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ON THE LOCAL RITT RESOLVENT CONDITION

ABDELLAH AKRYM™* AND ABDESLAM EL BAKKALI

(Communicated by J. Pecaric)

Abstract. Let T be a linear bounded operator on a complex Banach space 2. In this paper, we
introduce a local version of the Ritt resolvent condition [LR] for Banach space operators 7. We
start by showing that this concept is weaker than the classical Ritt condition [R]. We prove that,
for operators with single-valued extension property (SVEP), estimate [LR] extends, with a larger
constant, to some sector K5. Moreover, by extending some Ritt’s theorems to the local case for
operators with the SVEP, several characterizations of the local sublinear decay of 7" — T7"+1
have been established.

1. Introduction and preliminaries

Let 2 be a complex Banach space and let ||.|| be the operator norm induced by
the vector norm in 2", and let B(2Z") be the algebra of bounded linear operators on
2. We denote the spectrum of T € B(Z") by o (T), the identity operator on 2~ by
1, and the resolvent of T by R(T,A) = (AI—T)"', A ¢ o(T). Let us recall (see,
e.g., [9, 17]) that an operator T with spectrum in the unit disc is said to satisfy the Ritt
resolvent condition with constant M > 1 if

M
IR(T,A)| < 7 1‘forall [Al>1. [R]
An operator T € B(Z") is called power bounded, if there exists a constant M > 0 such
that

|T"| <M, forallneN. (1)

In the literature, the estimate of the powers of operators under various resolvent condi-
tions has been largely studied [9, 10, 11, 13, 16, 17, 18, 19, 21, 22].

In [21], Ritt proved that for Banach space setting The condition [R] yield || T"|| =
O(n) as n — oo. In [16], it was shown that if Ritt resolvent condition holds for
an operator T acting on a Banach space, then ||T"|| = O(logn) as n — oo, and
H " — "+ H — 0 as n — oo. These results have been generalized by Pater for oper-
ators acting on locally convex spaces [19, Theorem 3]. Another important study was
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made by Moore when he extended the notions of states and of numerical ranges of op-
erators to the case of locally convex spaces [15]. In this work, we introduce the local
Ritt resolvent condition and relate it to the local power boundedness and the local decay
of T" — T"+1 In fact, we prove local versions of some results of [19, 21]. For this we
need to introduce some preliminaries on local spectral theory; for more details on this
subject, we refer to [6, 14].

The local resolvent set pr(x) of T at x € 2 is defined as the set of all com-
plex A € C for which there exists an analytic 2 -valued function w on some open
neighborhood U of A such that

(W —T)w(u)=x forall u € U.

The local spectrum o7 (x) of T at x is the complementin C of pr(x). Itis well known
that the resolvent mapping is unbounded. On the other hand, as observed in [12], the
behavior of local resolvent functions may be quite different.

An operator T € B(Z") is said to have the single-valued extension property (here-
after referred to as SVEP) if, for every open set U C C, the only analytic solution
w:U — Z of the equation

AI-T)w(A)=0 (AeU),

is the constant function w = 0.
If T has SVEP, then, for every x € 2, there exists a unique analytic function
() pr(x) — £ such that

(AI—T)xr(A) =x forall A € pr(x).
This function is called the local resolvent function of 7" at x and satisfies
fr(A) =AM —=T) 'x forall A € p(T).
For T € B(Z"), the local spectral radius of T at x is defined by
rr(x) :=sup{|A]|: X € or(x)}.

If T has the SVEP, then
rr(x) = lim sup HT”xH%.
oo

In the following, we use the local functional calculus developed in [2, 24] which
extends, in several directions, the holomorphic functional calculus developed by D.
Dunford and A. E. Taylor in [8, 23].

Let T € B(Z") have the SVEP and let x € X such that or(x) C K, where K is a
compact subset of C. For every holomorphic function f on a neighborhood of K, the
vector f[T]x is defined, in [4] (see also [2]), by

[T = %/rf(u)fr(u)du-



ON THE LOCAL RITT RESOLVENT CONDITION 221

For every A € C, we denote by f7 is the function given by f(u) = (4 —u)™"
1,2,....If n=1, we write simply f; for f/{.

In [3], Bermiidez, Gonzdlez and Martin6n gave an example which shows that f[T]
is not well defined when 7' does not satisfy the SVEP. Thus, to develop the proofs of
the main results, we will assume that the operator T satisfies the SVEP.

LEMMA 1. [3] Assume that T € B(Z") has the SVEP and let x€ 2. If A €
pr(x), then r(A) = fo,[T)x.

Analyticity of £7(.), Cauchy’s differentiation formula and the definitions yield the
following.

PROPOSITION 1. [2] Assume that T € B(Z") has the SVEP and let x € :2". For
A € pr(x), we have

4" (M)
arr

=(=1)"n!ffTx (2)

2. Main results

In this section, we will give local versions of some definitions and we will establish
some results relating these notions.

DEFINITION 1. Let T € B(Z") and x € 2" such that rr(x) < 1. We say that
T satisfies the local Ritt resolvent condition at x if there exists an analytic function
xr(.): C\ or(x) — 2 suchthat (AI —T)xr(A) =x and

lxr ()] < MM 0 forall [A| >1, [LR]

for some constant M > 0.

This concept is weaker than that of the Ritt condition [R], because the subspace
{x e Z :rr(x) < 1} does not necessarily coincide with .2~ or is closed.

EXAMPLE 1. Let 2] and £, be two Banach spaces. Let T € B(:Z]) be an
operator satisfying the [R] condition and S = 2I € B(.23). Hence, the operator L =
T®S € B(21® 25) does not satisfy the [R] condition. Indeed, 6(L) = o (T)Uc(S) €
D(0,1). But, for x € 27, we set f(u) = (L2, —,ul)_lx forall u € C\D. Then, we
get an analytic function satisfying (L — ul) f(u) = x for all u € C\ D. Moreover,
there exists M > 0 such that

|l f(u H_HLM1 ul)” H—HT ul)~ H\%,forall/xe@\ﬁ.
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EXAMPLE 2. Let o = (0 )ren be a sequence in £(N) such that o € (0,1) for
all k#0,and o /1 ask — oo, and || > 1. Define the operator T, on 2~ = ¢?(N)
by

T(x X — X
(xk)kEN — (OC()X(), ox1,00Xx2,.. ) .
Since o € o(Ty). Hence T, does not satisfy the [R] condition. On the other hand,

we choose (k). such that e, be the element whose k-th entry is 1, while all others
vanish. For k # 0, we have Tyer = ogey, hence oy, (er) = {0y} CID. We set

=

ek, (1 2

ekfor all [u| > 1,

thus (ul — Ty )exr, (1) = ex for each k # 0. Moreover, one can show that

oo J
- o/
I(O‘k_o‘lf Ju J€k=€k+(ak—1)j§”;+1 k-

™

(U= Dexr, (1) = ex +

J

Then

\Ofk—l\
|H| o]’

H(“_l)ekTa H— e+ (og—1) Z j+1 erl| <

forall u € C such that |u| > 1.
Since |oy — 1| < |u| —|og| for all k # 0. Hence

2 _
lexr, ()] < oy forall ke C\D,

Therefore, T, satisfies the [LR] condition at each ¢; with k 0.

Let § > 0 and consider the set

K5={l=1+rei9,r>0, |9|<g+5}.

THEOREM 1. Let T € B(Z") have the SVEP and let x € 2. If there exists C >0
such that

C
[ (M) < o1 forall |A] > 1, (3)
then

M
()] < g foral 2 € K, @

for some strictly positive constants 6 and M.
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Proof. Let S=T —1. Then, £5(1) = f,[T —I]Jx = £r(A +1). Thus, by using
condition (3), we have
os(x) C {7L eC:|A+1]<1}U{0}, and

5
s (M) < MI for all |4+ 1| > 1. ©)

In particular, the above estimate is true for each Ay € C such that R(Ap) =0 and

3(%) #0.

Using Proposition 1, we obtain

25(A) = X (=1)"(A = 20)" £, [S)x (6)

whenever

A — Aol || f, [S)x]| < 1. (7)

One can show that £5(A) exists for all A such that 3(1) =3 (), then |R(1)| < @
Indeed, by using (5), we get

&= 2ol || 2 [S)x]| < 12 = Aol ®)

o]
If |2 = Aol 15 < 1 then |4 — | < %8l So, for S(A) =S (%) we have [R(A)| < 5.
Since Ag # 0 is arbitrary on the imaginary axis. Thus, if we choose { such that tan { =
é then £5(A) exists forall A € Ky — 1.

In order to obtain an appropriate estimate, fix § € (0,1) such that tand = Z, for

some g € (0,1). Let L € K5 — 1 with R(A) < 1, and let g =iS(A). Then ‘
A=l C
— <1 9
Aol g ®
Thus,
- C C
(A < 1% "< < . 10
55 < 15500l £ < o= < i greass (0

Therefore, by choosing

Cc C VC?+g?
M= (1—q)cosd 1 b >C
a4 (1-q) Cr P

and going back to the operator 7', we obtain the result. [

DEFINITION 2. The peripheral local spectrum of 7 € B(2") at x € 2" is the set

rr(x):={Aeorx):|Al=rr(x)}.
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Note that yr(x) = 0 provided that max{|A|: A € or(x)} < rr(x). The books P.
Aiena [1], K. B. Laursen and M. M. Neumann [14] provide a rich bibliography of local
spectral theory.

The local power boundedness for an operator T € B(.Z") has been studied in many
works, see e.g. [4, 5, 7]. First, we give the definition of local power bounded operator.

DEFINITION 3. Let T € B(Z") and x € Z". T is said to be a locally power-
bounded operator at x if there exists a constant M > 0 such that

IT"x|| < M foreachn € N.

In order to prove the second part of the Theorem 2, we need the following Lemma.

LEMMA 2. [17] Forany 0 < & < 1 there exists a nonnegative ye € C*[—m, ]
such that

and the Fourier coefficients

satisfy
2 |)ACS(”+ 1) _)ACs(n)| <E.
THEOREM 2. Let T € B(Z") have the SVEP and let x € X" such that |T"x|| < C,

n €N and rr(x) = 1. Then

Jim | T*(T —1)x|| =0, (11)

if and only if yr(x) = {1}.
Proof. Assume that z € yr(x). Then

ITT =Dl = rgarp(x) = sup A —1)[=> |z 1].
A€o _p ()
Thus, by (11), we obtain z=1.
Conversely, suppose that vr(x) = {1}. By choosing the integration path T =
{A€C :|A|=re" r>1} and using the local functional calculus, we get

k _L/ ke
Trx = - F?L Xr(A)dA.
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Then

1

(k+1)Tk( 17 _ I) 27[

/ RN (10 _ Ve (re®)d6. (12)
Define B ,(0) = (¢® — 1)(1 — x:(0))&r(re®®). Consider

1 .

— o [ 1) (6)ir (v o

The “Fourier Coefficients” of (e — 1)x.(0)%r(re’®) are given by I and they could
be obtained by convolving the Coefficients of ¢(6) = (e?® — 1)y:(6) with those of
v(0) = &r(re'®). Since rr(x) = 1, the local resolvent function is defined in {A € C :
4] > 1} by

. > Tkx
Xr(A)=R(A,T)x= IZE)W

By Lemma 2, ||¢||; and as T is locally power-bounded at x, }L/H»l < C for k =
0,1,.... The estimation obtained is of the form ||¢ * ¥||_, < with ||¢]], <
e and |||, < C. Then, |[I]| < Ce.
Consider now
1 /T .
=20 |4 Bes 0)a0.

Since ye € C?, by partial integration we obtain

-1 d
k10 4
= 2wtk + 1)/ T g [Ber(6)]d0.

As 1— xe is vanishes for |6| < €/2, so is Bg,(0). We claim that then there exists a
T(g), such that for, say 1 < r < 2 satisfies

d

dGBg F(0)|| < T(e). (13)
Indeed, let us define the compact set

io €
Kg::{re /5 <0< m1 grgz}.

Xr(A) is analytic in K, and thus both £7(A4) and %XT(JL) are bounded in K, . Hence

(13) follows. Combining the estimates for I and J implies the inequality

r T (1T - D < Cs+kc—fi (14)

As the right hand side of (14) is independent of r. Thus, by letting »r — 1, we get
(1n. O
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THEOREM 3. Let T € B(Z") have the SVEP and let x € 2~ such that |T"x|| < C,
n € N and there exists M > 0 such that

[t e < 7

keN, (15)
with
L
II£7 (L) < n— ‘ for A € Ks. (16)
Then, there exists 6 > 0 such that
or(x)NKs C 0.

Conversely, suppose that yr(x) = {1} or pr(x) < 1 and for some 6 >0 and L > 0 we
have

L
Jer (W) < gy for k€ K a7
Then T is locally power-bounded at x and there exists M > 0 such that (15) is satisfied.

Proof. Assume that T satisfies (15) but there is no § such as or(x) Kz =0. By
Theorem 2, we have yr(x) C {1} and there exists a sequence {4} C o7 (x) such that
|3(4;)| > j(1—R(A;)) forany j. This means that A; — 1 and
41

1+

== (1= RAP+ B> 1-2(1-R(A)) > 1-2

:

41|
Vit?

By choosing k; such that e} +1 < < % we get }/lj|2 >1- % Then, by using

(16), we obtain

Mk A5 2~ 1] > k+1<1__> VIT 7 forany

which is a contradiction.
For the converse statement, consider the integral

THT = Dx = zim /F/lk(x —1)gr(A)da,

where I is any curve enclosing o7 (x). Choosing I' =Ty U, UT3 such that I, de-
notes a circular arc of the form {4 = pe®, p <1 is fixed and 6 varies }, T is a

line segment of the form {/l =1+ % —l—te"(%“s)7 t> O}, and I'3 is symmetric with
I'y. Since yr(x) C {1}, we may choose p such that ||[(1A — 1)&r(A)|| be uniformly
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bounded over I',. For I'y and I'; it suffices to use (17) in order to have this result. The
path is connected only for large enough values of k. Over I'; we have

1 k a k
I (A—l)xT(JL)dJLH <ciph.

On the other hand, over I'; there exists two positive constants, ¢; and ¢, such that
|A(1)] < (14 ) e 2. Then, by using (17), we get

Analogously for the integral over I';. Then we have

1 C [~ ci\k _ Ce‘l
— [ 24— Dgr(2)dA g—/ (1 —) ekt gy .
ox Jp, b A D) H mh %) e 2meak

ool <c (1),

hence (15) follows. In order to complete the proof we have to show the local power
boundedness of 7. We have

k _L/ ko
T'x = - F?L Xr(A)dA.

By evaluating the integral over I, . We have

1 kil k
37 o M e )l a2 < Cop

Further, over I'; ( and analogously over I'3) we have

Lo A )
E/r g~ lker @l

c |AK]
<= dA
21 /rl Il—l\‘ |
oo —cokt
< £/ eclei_ndl
21 Jo ‘%Hel(ﬁa)‘

Cefl [ —T
= c / ¢ " dT ::C4

Therefore, |

T*x|| < C with C = 2C4+ C3p* which complete the proof. [

THEOREM 4. Let T € B(Z") have the SVEP and let x € 2~ such that |T"x|| < C,
n €N and or(x)NT C {1}, where T denotes the unit circle. Then the following
statements are equivalent

(i) There exists M < oo such that |T"(T —I)x|| < % n>=0;
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(ii) there exists K < oo such that H(T — D)l H < Kl_Tft,t >0;
(iii) there exists K < oo such that ||(T—I f"+1 }xH < % [ﬁ — %} n>1,A>

1;
ll T , forany A € Kg.

(iv) there exists B < oo, and 0 > 0 such that ||ir ()] <

Proof. (i) = (ii) For t > 0, we have
T i Mt
7o < S 5 < 4 50 <

(ii) = (iii) We define
i) = [T,
0

Since [|e'Tx|| < e® for some @ >0 and all £ >0 (see [20, pages 1-3]), fi(1) is
defined for every A € C such that %(A) > ®. One can show that, for 7 > 0

ehT _1 e?th -1 lh
L) = / —At thdt / —At thdt

and by letting h — 0, we get
Tf(A)=Af(A)—x,

which implies that (Al —T) fy(1) = x forevery |A| > 1. As T has the SVEP, f,(1) =

Xr(A). Itis easy to see that

d"tr(A) _ n [ n (=t (T-1)
a = ( 1)/0 t"e xdr.

Thus, by Proposition 1, forn>1, A >0

1 _
FrT]r = H/o o= A=D1 H(T=1) 4y

By multiplying with 7 — I and from relation (ii) we get (iii).
(tif) = (ii) Tt suffices to substitute A := (n+1)/z, in

1 1]
T
(1-7)
and by making n — o, we get (ii) [20, Theorem 8.3] (indeed, for all real number ¢
there exists 79 € N such that for all n > no, || 75T < 1).

o [} <2
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(ii) = (iv) By

[e7s <CX 5 =ce
>

it follows that He’(T’”xH < C, for t > 0. By estimating

sector that surrounds the positive axis ¢ > 0, which made it possible to change the
integration path in

’ eZ(T’I)xH uniformly in a

fr(A) = / T AV Ty for A > 1
0

to the path z = re’® for 6 small enough. Therefore, the proof of (ii) is the same as in
[20, Proof. pp. 62-63].
(iv) = (i) Direct and immediate application of Theorem 3. [
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