) — h(x) | < D(x),Vx GX}.

It is easy to prove that (S,d) is a complete generalized metric space (cf. [5]). Now we
define the mapping J : S — § given by

1
Jeglx) = Eg(2x), forallge S andx € X. (2.12)

Let g,h € S and let 6 € R be an arbitrary constant with d(g,h) < 8. From the
definition of d, we obtain

18(x) = h(x)[| < 5P(x)

forall x € X. Hence
0
178(x) = Th(x)|| < 5(2x) < SLB(x). (2.13)

for some L < 1 and for all x € X. Hence, it holds that d(Jg,Jh) < 0L, that is,
d(JTg,Th) < Ld(g,h) forall g,h€S.

It follows from (2.11) that d(f,J f) < % holds. Hence, by Lemma 2.1, the se-
quence J" f converges to a fixed point A of 7, that s,

A:X—Y, lim if(Z"x) =A(x)

N—o0 2"

and

A(2x) = 2A(x) (2.14)
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for all x € X. And the mapping A is the unique fixed point of 7 in the set $* = {g €
S:d(f,g) < oo}. This implies that A is a unique mapping satisfying (2.14) such that
there exists a 6 € R4 such that

1/(0) = A < 6D(x)

for all x € X. Hence, we have

1
200-1)

1
d(f.A) < T—d(£.T) <

This means that the inequality (2.7) holds.
Next, we verify that the mapping A is additive. It follows from (2.5) and (2.6) that

[24(3) +24() + 24(2) — £ (x+9) — FO+2)|
= lim L1272 +2/(2') +2/(2")
— P (ry) — 2+ 2)
< fim £ 2) + fim 2 0(272'9,2'%)
< lim £ )+ Jim L (x,,2)
= [[A(x+2)] (2.15)

forall x,y,z € X. Thus, by Lemma 2.2, the mapping A : X — Y is additive, as desired.
This completes the proof. [

COROLLARY 2.1. Let 6 > 0 be a real number and r be a positive real number
with r # 1. If a mapping f: X — Y with f(0) = 0 satisfies the inequality

12/ (x) +2f () +2f(z) = f(x+y) = fFO+2)
<+ +0xl"+ Iy[I"+llzll") (2.16)

forall x,y,z € X, then there exists a unique additive mapping A : X — Y such that

76
2211

1F(x) =AMl < [x[1” (2.17)

forall xe X.

Proof. The proof follows from Theorem 2.1 by taking ¢ (x,y,z) = 0 (||x||"+ ||y||” +
|z]|") for all x,y,z € X. Then we can choose L =2""! or L =2'"", and we get the
desired result. [
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3. Stability of (1.3): Direct method

In this section, we suppose that X is a normed space and Y is a Banach space. We
will investigate the generalized Hyers-Ulam stability of the functional inequality (1.3)
in Banach spaces by using the direct method.

THEOREM 3.1. Let ¢ : X> — [0,%0) be a function such that

1
2—(p(2/x ij 2/ 7) <

Xy oz
j _——, — oo
Zq)( HETE j>< 7resp.)

M s

J

(

Sor all x,y,z € X. Suppose that a mapping [ :X — Y with f(0) =0 satisfies the
inequality

12f(x) +2f () +2f(2)=f(x+y) = O+ < [f G+ [+ oxy2)  (B2)

for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

(3.1)

™M %

j=1

ST
M
2| —

1F(x) =AMl < 02, 27x,~27x) +2(2/x,0,-2/x)},

Y (3.3)
_ Nl X X Lot
(e -awi<; Z2{o(5.5.-5) +20 (505 rer)
forall x € X.
Proof. According to (2.10), we obtain
2x 1
170~ 220 < 2otee ) +20(5,0, ) G

forall x € X. Then, It follows from (3.4) that for all nonnegative integers n and m with
n>m
n—1

Hf(Z’”x) f2 7
Zzi (27x,27x, —2/x) + 2¢(2/x,0, —2/x)} (3.5)

2]
%) 2

2<s 5

2m

NIH

2
on

X. Since Y is complete, it follows from that the sequence {

for all x € X. It means that the sequence { } is a Cauchy sequence for all x €

f(2
on

Therefore, one can define a mapping A: X — Y by A(x) := r}grolo (2,1 Y forall x € X.

Moreover, letting m = 0 and taking the limit n — oo in (3.5), we get the approximation
(3.3) of f by A, as desired.

} converges in Y.
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Next, we claim that the mapping A : X — Y is additive. In fact, it follows from
(3.1) and (3.2) that

[2A(x) + 2A(5) +2A() — A +) — f(3+2)|
= lim 1272 +2/(2') +2/(2"2)
@ (xy) — 25+ 2)
< fim £ 2) + fim 2 0(272'9,2'%)
= |A(x+2)]|- (3.6)

Thus, the mapping A : X — Y is additive by Lemma 2.2.
Finally, we show that the uniqueness of A. Let A’ : X — Y is another additive
mapping satisfying (3.3). Then, we obtain

1A(x) = A'(x) | = %HA(Z”JC) —A(2"%)]|
< %(IIA@"X) — f@%)[I+114°(2") = f2")])

= i - - .
< 20 2j+n{(P(2J+ X, 2J+ xa_ZJJr .X) +2(P(21+ .X,O,—2J+ X)}
Jj=

> 1 . . . . .
= 3 5 {0(2/x,2x,~20) + 20(2/x,0,~2/x)} (3.7)
j=n

which tends to zero as n — oo for all x € X. Hence A(x) = A’(x) for all x € X. This
completes the proof of the theorem. [

COROLLARY 3.1. Let 6; > 0 be a real number and r; be a positive real numbers
with r; <1 orri>1 forall i=1,2,3. Ifamapping f:X — Y with f(0) =0 satisfies
the inequality

12f(x) +2f(¥)+2f(2) = f(x+y) = fy+2)
< fG+2) [+ Ollx]|™ + 6a2ly[|" + 65|z (3.8)

forall x,y,z € X, then there exists a unique additive mapping A : X — Y such that

391 393
|2 —2"1] |2 —273]

0>
12 —27|

[x[1"> + x| (3.9)

1f(x) —A@x)] < x|t +

forall x € X.

4. Stability of (1.3) in non-Archimedean spaces: Fixed point method

In this section, we will prove the stability of the functional inequality (1.3) in non-
Archimedean Banach spaces by using the fixed point method. Now, we first recall some
basic facts concerning non-Archimedean Banach space and some preliminary results.
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By a non-Archimedean field we mean a field K equipped with a function (valu-
ation) |-| from K into [0,e) such that |r| =0 if and only if r =0, |rs| = |r||s|, and
|r+ s| < max{|r|,|s|} for r,s € K. Clearly |[1|=|—1| =1 and |n| <1 forall n € N.
By the trivial valuation we mean the function |-| taking everything but 0 into 1 and
|0] =0 (i.e., the function |- | is called the trivial valuation if |r| = 1,Vr € K,r # 0, and
|0] =0).

DEFINITION 4.1. ([13, 23]). Let X be a vector space over a scalar field K with
a non-Archimedean non-trivial valuation |-|. A function |-|: X — R is called a
non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||x|| =0 if and only if x =0;

(i) ||rx|| = |r|||x|| forall r e K and x € X ;

(ii1) The strong triangle inequality; namely,

[l [l < maxg{lx][, [ly[]}

forall x,y € X.
Then (X, || -||) is called a non-Archimedean normed space.

Due to the fact that
X0 = 2xm|| < max{|[xj11 —x;|| :m<j<n—1}, (n>m),

a sequence {x,} is Cauchy if and only if {x,;; —x,} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean
one in which every Cauchy sequence is convergent.

From now on, unless otherwise stated, we suppose that X is a non-Archimedean
normed space and that Y is a non-Archimedean Banach space.

THEOREM 4.1. Let ¢ : X3 — [0,00) be a function such that there exists an 0 <
L <1 with
¢(2x,2y,22) < [2[Lo(x,y,2)

(‘P@%%) < ‘Law(x,y,zmsp.) (4.1)

forall x,y,z € X. Suppose that f: X — Y is a mapping with f(0) =0 and satisfying
the functional inequality

12f(x) +2f () +2f ()= f(x+y) = fO+I < f G+ +olxy2)  (42)
forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

1
1f(x) =A@ < mq)(x)

L

(4.3)
(17 =AW < =gy @ )resp)

forall x € X, where ®(x) := max{@(x,x,—x),|2|@(x,0,—x)} forall x€ X.



STABILITY OF ADDITIVE FUNCTIONAL INEQUALITY IN VARIOUS NORMED SPACES 1633

Proof. Tt follows from (2.8) and (2.9) that
[[£(2x) =2 (x)[| < max{||4f(x) +2f(=x) — f(2x) ||, [2[[| £ (x) + £ (=x) | }
< max{Q(x,x, —x), [2|@(x,0, —x)[|} := ®(x) (4.4)
for all x € X . Therefore, we get

1 1
1fC0) = 5720l < md)(X) (4.5)

for all x € X. Applying the similar argument to the corresponding proof of Theorem 2.1
on the complete generalized metric space (S,d), we obtain the desired result. [

COROLLARY 4.1. Let 6 > 0 be a real number and r be a positive real number
with r # 1. If a mapping f: X — Y with f(0) = 0 satisfies the inequality

12/ (x) +2f (1) +2/ (@) = f(x+) = O+
<G+ O el + [y + 1=l (4.6)

forall x,y,z € X, then there exists a unique additive mapping A : X — Y such that

max{3,2[2|}

0[x[l” 4.7)
121 = 12]"]

[1f(x) —AG)] <
forall x€ X.

5. Stability of (1.3) in non-Archimedean spaces: Direct method

In this section, we will prove the stability of the functional inequality (1.3) in non-
Archimedean Banach spaces by the direct method.

THEOREM 5.1. Let ¢ : X — [0,0) be a function such that

. 1
lim W(p(Z”x, 2"y,2"z) =0,

n—00

Yy (5.1)
e (XY 2N
<3513J2| ‘p(zn’zn’zn> O’m’?)
forall x,y € X and the limit
1
¢(x) = lim max{—de(ka) 0<k< n}
e 2] (5.2)

(q”)(x) = lim max{\ZV‘@(%) 1<k<n+ l},resp.)
n—o0
exists for all x € X, where

®(x) := max{Q(x,x, —x),|2|Q(x,0,—x)} (5.3)
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Sorall x € X. Suppose that f:X — Y is a mapping with f(0) =0 and satisfying the
functional inequality

12f(x) +2/(3) +2f (D)= f(x+y) = fO+ DI < I+ + o(xy2) (54
forall x,y,z € X. Then there exists an additive mapping A : X — Y such that

1£() - AW < |71\¢(x) 5.5)

forall x € X. Moreover, if

1
lim hmmax{ o (I)(Zk ): i<k<n+i}:0,

j—ro0 N—>00

(5.6)

(hm lim max{2|kd)(2 Jiitl<k<n+i+ 1} :O,resp.)
forall x,y € X, then A is the unique additive mapping satisfying (5.5).
Proof. Replacing x by 2"x and dividing the both sides of (4.5) by |2|", we obtain

H fMy )l 11

2 f2)

2n+1 on q)(znx) (57)

for all x € X. It follows from (5.1) and (5.7) that the sequence {%} is Cauchy for

all x € X. Since Y is the non-Archimedean Banach space, we conclude that {%}
is convergent. Hence, we can define a mapping A: X — Y as

f(2"x)

Ax) = lim =5
forall x e X.
Using induction one can show that
[l _ 1 L ook -
Hf(x)— 7 <mmax WCDQ x):0<k<n (5.8)

for all » € N and all x € X. By taking n to approach infinity in (5.8) and using (5.2)
one obtain (5.5). By (5.1) and (5.4), we get

||2A(X)+2A( ) +2A() = f(x+y) = f+2)

= lim \2| 12£(2") +2/(2") +2£(2"2)

—f(2"(X+y)) — 2"+

1
n 3 -
}1m |2‘ lfF2"(x+2))| +}}1m 2F

= [[A(x+2)|| (5.9)

0(2"x,2"y,2"z)
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for all x,y,z € X. Thus, by Lemma 2.2, the mapping A : X — Y is additive. To prove
the uniqueness property of A, let A’ be another additive mapping satisfying (5.5). Then

|A(x) — A(x)]| = lim [2] 7" |A(2'x) — A"(2') |
|—o0
< lim |2|"max{[|A(2x) — £(2'%) |, || f(2'x) —A'(2"%) ||}
[—o0
1 D(2K
< E}L@Qr}ﬂmax{%:igk<n+i}

=0

for all x € X . Therefore, we have A = A’, and the proof is complete. [

COROLLARY 5.1. Let p :[0,00) — [0,00) be function satisfying

() p(2) < p(|2)p(t) forall 1 =0,

(i) p(|2]) < [2*, where A is a fixed real numberin A € [1,0).

Let 6 >0, and let f:X — Y be a mapping with f(0) = 0 and satisfying the
functional inequality

12f(x) +2f(y) +2f(2)—f(x+y) = fFy+2)l
<+l +olp ) +p vl +plzl)]  (5.10)

forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

1£() — A < Eﬂmax{s,zuuap(uxn) (5.11)

forall x € X.
Proof. Defining ¢ : X* — [0,0) by
@(x,y) == 8[p([lx]) +plyID) + p(llz])]-
Since 2|7 'p(|2]) < [2]*~' < 1, we have

20y, 2y 2N
im QEX2',2")

N—o0 |2 ‘ n N—soc0

PDY g )~
7|

p(2])
S

for all x,y,z € X. It follows from (5.3) that

®(x) : = max{@(x,x,—x),[2|p(x,0,—x)}
— max{3,2/2]}8p x| (5.12)

for all x € X. By direct calculation,

n—oo

@(x) = lim max{—d)(2kx):0<k<n} =d(x), (5.13)
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exists and

1 1
lim limmax{—d)(zk ): i<k<n—|—i}—hm—d)(2’ )=0 (5.14)

i—00 N—>00 ‘ |k l—>w| ‘l

holds for all x € X. Applying Theorem 5.1, we infer that

oo — Lo
1£) =AW < 570() = 75, P ()

1
= g max{3. 221180 (1) (5.15)

for all x € X, and the proof is complete. [
COROLLARY 5.2. Let @ :[0,00) — [0,00) be function satisfying
Q) o(]2]7') < o(]2| Hao(t) forall t >0,
(i) o(]2|71) < |2|7#, where u is a fixed real number in [ € (—oo,1].

Let 6 >0, and let f:X — Y be a mapping with f(0) = 0 and satisfying the
functional inequality

12f(x) + 2 () +2f (1) =f (x+3) = fF v+ 2|
<|lf e +2) + 8l (llxl) + o(lyl) + lzl))  (5.16)

forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that
1
1/ (x) =AM < o max{3,2[2|}do(||x]) (5.17)

forall x€ X.
Proof. Let ¢ : X* — [0,0) defined by
¢(x,y,2) := 8[o([|x])) + a([yl]) + o(|z[)]-
Since [2|@(|2|7!) < |2|'"# < 1, we have
lim 2" (32,50, 57 ) < Jim 20121~ 9 (x,3,2) = 0
N—sc0 2}1 2" 2" N—soo
for all x,y,z € X. Also
~ . k X X
$(x) = lim max { 2 d(=) : 1 <k <n+1y= \2|c1>(—)
n—eo 2 2

and

hmhmmax{2|kcl)(2) z+1<k<n+l+l}—11m|2’+1q)<21+1> 0

j—ro0 n—00

for all x € X. Hence the result follows by Theorem 5.1. [J
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