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Abstract. In this work, the concept of the Davis-Wielandt Berezin number is introduced. Some
upper and lower bounds for the Davis-Wielandt Berezin number are introduced. A connec-
tion between norm-parallelism to the identity operator and an equality condition for the Davis-
Wielandt Berezin number are also discussed. Some bounds for the Davis-Wielandt Berezin
number for n X n operator matrices are established.

1. Introduction

Let A () be the Banach algebra of all bounded linear operators defined on a
complex Hilbert space (47;(-,-)) with the identity operator 1, in Z (). When
2 =C", we identify Z (.#) with the algebra .#,(C) of n-by-n complex matrices.

A functional Hilbert space is the Hilbert space of complex-valued functions on
some set Q C C that the evaluation functionals @, (f) = f (1), A € Q are continuous
on 77 . Then, by the Riesz representation theorem there is a unique element k; € 57
such that f (1) = (f,k ) forall f € 5 and every A € Q. The function k on Q x Q
defined by k(z,A) =k, (z) is called the reproducing kernel of .7, see [7]. It was
shown that & (z) can be represented by

=3

ki (2) = 3 en(A)en (2)

n=1

for any orthonormal basis {e, },>1 of J#, see [52]. For example, for the Hardy-Hilbert
space H? = H? (D) over the unit disc D = {z € C:|z[ < 1}, {z"},> is an orthonor-

mal basis, therefore the reproducing kernel of H? is the function k; (z) = 3, n?' =
n=1
N ~
(l — kz) ,AeD. Let k) = Hlliﬁ be the normalized reproducing kernel of the space
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. For a given a bounded linear operator 7 on %, the Berezin symbol (or Berezin
transform) of 7T is the bounded function 7' on Q defined by

(L) = <m @),k (z)>, reQ.

An important property of the Berezin symbol is that for all T,S € Z () if T (1) =
S(A) forall A € Q, then T = S (at least when . consists from analytic functions,
see Zhu [57]). For more details, see [11, 15, 16, 23]-[33]. So, the map T — T is
injective [18]. The Berezin set and the Berezin number of an operator T are defined,
respectively, by

Ber (T) = {T(A) A e Q} = Range (T) ,
and

ber(T) = sup{|y| : y € Ber (T)} = sup f(x)‘.
reQ

The Crawford Berezin number and the minimum Berezin modulus of the operator 7
are defined by

Coer(T) :=inf{|T(A)|: A €Q} and mpe(T) := inf{HTkA;LH A eQ}

respectively (see [24]).
The Berezin norm of an operator T € % (7€) is defined by

”THBer ‘= Sup HTle .
AeQ
Recall that the numerical range, the numerical radius and the Crawford number of
T € B(H) are defined respectively, by

W(T):={(Tx,x) :x€ 7 and ||x|]| =1},

w(T) :=sup{|(Tx,x)| : (Tx,x) e W(T)},
and
C(T) :=inf{|{Tx,x)| : (Tx,x) e W(T)}.

It is well known that w(-) defines a norm on %(#), which is equivalent to the usual
operator norm ||. || In fact, forany T € B(), $||T|| <w(T) < ||T|; see [17].

Clearly, Ber (T) C W(T) and ber (A) <w(T). For example, Karaev [33] showed
that if we consider 7 = (-,z)z in H?, simple calculation then gives that 7 (1) =
IA[*(1—|A|). Moreover, we have Ber(T) = [0,1] € [0,1] = W (T) and ber(T) =
% < 1 =w(T). For other results concerning the Berezin symbol the reader may refer
to [14], [19], [20], [42]-[49] and the references therein.
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One of the most less common celebrated generalization of the numerical range and
the numerical radius is the Davis-Wielandt shell and its radius of T € %(¢), which
are defined as:

DW(T) :=={({Tx,x),(Tx,Tx)),x € A, ||x|]| = 1},

and

dw(T)= sup {3/ [{Txx)]2 [ Tx]4). (1)
xeA ||x||=1

It is easy to see that the Davis-Wielandt radius is not a norm. It has many properties
that you can refer to reference [55]. The following inequality immediately comes from

(1):
max(w(T), || T %) < dw(T) < \/w(T) +||T||*

forany T € # (7). Clearly, the projection of the set DW (T') on the first co-ordinate
is W (T). One can easily check that dw (T') is unitarily invariant but it does not define
anormon A ().

The Davis-Wielandt shell and its radius were introduced and described firstly by
Davis in [12] and [13] and Wielandt [51]. In fact, the Davis-Wielandt shell DW (T)
gives more information about the operator 7 and W (T'). For instance, in the finite
dimensional case, Li and Poon proved [37] (see also [38]) that the normal property
of Hilbert space operators can be completely determined by the geometrical shape of
their Davis-Wielandt shells, namely, T € ., (C) is normal if and only if DW (T)
is a polyhedron in C x R identified with R3. Moreover, in finite dimensional case,
the spectrum of an operator T; sp(7') is finite and DW (T) is always closed, cf [37,
Theorem 2.3]. These conditions are no longer equivalent for an infinite-dimensional
operator T, cf [37, Example 2.5].

In [41], Lins et al. proved that, if T € .4, (C) is normal, then DW (T) is the con-

vex hull of the points (Re (A),Im(4;), JLJ-}2> (j=1,---,n),for A; € sp(T). More-

over, each point (Re (A7), Im(A;),|4; }2> is an extreme point of DW (T'). In particular

ab
cd

line segment joining the points (kl, |7L1|2> and (/12, Mz\z) . So that dimDW (T) < 1.

In fact, the condition dim(DW (T)) < 1 holds if and only if 7' is normal, with at
most two distinct eigenvalues. Otherwise, DW (T') is an ellipsoid (without its interior)

centered at (AI;M , %tr <|T|2)> . Also, it was proved that if dim (DW (T)) > 2, then

DW (T) is always convex. A complete description of DW (T') for a quadratic operator
T was given in [38]. For more details see also [3], [39], [40] and [41].

In [51], Wielandt showed that the Davis-Wielandt shell is a useful tool for charac-
terizing the eigenvalues of matrices in the set

case,if n=21e., T = has eigenvalues A1,A,, then DW (T') degenerates to the

{P*TP+Q*SQ: P,Q € .#,(C) are unitary}
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for given S, T € .#,(C).
Now, we want to introduce the concepts of the Davis-Wielandt Berezin set and the
Davis-Wielandt Berezin number as follows:

Bery,, (T) = {((Tka,kz), (Thky, Tkz)), A € Q},

and

bera(T) = ;ugw (Thy 1) 2+ 1T 4.
S

We can clearly see that bery,,(T') is an generalization of ber(T'), moreover bery,, (T) <
dw(T). Tt is easy to see that the Davis-Wielandt Berezin number of T € #(7(Q))
satisfying the following inequality:

max (ber(T),||T[|§e) < beraw(T) < y/ber®(T) + || T|[}e- (2)

In this work, the concept of the Davis-Wielandt Berezin number is introduced.
Some upper and lower bounds for the Davis-Wielandt Berezin number are introduced.
A connection between norm-parallelism to the identity operator and an equality condi-
tion for the Davis-Wielandt Berezin number are also discussed. Some bounds for the
Davis-Wielandt Berezin number for n x n operator matrices are established.

2. The Norm—parallelism and the Davis-Wielandt Berezin number

For T € (), let My be the set of all unit vectors for which T attains its norm;
ie.,

My :={xeH :|lx| = L[|Tx[| = [T}

The concept of the norm—parallelism in % () has been introduced by Saddik
[47] and recently discussed by Zamani and Moslehian in [54]-[56]. Let S,T € (),
we say that 7 is norm-parallel to S (see [54]), in symbol T || S, if there exists A €
{ae € C:|a| =1} such that

1T +AS| =TI+ S]]

Such property is a useful tool in solving some problems in approximation theory, as
pointed out in [54]. Equivalently, it has been shown in [54] that, T || S if and only if
there exists a sequence of unit vectors x, in ¢ such that

Tim | (Tx,,55,)] = |17 5] o)

From the norm properties of vectors in ¢, it can be shown that [53]

IIb\\2;2g||a+ 1ol = llal* [B]° = a.B)?,  Vabe .
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In particular, two vectors a and b in JZ are linearly dependent if and only if

inf ||a+ yb||* = 0.
yeC

Employing this property, a necessary and sufficient condition for T € £ () to be
norm-parallel to S € # () was proved in [53], as elaborated in the following result.

THEOREM 1. Let S,T € B () be compact operators. Then the following con-
ditions are equivalent:

(1) T||S.

(2) There exists x € Mir "My such that for every & € C the vectors Tx+ ESx and
Sx are linearly dependent.

Let us begin with the following primary result.

LEMMA 1. Let S € B (' (Q)).

(1) If Q C C is closed set, then the Berezin set Ber(S) is a closed subset of the
numerical range W (S).

(2) If Q=C, then Ber(S) =W (S) and so ber(S) = o (S).

(3) In particular, the restriction of the numerical range W\, (S) onto Q is exactly
the Berezin set Ber (S), and hence ®|q (S) =ber(S), where by W|q (S) ie.

Wl (S) = {(Sx,x) : x € S (Q) such that for some A € Q, x = kA;L} = Ber(S).

Proof. (1) Let S € # (7 (Q)). Itis well known that Ber (S) C W (S). So that
for any sequence of points A, in Q, the normalized reproducing kernel of .77 (Q) is
given by Z;Ln. For S(A,) € Ber(S), we have %A,l — k; which implies that § (An) —
S(A) € Ber(S), as n — oo; whenever A, — A.

(2) This case follows clearly by noting that for each x € 5 with ||x|| = 1, there
exists an associated 2 € Q = C such that x; = k, . Hence, ber (S) = o (S).

(3) For the restriction onto Q we get W, (S) = Ber(S), and hence o], (S) =
ber(S). O

It’s convenient to note that, in the restriction case the inequality ber (S) < @ (S)
still holds. So that, the reader shouldn’t mix up or confuse between the ®|q (S) and
o(S).

COROLLARY 1. Let Q be a closed subset of C and S € B (4 (Q)). If W (S) C
Q, then we have ber (S) = o (S).
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Proof. Follows from Lemma 1. [
In the sequel, a norm—parallelism of Hilbert space operators and an equality con-
dition for the Davis-Wielandt Berezin number is established.

THEOREM 2. Let Q be any closed subset of C and S € (7 (Q)). Then the
following conditions are equivalent:

(1) S 1.
(2) berg, (S) = ber2 (S)+ HSH‘];er

Proof. (1)=(2) Assume S || 1., by (3), S || 1.~ if and only if there exists a
sequence of unit vectors {2&”} in 27 (Q) for some A € Q such that

lim |<sz<;>,z<;>>\ = 1ISlger- )

n—00

Therefore, we have

(585 < [

<IISlper and  |(SKE)| < ber($) < IS/l

)
Hence by (4) and (5) we obtain that
lim [[SEY]| = 1Sllge, lim |(SE &) = ber(s). ©)
Now, by the definition of bery, (S) we have
\/‘ Skl FN HSk H < bergy () < y/ber () + IS ers (7)

whence (6) and (7) imply that
bera, (5) = /ber (8) + IS [5er-

(2)= (1) Assume berg,, (S) = 1/ber* (S ( )+ HS||‘];er So, by the definition of bery, (S),

there exists a sequence of unit vectors {k } in 7 (Q), for some A € Q, such that

ber? (S) + IS fer-

lim \/‘ Skl , +HSk

Then we have (6) holds. So that let us
Claim: ber (S) = ||S||ge; - Hence by (6) we have

tim | (SK )| = 111per -

n—00
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or equivalently, S || 1. Setting

Sk;) = oc,, + [5,, for some 41,4, € Q, (8)

such that <%§Z),?(")> =0, H?") B, € C. Thus, from (6) and

(8) we have 0y, = <SkA Ry > B, = <SkA Ve >> lim [t,| = ber (S), and

Ji_lg\a,,\z + |ﬁn|2 = HSHIZ_%er'
) o) _ [ pn) 7(n)
Let n, = (SR &), 6= (Sk &) and

O Mn
Sp=1|n" .
’ {ﬁn Cn}
Since |oy,;| < ber(S,) < ber(S), then

lim ber (S,,) = ber (S).

n—o0

Moreover, we have

2 oy, | S Sl n”;a"ﬁ" _ — — 2
|, |~ < ber Gbrons Gl | | = ber (Re (0,,5,)) < ber(a,S,) < ber” (S,).
2 2

Thus, lim ber (Re (0,S,)) = ber” (S,) and lim w =0. It follows that

n—0o0 n—oo
lim |n,[ = lim [B,]. €))
n—o0 n—o0

On the other hand, we have

‘O‘n| + |ﬁn| 0T +ECn

SrSy, = 2
e (Xnnn"'ﬁnCn |Tln|2+‘gn|

and this allows us to obtain that
2 2 2 2
|06 |” + 1Bal” < 11S3Snlper < [1Snllger < [1Sl5er -

The above inequality implies that lim ||S;Sy || ge = IS ||]23er, and so we get lim oy,n, +
n—oo Nn—oo

B.C, = 0. This yields that
lim [oy,| = lim |G| (10)
n—o0 n—o0

By (9) and (10) we find that

. 2 2 . 2 2 2
Tim (o >+ |, = fim [0+ |60 = [1S]3er an
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from that we get

2
lim S:Sn — |:S||Ber 02 :| )
e 0 ”SHBer

It follows that
lim ber (8,) = |S]|per- (12)
From (11) and (12), we conclude that ber(S) = ||S||g.,» and this proves our claim.
Hence, the proof of the theorem is completely established. [
As a consequence of Theorem 2, we have the following result [53].

COROLLARY 2. Let Q be any closed subset of C and S € B (7 (Q)). The
following conditions are equivalent:

(1) berg, (S) = \/ber® (S) + [|S|[er-

(2) ber(S) = ”S”Ber'

(3) bery, (S) = HSHBer \/ 1+ ||SH]23er'

(4) S*S <ber® (S)1 4.

Proof. The equivalence (1)< (2) follows from the proof of Theorem 2.
(1)=(3) This implication follows from the equivalence (1)< (2).

(3)=-(1) Assume berg, (S) = ||S||ger \/ 1 + ||S||2Ber for any operator S € Z (7 (Q)).

Since ber (S) < ||S||ge,» We have

HSHBer \/ 1 + ”SHzBer = berdw (S) g \/ ber2 (S) + HS”A];er < HSHBer \/ 1 + ”SHzBer
and so that berg,, () = 1/ber (S) + [|S|[fe, -

(1)< (4) By the first equivalence bery, (S) = y/ber? (§) + ||S||‘];er if and only if
ber (S) = ||Sge,. that is H@H < ber(S)H?;LH for all k, € #(Q), A € Q. This is

—~ 112 —~ 112 —~ —~ ~ o~
equivalent to say that HSk;LH < ber? () Hkl‘ , that is <Sk;L,Sk;L> < <ber2 (S) kl,kl>

for all k; € 7 (Q), ie., <(S*S—ber2 (S) 1%)%,1,2,1> <0 forall k; € 7 (Q), or
equivalently S*S < ber® (S) 1. O
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3. Some inequalities of the Davis-Wielandt Berezin number
In order to prove our results we need a sequence of lemmas.
LEMMA 2. Let a,b >0 and p,q > 1 such that %—F%I = 1. Then
e ab< L 4+ < (“—W—i-b?qr)%forr} 1.

p 4 p
e For r =1 we recapture the Power-Mean inequality, which reads

==

a®p' " < aa+(1—a)b < (aa” + (1 —o)bP)
forall ¢ €[0,1], a,b>0and p > 1.

The next lemma follows from the spectral theorem for positive operators and
Jensen inequality see [36].

LEMMA 3. (McCarty inequality) Let T € B(), T >0 and x € A be a unit
vector. Then

o (Tx,x)" <(T"x,x) for r > 1;
o (T"x,x) < (Tx,x)" for 0 <r< 1.
The generalized mixed Schwarz inequality was introduced in [22], as follows:

LEMMA 4. [36, Theorem 1] Let T € B(°) and x,y € F be any vectors.

o If f, g are non-negative continuous functions on [0,0) which are satisfying the
relation f(t)g(t) =t(t € [0,0)), then

(T ) < £ (TDx] g (IT*]) 5
o If0< a<l,then
(T, y) P < (TP%x,x) (| TPy, ).

We note that, the McCarthy inequality was extended for general Hilbert space
operators in [5] and [6]. Also, the corresponding Cartesian decomposition version of
Lemma 4 recently was proved in [4].

In some of our results we need the following two fundamental norm estimates,
which are:

1
Is+70< 5 (IS4 0T+ /s = i aflsereP) . as
and
HS1/2T1/2H < |IsT|>.

Both estimates are valid for all positive operators S,T € Z (). Also, it should be
noted that (13) is sharper than the triangle inequality as pointed out by Kittaneh in [34].
Now, we obtain lower bounds for the Davis-Wielandt Berezin numberin Z (¢ (Q)).
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THEOREM 3. Let T € B(#°(Q)). Then
(i) berg,, (T) > max (ber(T) + Cer(IT1*), I T [[fer + Cher(T)) -
(ii) ber,,(T) = max (ber(T)Cer (|T|*), | T|3Crer (T)) -

Proof. If %;L € #(Q) be a normalized reproducing kernel, then
berg, (T) = [(Thz,k)* + | Tha ||*

(Thky, k) * + (T ks k)
> |<Tkl7kl>‘2 +Cl%er(|T|2)'

Now, by taking the supremum over all A € Q, we get
ber?, (T) = ber*(T) + Cae, (IT?). (14)
Also, we have
berd,, () > [(Thy, o) >+ | Thy |
> Cper(T) + || Thy |1* (15)

From (14) and (15), the pert (i) is hold.
For (ii), by applying arithmetic-geometric mean inequality, we have

berd,, () > [(Tky,a ) + | Thy |

> 2(Thy kx| Thy |2

= 2(Thkz ki) [(IT Pka k)

> 2|(Tky,%2) |Coer (|TI).
By taking the supremum over A € Q, we get

ber,,(T) = 2ber(T)Cper(|T ). (16)

Moreover,
2(Thy k)| T ||
2Cper(T) || Tk |-

berle(T)

VoWV

Now by taking the supremum over A € Q, we get
berg, () = 2Cser(T)[IT | er- (17)
From (16) and (17), the pert (ii) holds. [

REMARK 1. You can see the inequalities obtained in Theorem 3 (i) is sharper than
the lower bound obtained in (2). Because

max (ber*(T), | Tllger) < max (ber®(T) + Cher(IT1?). I [Ber + Cier(T))
< ber, (T).
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In the next theorem we obtain lower and upper bounds for berZW(T) .

THEOREM 4. Let T € B(H#(Q)). Then

(ber®(T +|T|) + Cher(T — |T|?)) < berz,,(T) < 5 (ber®(T +|T|) + ber* (T — [T]?)) .

N =
N =

Proof. 1f k), € #(Q), then

(Thky, k) — (Tky, Tky)?

~ o~ ~ 1, ~ ~ ~ o~ 1
(Thky, ky))> + | Ty ||* = §|<Tk7ukx> +(Thy, Thy ) [* + §|

1 SN
§|<Tkx7kz>—<|T|2kmkz>|2
(T —|TPky k) ?

1 SN
:§|<Tkx,kx>+<|T\27%kz>\2+

o

2
1 ~ o~

> 5 (T + TPk Ko P+ (T = |TP))

1 S
= §|<T+ IT*kp, k) |* +

By taking the supremum over all A € Q, we get
1
berg,, (T) > 5 (ber’ (T + |T[?) + Cer (T = |T[%)) .
For finding the upper bound, we have

S ~ A SN S SN
|<Tkx,kx>\2+HTkA||4=§|<Tkx,kx>+<TkA,Tkz>\2+ (Thy, k) — (Tky, Tky)|?

L
2

A S S S
=§|<Tkx,kx>+<|T\2kz,kz>\2+ (Thky k) — (IT Pkz k)|

)
2
= T+ PR R+ 5T — TRy )P
< % (ber?(T +|T1?) + ber®(T — |T2)).
Again, by taking the supremum over all 1 € Q, we get
ber? (T) < % (ber®(T + |T|*) +ber* (T — |T|%)).

These statements complete the proof. [J

In the following theorem, the authors obtained some relation between the Davis-
Wielandt Berezin number and the Berezin number.

THEOREM 5. [50] Let T € B(H#(Q)). Then
berg, (T) < ber*(|T > = T) +2|| T e ber(T)
and

1 * 1. 7 7
berg, (T) < 5 ber(|T|+2|T[*+|T"%) - 5 (| Tk || = IT kD2 as)
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In the next theorem, we obtain a lower bound for square of the Davis-Wielandt
Berezin number.

THEOREM 6. Let T € #B(7(Q)). If A is a nonzero complex number, and r > 0,
such that

|T —Al||ger < - (19)
Then
berd, (T) = A~ (| Tk || + A — )| Thy ||*. (20)

Proof. If k), € #(Q), then

berz,, (T) = (Tka, k) |* + I Ty |I*
> 2(Thky, k)| (Tky, Tky)| (by the arithmetic-geometric mean)
(2D

On the other hand, from (19), we have

Tk |1” + A = 2ReA(Tky kz) = [(T = M)k (T = M)k )|

=||Tky — Aky ||
< HT_ 2’IH%er
< 2.
So,
1Tk |1+ A2 < 20Al[(Thy ky )| + 2. (22)

From (21) and (22), we have
ber2,, (T) = A (| Thy || + [A]> = )| Thy . O

REMARK 2. From (22) for any T € B(s#(Q2)), nonzero complex number A, and
r >0, we have
ber, (T) = [|Tha||* = [(Thz, &)
<7k
<2AI(Th k) [+ = A
< 2|A|ber(T) +r* — A%

In the next theorem we obtain upper bound for the Davis-Wielandt Berezin number
by stating the minimum Berezin modulus of an operator.
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THEOREM 7. Let T € B(#(Q)). Then

ber3,, (T) < supber? (€T + |T|?) — 2Cper (T)m3. (T). (23)
0ecR

Proof. Let 6 € R such that |(Tky, k)| = e (Tky ;). If k; € (Q), then
Tk ki) >+ | Tha ||* = (O Tk k)2 + (| TPkp k)
= (("Tky, kp) + (|T |k, k2 ))? — 20Ty Kp ) (| T |k ka ).

So,
(Thky, ko) |> + | Thp |* + 21Tk ko ) [T PPy k)

Ty ko) >+ | Tha ||* +2(e®Thy  ka ) (| T Pk Kz
(e°Tky k) + (IT ks, Kz))?

(T +|T|?)kz kz )
ber? (T + |T)

sup ber? (T +|T?).
0cR

NN

Therefore by taking the supremum over all A € Q, we get

ber?, (T) + 2Cper(T)mige, (T) < supber®(e®T + |T?). O
0eR

REMARK 3. Note that inequality (23) in Theorem 7 is sharper than inequality (18)
in Theorem 5.

THEOREM 8. Let T € B((Q)). If f, g are nonnegative continuous functions
on [0,o0) which are satisfying the relation f(t)g(t) =t (t € [0,0)), then

1 1 .
berg,, () < ber l—)(fzp(|T|)+f2”(|T*T|))+5(gzq(|T*|)+gzq(lT T))|. @4
forany p > q > 1 with Il—?—i—é:l.

Proof. From Lemmas 4, 2 and 3(b), we have
Tk ko)1 + (| T || *
= [Tk, k)| +(T"Thy Kz )?
<(LPAT Dk k) (& (T Nk k) + (P2 (T T ko ka ) (82 (IT*T kg, k)

~ o~ 1 PP 1 TP
< <f2(|T|)kz,kx>”+;<g2(lT I)kz,kx>q+;<f2(lT T|)ky,kz)?

< |-

1 ~ -
+5<82(IT*T|)kz,kx>q
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S e~ -
< <f2p(|T|)kA,kA>+5<82q(|T \)kx,kzﬂ';(fzp(\T T|)ky,kz)

< |-

(TR, )
< <}) (PP TD + (7" T1)) +$ (£2(T°) + 827" T]) Kz k)
< ber % (2T +/2P(TT))) + é (8*(77)) +g2‘1(T*T))] :
Therefore by taking the supremum over all A € Q, we get the desired result. [
COROLLARY 3. Let T € B(H(Q)). Then forall p>1,

1
bert (7)< ber (T F-+ [T +2171%) 25)

Proof. Inequality (25) immediately comes from inequality (24) by putting f(t) =
g(t)zt%,andpzqzl a

4. Further refinemented inequalities

In order to establish our main first result concerning the the Euclidean Berezin
number, we need to recall the concept of generalized Euclidean Berezin number of an
n-tuple operator; which was introduced by Bakherad in [44]. Namely, for an n-tuple
T=(T, -, T,) € B(H (Q))" :=B(H (Q))x--xB(H(Q));ie.,for Ty, -, T, €
P (A (Q)). The Euclidean operator radius of T1,---, T, is defined by

WV

1.

1/p
<T,-§;L,E;L>’p forall k; € 7 (Q), p
2eQ \i=1

ber, (T1,---,T,) := sup (i
(26)

The following properties of the generalized Euclidean Berezin number could be
proved easily.

(1) ber,(Ty,---,T,) =0 if and only if T; =0 foreach k=1,---,n.
(2) ber, (ATy,---,AT,) = |A|ber, (T1,---,Ty).

(3) ber, (Xi+Y1,---, X, +Y,) <ber, (Xy,---,X,) +ber, (Y1, --,Y,).
(4) ber, (Xi,---,X,) =ber, (X[,---,X)).

(5) ber, (X[Xy, -, XX,) =ber, (X1 X, -, X, X))

forevery Tp, Xi, Vi, C € B (7 (Q)) (1 <k <n) andevery scalar L € C. Incase p=2
we refer to the Euclidean Berezin number bere (-, ...,-).

The following relation between the Euclidean Berezin number ber. (¥,Y*Y) and
the Davis-Wielandt radius berg, (Y) holds for every Y € Z (# (Q)).
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LEMMA 5. Let Y € B(# (Q)). Then

ber. (Y, YY) = bery, (¥). (27)

Proof. Settingn=2, Ty =Y and T, =Y'Y, Y € B( (L)) in (5), we have

s 12
bere (Y,Y*Y) := sup (KY&}Q‘ + ’<Y*Y%;L7%;L>‘ )

AeQ
~ ~\ |2 ~ 14
~sn{ () +
AeQ
=bery, (Y),

which gives the Davis-Wielandt radius of Y, as required. [

THEOREM 9. Let Y € B (A (Q)). Then bery,, (Y) = /2 -ber(Y) if and only if
Y is selfadjoint idempotent operator.

Proof. To prove the ‘only if part’, from Lemma 5, we have ber (Y,Y*Y) = berg, (Y)
forany Y € A (). Clearly if Y is selfadjoint idempotent operator, then bery,, (Y) =
ber (Y,Y*Y) = bere (Y,Y?) = ber (Y,Y). On the other hand, by setting n =2 and
Ty =T, =Y,in (27), we get ber. (Y,¥Y) = v/2-ber (Y). Hence, berg, (Y) = /2-ber(Y).
The ‘if part’ follows by noting that, Y*Y = ¥? if and only if Y is selfadjoint and there-
fore Y*Y =Y, when Y is an idempotent operator, i.e., Y> =Y. [

In 2005, Kittaneh [35] proved that
1 1
Z||S*SJH<,19*|| <w?(8) < §||S*S+SS*H (28)

for a Hilbert space operator S € Z ().
The corresponding version of the above inequality in terms of Berezin numbers
can be obtained such as:

1 1
Z ”R*R_"RR*HBer < berZ (R) < 5 “R*R+RR*||Ber (29)

for Hilbert space operator R € B (5 (Q)). The following result extends (29) for the
Euclidean Berezin number.

LEMMA 6. Let R € B(H# (Q)) (k=1,---,n). Then

p n

1
z (R{Ry + RyR;)?

2p
- <
T < berzp (R,

Ber

1
2

n
2 R{Ri + RiR;
k=1

Ber
(30)

forall p>1
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Proof. Let Gy +iH; be the Cartesian decomposition of Ry forall k=1,---,n. As
in the proof of (28) in [35], we have

()| = (G ) + (ki )’

> L (o) (i)

p

~or
1 ~ o~ ~ ~ \|2p
> 25 [(Gka ko) + (Hika K )|
1 ~ ~\|2p
=2—p|<Gkink;L,k;L>| .

Summing over j and then taking the supremum over all unit vector 2,1 € (Q), we
get

7 ~ o~ 2
berd? (R1,-++,Ra) = sup 3" |(Rekx )|

AEQj=1
1 ” ~ ~\|2r
>—sup Y <Gkink;L,k,1>’
ZPJLEQk=1
Lt o (S oemi i)
-l i )
TR k;< « £ Hiky, kj,
P
11 | 5
- Gi+H
2 T 1;1( %+ Hy) ) ;
- er

where we have used Jensen’s inequality in the last inequality. Thus,

p p
) 11| 5 11| 5
2bery) (Ri,-++,Ra) > 7 Y (G + Hy) + 55T > (G —Hy)
k=1 Ber k=1 Ber
1 - 2 x 2 3
Z 2 D (G +Hi)™ + Y (G — Hy)
n k=1 k=1 Ber
11|l ) N
= 2 > {(Gk+Hk) + (G — Hy) }
k=1 Ber
1 < 2L 2 '
- np—l 2 Gk +Hk
k=1 Ber
p
R iR,tRk—FRkRZ
=—=
n k=1 2 Ber
1 i !
= — RiR, + R.R;
1 KNk 12494 s
2n? k=1 Ber
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and hence,

1
beriﬁ(Rh---,R ) >

p
“ opt+lpp-1

> RiRi+ RyR;
k=1

which proves the left hand side of the inequality in (30).

)

Ber

To prove the second inequality, for every unit vector k,l € J (Q) we have

n ~ o~ \2p & ~ A2 2 P

> (R )| = X ((Gmm +(Hily R )
k=1 k=1

<3 (o) (st )

which implies that

<R,jl,%,1>‘ — ber?? (Ry,---,R1)
AeQk=1

n ~ ~
<sup ¥ (G +H) Tk )
AEQk=1

n )~ o~
< sup <2 (GI%+H1<2)FI<AJ<A>
AeQ \ k=1
=X (G +H)"
k=1

n
= 2 (RiRy + RyR;)?

1
2r

Ber

)

which proves the right hand side of (30)

Ber
U

REMARK 4. In particular, setting n =2 and p =1 in (30) we get

7 IRIR) + RiR; + RiRo + RaR s < ber? (R1, )

3 IRIR: 4+ RUR + R5R2 + RoRS e
Moreover, if we choose R;

=R, =R, then

5 IR+ RR e, < berg (R,R) < [RR+RR" | ge; -
But bere (R,R) =

V/2ber (R), which implies that

* * 1 * *
7 IRR+RR ey < ber® (R) < 5 [R'R+ R e



248 M. W. ALOMARI, M. HAIMOHAMADI AND M. BAKHERAD
Now, based on Lemmas 5 and 6, we can introduce our first main result, as follows:

THEOREM 10. Let R € #(# (Q)). Then
1 1
S IRP+IRP+20RE|  <verd, (R) < 5 [IRP+IRP+20RY| . @D
4 Ber 2 Ber
Proof. Setting n=2, p=1, Rj =X and R, =Y in (30), we get
1
7 XX +XXTHYY YY" g, < ber? (X,Y)
1
<G XX XX AV VY ey

Replacing X by R and Y by R*R, we get
1
4

But as we have shown in Lemma 5 that , ber. (R,R*R) = ber, (R), hence we have

1
R'R+RR*+2|R*||  <ber?(R,R*R) < 3 ‘

R*R+RR*+2|R|4‘

Ber Ber '

1 1
Z|IRP+ R P+21RE || <verd, (R) < 5 [[IRP+IRP+21RE|
4 Ber 2 Ber

as desired. [

The following result refines sharply the upper bound in (2).

THEOREM 11. If R € B (5 (Q)), then

1

2
7 (32)

* 1 o2 4
IR+ RRl gy < bera (R) < \/ |3 R+ + 1R

Ber

1 1/2\2 4
<\ (Rl 112) 5 IRl

Proof. Since we have

v ()= sup {40, B2 | (o )
Lo (55)| (e)
= 3 g { (k) + (ot )
-z {l(ernE R}

1 2
= 5 ||R+R*R||Ber7
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which proves the first inequality in (32). Also, since we have

v ()= sp { | (1) |
;zg{l@ )l i)
up { (it ) ( |R*%%>%)2+<'R*R%@>}

AeQ

(by Lemmas 3 and 4)

(
<|R|+ >2+<|R*R%7&>]
<

sup
AEQ

R|+ |R"| ~ o~
< sup ‘ H_‘ k;uk;L>+<|R*R|2k;L7k;L>] (by Lemma 3)
reQ

R|+ |R* ~ o~
= sup <$> + |R*R|* | &y, Ky,
AeQ 2

1 2 2
= —||(|IR R* 4|R*R H ,
4H(\ |+ |R*])" +4|R"R| Ber

and this proves the second inequality in (32). Applying the triangle inequality on the
above inequality, we get

1
berd,, (R) < 7 |[(RI+ |R')> + 4R 'R’ + iR

(IR|+ |R)?|

Ber = Z H
1 2
— 2 IR+ R e +

Ber Ber

|
Ber

Now, applying (13) to the first term in the above inequality, we get |||R|+ |[R*|||ge <

IRl ger + HR2 ||]13/e f Now substituting this inequality in the last inequality above, we get
the third inequality in (32), and this completes the proof.

To see that the second inequality in (31) is a refinement of the second inequality
in (2), assume RR* < R*R < ber? (R) 1. Thus, from (31) we have

<5 ||IRP+ R P 2081
2 Ber

1
<3 |[ber? (R) 1. + ber® (R) 1y + 2ber* (R) Ly | ..

ber?, (R) <

<ber” (R) +||R|[per -

Follows by the assumption, since ber (R) = ||R||g., (see Corollary 2), which implies
that

1
berdW<R><@HR%R*%MR“HB < y/ber® (R) + R lger
er

2
= ”RHBer Y 1+ ”RHBeﬂ
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which means that the right-hand side of (31) refines the right-hand side of (2). [

EXAMPLE 1. Q= {(x,y): [x]*+[y|* < 6,x,y € C}. Therefore, Q is closed sub-
set of C. Consider Let R = [(2) ” . We have W (R) C Q with [|R||g,, = 2.28825 and
ber (R) = 2.08114. The upper bound of (2) gives bery, (R) < 5.63449. However, by
applying (31), we have berg, (R) < 5.61938, which implies that, the upper bound in

(31) is better than the upper bound in (2).

REMARK 5. We note that, a refinement of the inequality (6) could be stated as
follows:

1 1 2 4
— |[R+R*R|| <b R) < —(|R[+|R* R[™).
75 IR+ KR < beray (R) \/w(4< IR + R

Consider R as in Example 1. Applying the above inequality, we get bery, (R) <
5.59709, which is better than the result obtained by (5). Furthermore, (31) gives that

1 1
ber (R) < \/w (5 ORI+ D4 RI) < {3 IT 77,

where T = % (IR|+ |R*|)* + |R|*. Employing the previous second upper bound for R
in Example 1, we get the same result as those obtained by (31) and (2), even we use
(13); which indeed refines (32).

5. The Davis-Wielandt radius inequalities for n x n matrix operators

Several numerical radius type inequalities improving and refining the inequality
1
IS <w(s) < Is| (SeRB(H))

have been recently obtained by many other authors; see for example [1]-[10], and [21].
Recently, Bakherad [8] proved the following result concerning the Berezin number of
n X n operator matrices.

Let S = [S;j] € B (P, i ()) such that S;; € B (H#;(Q)),(€;)). Then

ber ([S;;]) i=J,
w(8) < { 16i [ it

In the next result, we present Davis-Wielandt radius inequality for n x n matrix
Operators.

THEOREM 12. Let T = [T;;] € B(@_, 7 (Qi)). Then

berg,, (T) < W([tij]) ) (33)
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where
{ber(T,-,->+||T,-i2Ber, j=i
tii = .
HY}J‘HBer—i_H]}J‘HEer’ J#l

Proof. Let 7 (Q) =@, 7 (Q;). Forevery A = (A1, -+, Ay) € Qp X -+ X Qy,
let a unit vector ky = [ky, -k, ] "¢ #(Q). Then we have

bergy (T) = sup \/’ Tk;L,k;L T* Tkl,kl>’
(A1, An) €Q X+ Xy
< @huﬂjgglxu,mn{)<kakk>) + )<T Ty ks )
(since Va+b < a+Vb).
But since
i) - (00

<Tijk7Ljak)L,'>

n
)
iJj
n
<X
i,j=1

- Z’(Tukhk”l—k Z KTZ,M 7kz>)

lj—

J#i
<Eber i Ik |*+ Z 1T er |
L,
iy
=31 ’ ks, (34)
i=1
Similarly, we have
(TTxx) = | Y (75T, k)
ij=1
n n
< Yber (1 T) [l |*+ 3 75T e | R, - 39)
i=1 j#i

Adding (34) and (35), we get

bery, (T) < sup {‘<T§A,§A>‘ + ‘<T*TE;L,E;L>’}

(A1, An)€Qp X+ X Qyy
= 2 (ber( ”) +ber(Tll T”)) } kl ? (HEJ'HBer—'— HTi;TinBel) }
j#i

i=1




252 M. W. ALOMARI, M. HAIMOHAMADI AND M. BAKHERAD

M=

(ber (Ti) + 1 Tiller ) [, | +Z (175l er + 10 er) e,

I

< X [k I,

- I

i1
= <[tij]X7X>a
where x = ( ||kz, || ||&4, | --- [|&2, || )T with ||x|| = 1. Therefore
berg (1) = sup (ki )| +] (1T Ky )|} < @ ()

(Agy oA ) €Qp X+ X QY

Thus, we obtain the right-hand side inequality in (33), and this completes the proof. [

Ty Ti

COROLLARY 4. Let T =
|:T21 I

] € B (I ()& (). Then

1
berg, (T) < 3 <a+d+ \/(a—d)2—|—(b—|—c)2>,
where,
2 2 2
a :ber(T11)+ HTllHBer? b= ||T12HBer+ ||T12||Ber7 = HT21||Ber+ HT21HBer7

and d = ber (T) + | T |13, -

Proof. Take n =2 in Theorem 12. Let a,b,c,d be as defined above. Then
T Tio ab
<
v ([ 72]) < ([24])

-([s %)

btc

2
( +d+/(a—dp? +(b+c)2>

N =

as required. [J

Tii O

COROLLARY 5. Let { 0 T

} € B(H (Q1) @ (Q2)), then

T, O
bety, ({ i T22D < max {ber(T11) + |51 [ ber (Toa) + [T B}

In special case, if 74 (Q)) =56 () and T1) =Ty =T, then

TO
berdw ([O T:|> < berdw (T)+ ”T“éer'
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Proof. From Corollary 4, we have

T 0 * *
berg, ({ 61 Tzz}) < max {ber (Ti;) +w (T} Ti1),ber (Tr) + ber (T5,T22)}

= max {ber(Tn) -+ ber <|T11 \2> ,ber (T»y) + ber (\T22|]236r> }
< max {ber(Tn) + (|71 [ ber (T22) + HT22H2Ber}’
as required. [J

COROLLARY 6. Let T = {g }?] € B(H(Q)D A (Q)). Then

2 2
berdw (T) S ber(T) + HT”Ber + HS”Ber + ”S”Ber'

Proof. From Corollary 4, we have Ty = To, = T and Tj; = T»; = S, therefore
2 2
a:ber(T)"*'HTHBer:‘L b= HS||Ber+||SHBer:
Thus,

TS
bera (| § 7 | ) <t b =ber (D) 4 1T R+ IS0+ 1505er

as required. [
A refinement of Theorem 12 is formulated as follows:

THEOREM 13. Let T = [T;;] € B(D_, 76 (Q:)) such that T;; € B(H;(Q;)),
H(Qy)). Then

1

— |IT+T*T|| < berg, (T) < w'/2([1;7]), 36

ﬁ” | aw (T) ([t:7]) (36)
where

ber? ( ll)"’HTHHBer? J=i

lij=n- .

2 4 ..

T [ger + 1 Tii[per - 7 #1

~ T n . ~ n 2
Proof. Letky = [ky, ---ky,|" € @B, 7 (Qi) with [k, || = lngk;L,. =

we have

~ ~\|2 ~ 4
et (0= sup WTthHTMH
(Ao ) € XX

~ o~ 2
- sup \/) Tk;L,k;L ‘<T*Tkl,kl>) .
(Ao ) €Q XX
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But since

(i) =

2

il <Tz/k)L ak)L >

2
<Ti ks kx,-> ‘ (by Jensen’s inequality)

3

" 2
[(Tiikis ki) > - Y, ‘<Tijk/1j,km>‘
J#

gn-Zberz(T,-,-) 175 |
i=1 J#
n n

<n- Zberz (Tn) ’ kj, ’ : ’|7}.f’|2Ber 37)
i=1 J#i

the last inequality holds, since ||ky,[|* < [[ky,[|> < 1 and [[ky,||* < [|ky,|| < 1 for all
Ai € Q;, i=1,---,n. Similarly, we have

Z <Ti;7}jklj7kli>

i,j=1

() - |

<n- Yy ber’ (T;Ty) | (38)
i-1

n
fHTJTquBeJ
J71

Now adding (37) and (38), we get
2 2
() )

(ber? (T;;) + ber? (T Ty;) )

,(HTqu;eﬁ 175,

|
.M=

I
—_

[
M=

3 (ber” (1) + il ) 43 +2 (||T”HBer+HTl,HBer) Ik,

n. Z t
ij=1

=n-([tij]y.y),

where y = (||ky, || [|k2,]| - )T Taking the supremum over unit vectors k; €
@i 74 (L), we obtain the rlght hand side inequality. To prove the left hand side
inequality we note that

ber?, (T) = sup {)<TE;L,E;L>)2+‘<T*T§A,EA>)2}

(Alv”'vln)egl X XQn

1 ~ o~ o~ 2
- sup {)<Tkk,kk>)+)<T*Tkl,kl>‘}
2 (o M) EQ X xQy

>
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! ~ =~ 2
z = sup {‘<(T+T*T)kl,kl>‘ }
2 (2’17"'7241)691 X X Qy
] 2
- E HT+T*THBerv

as required. [

COROLLARY 7. Let T = {21 22] € B(H (Q1) © 5 (Q2)). Then
1

bergy, (T) < \/a+d+ \/(a—d)2+(b+c)27

(39)

where,
4 2 4 2 4
a :berz (T11)+ HTllHBeN b= ||T12||Ber+ ||T12||Ber7 = HT21||Ber+ HTleBer?

and d =ber® (Ty) + || Toa || per -
Proof. Take n =2 in Theorem 13. Let a,b,c,d be as defined above. Then

w () ()
([ )

2
:a+d+\/(a—d)2+(b+c)2,

which proves the required inequality. [J

COROLLARY 8. Let [781 7? } € B(A(Q)® 5 (Q)). Then
22

Ti1 O
bera (| T | ) < V2man {foer (i) + 7 e () + e -

In special case, if 74 (Q) =56 (Q) and T)y =Ty, =T, then

bera ([ 0 7] ) < V2 (ber? (1) +171)

Proof. Form Corollary 7, we have

ber, ([751 75;}) < 2max {ber2 (Ti1) +ber® (T}, Ti1) ,ber® (Txy) + ber? (T5,T») }
= 2max{ber2 (T1) + ber? (\Tn\2> ,ber? (T) + ber? (|T22|2> }
< 2max {berz(TnH 1711 er - ber® (T2) + ||T22||§§er}»

which gives the desired result. []
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