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Abstract. In this article, we give new upper and lower bounds of numerical radius and Hilbert-
Schmidt numerical radius inequalities for Hilbert space operators. In particular, we show that if
X € C; with the Cartesian decomposition X = A +iB, then

1 . 1 0 A?
P+ P < o ([ ]) < o0

This is an analog of Kittaneh in [Studia Math. 168 (2005): 73-80].

1. Introduction

Let B(27) denote the C*-algebra of all bounded linear operators on a complex
Hilbert space . with an inner product (-). If, in addition, ¢ is separable, we say
i 1

A € B() belong to the Hilbert-Schmidt class G if [|A[, = (rrA*A) % = ( > s?(A)) ’

is finite, where s1(A) > s2(A) ... are the singular values of A. Throughout this article,
we assume A € B(.) is compact whenever A € C,. For A € B(J), let ||A| de-
note the usual operator norm of A. The numerical range of A is defined by W(A) =
{(Ax,x) : x € A, ]||x|=1}. The numerical radius of A is defined by @w(A) = sup{|A|:
A € W(A)}. We note that if A € B(.%) and if f is a non-negative increasing function
on [0,e2), then [|£(JA])| = f([IA]]).

It is well known that @(-) defines a norm on B(.7¢). In fact, for any A € B(.7¢),

1
5 lAlls o) <Al (1)

which indicates the usual operator norm and the numerical radius are equivalent.
Recently, Abu-Omar and Kittaneh defined the Hilbert-Schmidt numerical radius
as follows:

@(A) = sup | R(A)|2.
6eRr
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Another equality to characterize the Hilbert-Schmidt numerical radius was proved
that [5]:

1 1
@ (A) =[S [AI3+ 5 lrA?]. @)

As an analog of (1), we also have the following inequalities for the Hilbert-Schmidt
numerical radius:

1
EHAllz < @(A) <[A]2. 3)

If the norm ||-||» is replaced by any norm || - ||y on B(.2#) for a separable Hilbert
space ., we call @wy(-) the generalized numerical radius. For recent studies on
Hilbert-Schmidt numerical radius and the generalized numerical radius, we refer to
[1, 2,13, 23].

Before proceeding, we give the definition of geometrically convex. First we note
that all functions in this article satisfy the following condition unless otherwise spec-
ified: J is a sub interval of (0,e0) and f:J — (0,00). We call f is geometrically
convex if f(a'~'b") < f17(a)f' (b) for t € [0,1]. Next we introduce the definition of
operator convex. A real-valued continuous function f on an interval J is said to be
operator convex if f((1—7)A+tB) < (1—1t)f(A)+1f(B) for all self-adjoint operators
A,B € B(.7¢) whose spectra are contained in J. Recent studies on numerical radius in-
equalities involving geometrically convex and operator convex functions can be found
in [18, 19].

Kittaneh [14] had shown the following inequalities which improved the inequali-
ties in (1) by using several norm inequalities and ingenious techniques:

1 1 .
AP +ATPI< 0’ () < Sl +1AF, A€ B(#). @)
Later in [3] Abu-Omar and Kittaneh proved that if A € B(.7¢), then
1 1
0 (A) < ZIIAP + APl + s 0(4?). )

In [12] Hassain, Omidvar and Moradi gave integral type numerical radius inequal-
ities as follows: if A € B(s¢) and f is a non-negative increasing operator convex
function on [0,), then

) < H/ |A|ZZ|A*|2 +tw(A2)I>dtH
< ZHf(\A\ )+ /(1A )||+§f(w(A2))~ (6)

Some related integral type numerical radius inequalities can be found in [17, 20,
21].
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In [5] Aldalabih and Kittaneh obtained Hilbert-Schmidt numerical radius inequal-
ities on S P S as follows: if A € C;, then

max(ay (A + B), 02(A — B)) 0A]\ _ (A +B)+an(A—B)
V2 <or([a3)]) < vz

In [11] Hajmohamadi and Lashkaripour obtained an Hilbert-Schmidt numerical
radius inequality as follows: if A,B,X € C;, then

(7

(X +X*)+ (X —X7)
7 .

They also obtained the following inequality: if A,B,C,D € C, such that B,C be
self-adjoint, then

0 (BX*A* + AXB") < 2/|A|12] B|l2 ®

or([ap| ) = sman(@r(a+ D)o+ ©)

We note that there is a gap in the proof of (8) and (9). For identity operator / and block
11 =2 , which

01
V]
is not true in general.

In this paper, we first give an analog of (4) for Hilbert-Schmidt numerical radius,
then we give corrections and refinements of (8) and (9). Moreover, we give a differ-
ent proof of (6) along with presenting more numerical radius inequalities which are
refinements of (4).

operator matrices [0 I} , their proof is based on ||I||; =1 and

2. Inequalities for Hilbert-Schmidt numerical radius

First we give an Hilbert-Schmidt numerical radius inequality that is an analog of

(G2

THEOREM 2.1. Let X € C; with the Cartesian decomposition X = A+iB. Then
| - 1 0 A? 2
X"+ 1X < — < X).

Proof. Note that if T € C, is self-adjoint, then @,(T) = ||T||». This is because
0(T) = /SITIB+ 3er7? = \/SITIB+ SITIE = [ Tllo- Since X = A+iB is the

2 |2
Cartesian decomposition of X , then W = A2+ B?. Hence

1 2 2 Lo o 1 0 A2
ZH|X| X 2 = EHA +B H2<ﬁ(02 B 0 (by (7))

=z (o] o))
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< (=(E)=((29)

IRNET )
—ﬂ(ﬁnA Hz+\fllB 2)

1

= 21420 +182) < 5 (1413 + B13)
1 1

= 5IXIB < 3203(0) = @3(X). O

THEOREM 2.2. Let A,B € C,. Then

([ eorn

Proof. Compute

#([oc]) =] o4

1 * *
5 (All2lA™ ]2+ [1Bll2]|B7[|2) =

1
(by (3) = 5 (lAl3 + [1BI12)

(IAA%]l2+ [[BB7[|2)

N —

1 * * *
> 5|AA"+BB|2 > [|A"B] 2
> i (A™B),
completing the proof. [J
THEOREM 2.3. Let A,X € C,. Then

@ (AXA") < APz (X).

Proof. Since for any two operators S,T € C», s;(ST) < min(||S||s;(T),[|T||s;(S)),
we have

5;(R(PAXA")) = 5;(AR(EOX)AY)) j=1,2,...
< JA]Ps; (R (X)),
Hence
k
Y 5j(R(®AXA") <||AH22s R(OX)), k=1,2,....
“~ e

By Fan Dominance Theorem and the unitarily invariant of || - ||2, we obtain

IR(PAXA) |2 < AP R(OX))|2.
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Taking the supremum over 6, we have

@ (AXAY) < |A|Po(X). O

We give one example for Theorem 2.3. Let A = [8 (1)} , X = [(1) (1)] . Then

0 (AXA*) =1 < V2 = ||A| 2wy (X).

By Theorem 2.3 and the proof of Theorem 2.3 in [11] we obtain the following
result.

THEOREM 2.4. Let A,B,X € Cy. Then

(X +X%) —l—wz(X—X*).

k Ak * 0)2
w(BX*A* + AXB*) < 2||A||||B|| NG

REMARK 2.5. Since ||- || <||-|]2, Theorem 2.4 is a refinement of Theorem 2.3 in

[11].

Since the technique used in the next theorem is similar to Theorem 2.3, we omit
the proof.

THEOREM 2.6. Let A,X € Cy such that A be self-adjoint. Then
@ (AX +XA) <2[Al| 0 (X).

By Theorem 2.6 and the proof of Theorem 3.2 in [11] we derive the following
result.

THEOREM 2.7. Let A,B,C,D € C, such that B,C be self-adjoint. Then
AB 1
or([¢ ] ) = Jgmaxena+ py.ante+ )

REMARK 2.8. Theorem 2.7 is a refinement of Theorem 3.2 in [11].

The following theorem was involved in [6], we include a proof here for complete-
ness.

THEOREM 2.9. Let A,B,C,D € C,. Then

o ([ B]) < \fota)  J1mia +fo3ip) + Jicip
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Proof. Compute

o(fen]) = (o] +[en])
<e([o0])+e([])
=er([po] ) rex (v [25]0) (o=[1i])
=ex([55]) e ([05])

1 1
= \/wzz(A) +51Bl3+ \/w§(D)+ SlICl3. O

REMARK 2.10. Let A= D =0 in Theorem 2.9, then

1 1 1 1
Jora + sz Jozo)+ 2iciz =\ Lim i

< VIBIZ+ICI3

= \J@3(4) + @3(D) + B3 + [IC3.

Thus under this condition, Theorem 2.9 is a refinement of Theorem 2 in [5].

3. Inequalities for numerical radius

Recently, many scholars have paid much attention to applications of geometrically
convex functions to numerical radius operator inequalities, we refer the reader to [22]

for a sample of such study.
Next we give some lemmas which will be necessary to prove our main results.

LEMMA 3.1. (see [9]) Let a,b,e € 7 with |e|| = 1. Then

[{a,e)[{e, D) || < 5 (llalll[p]] + [ {a; b) ])-

N =

LEMMA 3.2. (see [7]) Let a,b,e € 7 with |le| =1 and t € [0,1]. Then

1+t 3—t
[{a,e) (e,b)|” < THaH2HbH2+ — lalllioll] (a, b} -
LEMMA 3.3. (see[10]) If f:J — R is an operator convex function on the interval

J, then for any self-adjoint operator X and Y with spectra in J, we have

f(}%) < /Olf((l —OX+1Y )di < M
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If f is non-negative, one can obtain
X Y X Y
G <] f ol owem)ar < [P 12),

THEOREM 3.4. Let A € B(J) and f be an increasing geometrically convex
Sunction. If in addition f is convex, then for any t € [0,1],

5 3—
P04 (A)) < ZEIFOAR) + (AT + = f(@3(4%).
Proof. From Lemma 3.2 we know

l+t 31
[(@.€) (e,5) P < — = llall*[16]1* + == llalll|p]] (a.5} | (10)

where a,b,e € . and |le|| = 1. For any unit vector x € 7, put e = x, and replace
a,b by Ax,A*x, respectively, in (10) we have

F(l{Ax,x) [%)

I+1 . 3—¢ . .
< ( 1Ax]* |4 H”+—I%MﬂmAﬂHM%AxH)

f(”’<|A|2 ) (4" Paex) + 220 AR ) (A P (420, )

< TELAAPx) (4 Pex)) + 27 AP0 (47 ) (A%0) )
2,x)° *[2x, x) —
< Lt (AR ATy 32ty AR (Pl (a0 )
4x,x *|*x,x -
< Lty >+<‘A Py 3 2 0T (AP (4
4x,x *|*x,x —t 1 1
< li_tf<<‘A‘ >+<‘A ‘ ) >>+34t 7(<\A\2xx><\A*|2xx>)f7(|< >|2)
141 <\A\4xx>+<\A*\4x,x> 3—1 f({JA]Px,x) (JA*Px,x)) + £ (| (A%x,x) |?)
S 4 f( >+ 4 2
<|A\4xx> <|A*|4xx> 2/ 42
1+7 ./ (JA*x,x) + (JA*[*x,x) —tf(—> +f(07(A%))
S 4 f( 2 >+ 4 2
o L fQAL ) + (A o)) 3y LR | pg2a2))
=4 2 4 2
_ Lt (AR + S ) | 3o LRI 4 po2a2))
T4 2 4 2
< L ISR + (AT, 3= HAREHEEL 4 po2(a2)
T4 2 4 2
5—|—t

= 2L FA1) + A7+ 2 (0P (A2)).
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By taking the supremum over unit vector x, we obtain

flota) < ) + 7047 |+ 25 feP ). O

REMARK 3.5. Letting f(s) = s in Theorem 3.4, we have
5 +t
o*(A) < — H|A|4+|A * ||+ 8 »*(A%).
5 +t .
o*(A) < — H|A|4+|A * ||+ 8 »*(A%)
5 +t .
<= H|A|4+|A * ||+ IHA\4+\A 4l
= |1+ 1A% 4.
2HI A
THEOREM 3.6. Let A,B,X € B(J) such that A,B be positive. Then
2 1 2 * 2 1 *
W (ABB)X) < 742+ (XBXY| + S0(X“BXA),
where AfB — A? (A_%BA_%)%A% is the geometric mean of A and B.
Proof. By the property of geometric mean and Lemma 3.1, we have

| ((AB)Xx,x) | ‘<

l\JI —
l\JI —
N~—
o=
PN
o=
D
=
e
~_
[38)

N D R 1\ ?
< A1) zAsz,Azx>)
< (A72BA™2)2A2 X x| ?|A2x|?
= (Ax,x) (X*BXx,x)

1 1
S llAx] X" BXx| + 5 (Ax. X" BXx)

N

1 1
= S/ AZ) (X BXxx) + 5 (X BXAx )
1 1
< 7 (@7 + (X"BX))x.x) + 5 (X" BXAx.x).
By taking the supremum over unit vector x, we obtain

1 1
O?((AB)X) < 74+ (X“BX)?)| + S0 (X"BXA),

completing the proof. [J

Let X =1 in Theorem 3.6, we have the following corollary.
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COROLLARY 3.7. Let A,BEB

—~

) be positive. Then

1
*(A$B) < —||A® + B*|| + 5 ©O(BA).

Bl

THEOREM 3.8. Let A € B(5¢). Then
11—t

@) (FIAP AT+ 04?)),

4 t(l 2 12 2)2
A< = =|[|A]"+|A + (A +

where t € [0,1].
Proof. By Lemma 3.1, we have
[(a,e) (e,b) [ < t](a,e) (e,b) |+ (1 —1)| (a,e) (e, ) [
1—
< Z(lall 161+ 1@, 0) [+ = (s} e b) (lall 6]+ | @) ). (1)

For every unit vector x € 77, put e = x, and replace a,b by Ax,A*x, respectively,
in (11) we have

[ (Ax,x) [* = [(Ax,x) (x,A%) 2

N

t . 1—1¢ «
7 UIAXIIAT =+ [ {A%x, ) )2 + —— [ (Ax,2) P(lAx A%+ | (4%, x) [)

= 2(\/<\A\2X7X> (JA*2x,x) + | (A%x,x) |)?
(A Py (AR (1472 x) + | (A%0) )

< %(% <(|A|2_|_ \A*\z)x,x>—|— | <A2x,x> |>2
+%| (Ax,x) ‘2<% <(|A|2_|_ \A*|2)x,x> +| <A2x,x> |>

By taking the supremum over unit vector x, we obtain
1—1

L o2(a) (1R + AP+ o(a?)),

t /1 2
0} (a) < 7 (G AP+ 1A P+ w(a?) +
as required. [

REMARK 3.9. Note that

o' (4)
< s (AP + 1Pl +o(a2) + 1
< LGIAP + AP+ S11AP +1a7PY)’

S NAR AP (SIIAR + AP+ AP + 147

0 (A) (5 IAP + AP+ 0(4%))

1 *
= AP+ AP,
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thus Theorem 3.8 is a refinement of (4).

Next we give an alternative proof for (6), which we hope may provide new per-
spectives toward the integral type refinements of the numerical radius inequalities.

THEOREM 3.10. Let A € B(5¢) and let [ be a non-negative increasing operator
convex function on [0,0). Then

A 2 A* 2
) < H/ | | z| | +tw(A2)I>dtH
< ZHf(\A\ )+ (A7 )||+§f(w(A2))~
Proof. From [15] we know that for two positive operator X,Y € B(J¢), || X +

Y| = |IX|[+ Y] if and only if |XY|| = [IX||[[Y]|. Since & (A) < gll|A]*+ |A*[*|| +
%a)(Az), we have

HM e HMH
Thus we get
HM o] - HMH A7),
Thus by by Lemma 3.3, we have
Fl0?(A) < f(luww )
JAP+]A* \A*\ 2
- (=)
| [ o0 oo
< gl (P + oty
- J\f(%)\\ + 30

1
< ZI0AP) + F(A P + 3 f((a%). O
Along the same line as in Theorem 3.10, one can obtain the following result.

THEOREM 3.11. Let A,B € B(4¢) and let f be a non-negative increasing oper-
ator convex function on [0,0). Then

Al*+ |BI*
(B*A)) < H/ nlAl ;‘ | +ta)(|B|2|A|2)I>dtH

< ZIIf(IAI )+ /(B )H+5f(w(\B\2IAI2))~



SOME NEW NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS 279

THEOREM 3.12. Let A € B(.5¢) with the Cartesian decomposition A = B+ iC
such that B,C be positive and let [ be a non-negative increasing operator convex
Sunction on [0,0). Then

(L) < [ (e + iac)as
< f(@*(A)).

Proof. Since A = B+ iC is the Cartesian decomposition of A and B,C are posi-
2
tive, it follows from [16] that @ < w*(A). Therefore by by Lemma 3.3, we get

(AR |- ()

| [ (T )]
(45 + (0]
() |+ 3 (28]
L) + L (AL

f(llAH2>

< flo*(4)). O

N

//\

//\

We note that under certain situations, Theorem 3.12 is stronger than Theorem 2.2

n [17] and Theorem 4 in [4]. Let A = B+ ixB such that B = Ll) ﬂ , x>0, C=xB

and f(s) =s>. Then

(D) < (5 e )
:CZxY<IZx

= L)+ e < st

COROLLARY 3.13. Let A € B(.5¢) with the Cartesian decomposition A = B+ iC
such that B,C be positive and r € [1,2]. Then

H(MP+MW

AP+ AP
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REMARK 3.14. In Corollary 3.13, by letting » = 2, we have

A2 A*Z 2
[P <1 (e e guee)a

< 0*(A),

which is a refinement of (4).

In [8], Bhatia and Kittaneh presented an important norm inequality for two positive
operators below: Let A, B € B(.%) be positive and z be any complex number. Then

|A+2B|| < [|A+[z]B]. (12)
Next, we shall give a refinement of (12).

THEOREM 3.15. Let A,B € B(J) be positive and let f be a non-negative in-
creasing operator convex function on [0,). Then for any complex number z, we have

FIA+2B]) < H/ (=) A+|z|B)+tHA+zBHl>dtH
< [[f(A+[zIB)]|-
Proof. Since ||A+zB|| < ||A+|z|B||, from the proof of Theorem 3.10 we have
1A+ |z|B+[|A+zB|[I]| = [|A + |z[B]| + [|A+zB].
Thus we get
HA+$H<5M+&B+MA+$WW
Thus by Lemma 3.3, we have

1
Flla+2BI) < £(GIA+12IB + 4 +zBl1]))

_ Hf<A+ |z|B+2||A+zBHI> H

N

H/ ((1=1)A+|2lB) +1)]A -+ 2B )|

N

SIF(A+1<lB) + £(lA -+ zBI)1 |
1 1

= SIFA+ IR+ 5 /(1A +zB])
1 1

< SIFA+[2IB) |+ 5 714 +[2IBI)

1 1
= 5 IIf(A+[zB)ll + 5[If(A+[z[B)]
If(A+zB)]. DO
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COROLLARY 3.16. Let A,B € B(.5) be positive and r € [1,2]. Then for any
complex number z, we have

1A +2B||" < H/Ol (1= r)(A+121B) +el}A+ 28T ) a
< [(A+[zB)].

REMARK 3.17. In Corollary 3.16, by letting » = 2, we have

1 5l
IA+2B|| < H/O ((=0)A+1elB)+ 1A +2BlT) ar]|”
< [|[A+ 2B,

which is a refinement of (12).
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