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NON–UNIFORM BERRY–ESSEEN–TYPE INEQUALITIES

FOR A SUPERCRITICAL BRANCHING PROCESS WITH

IMMIGRATION IN A RANDOM ENVIRONMENT

XIAOQIANG WANG, JIUJIANG WU AND CHUNMAO HUANG ∗

(Communicated by Z. S. Szewczak)

Abstract. Let Wn be the fundamental submartingale of a supercritical branching process with
immigration in a random environment. In order to characterize the convergence rates of Wn , the
quenched and annealed non-uniform Berry-Esseen-type inequalities are established for Wn+k −
Wn for each fixed k ∈ {1,2, · · · ,∞} , which reveal the convergence rates of the corresponding
central limit theorems.

1. Introduction and main results

Since the branching process was proposed, it has been widely used in many as-
pects, such as biophysics [20] and sociology [19]. It also has many interactions with
various applied probability settings, such as fractals and Mandelbrot’s cascades, per-
petuities, branching random walks and branching Brownian motions. For this reason,
many scholars continue to study and promote branching processes and related topics.
One important extension is the branching process in a random environment (BPRE)
where the offspring distribution changes with generation according to a time-dependent
random environment, which considers the influence of external environment on branch-
ing mechanism; see e.g. [24, 2, 3] for earlier studies, and [28, 13, 26, 6, 29] for recent
achievements. At the same time, research on branching systems with immigration re-
veals that not only the offspring distribution, but also the immigration distribution will
affect the limit behaviours of branching processes. Related research also reflects that
the idea of introducing immigration can be applied to the study of related stochastic pro-
cesses. For example, Kensten et al. [16] gave a limit distribution for a random walk in a
random environment with the help of a BPRE with one immigration at each generation.
These facts make scholars pay more attention to the branching process with immigra-
tion in a random environment (BPIRE), which involves the dual impact of environment
and immigration. A various of limit theorems and asymptotic properties, such as limit
distributions, tail probabilities, large deviations and convergence rates, were studied;
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see e.g. [17, 23, 25, 7, 27, 15, 4] and the reference therein for more information. In
this paper, we are interested in BPIRE and will focus on the convergence rates of the
fundamental submartingale of the model by accurately describing the associated central
limit theorems.

Let us introduce the models of BPRE and BPIRE as follows. The random environ-
ment, denoted by ξ = (ξn) , is an ergodic and stationary sequence of random variables
indexed by time n∈N = {0,1,2, · · ·} . It is often independent and identically distributed
(i.i.d.). Each realization of ξn corresponds to two probability distributions on N : one
is the offspring distribution denoted by

p(ξn) = {p j(ξn); j � 0}, where p j(ξn) � 0 and ∑
j

p j(ξn) = 1;

the other is the immigration distribution denoted by

h(ξn) = {h j(ξn); j � 0}, where h j(ξn) � 0 and ∑
j

h j(ξn) = 1.

DEFINITION 1.1. The process (Zn) is called a branching process in the random
environment ξ (BPRE) if it satisfies:

Z0 = 1 and Zn+1 =
Zn

∑
i=1

Xn,i, n ∈ N, (1.1)

where given the environment ξ , all Xn,i are independent of each other, and Xn,i has the
distribution p(ξn) .

DEFINITION 1.2. The process (Zn) is called a branching process with immigra-
tion (Yn) in the random environment ξ (BPIRE) if it satisfies:

Z0 = 1 and Zn+1 =
Zn

∑
i=1

Xn,i +Yn, n ∈ N, (1.2)

where given the environment ξ , all Xn,i and Yn are independent of each other, Xn,i has
the distribution p(ξn) and Yn has the distribution h(ξn) .

REMARK 1.1. Particularly, if Yn ≡ 0 in (1.2) for all n ∈ N , which means that
there is no immigration, then the BPIRE (Zn) degenerates to the BPRE (Zn) which is
defined by (1.1), namely, Zn = Zn .

We introduce two probabilities. Denote by Pξ the so-called quenched law, i.e. the
conditional probability when the environment ξ is given. The total probability can be
expressed as P(dx,dξ ) = Pξ (dx)τ(dξ ) , where τ is the law of the environment ξ . It is
usually called the annealed law. The expectation with respective to Pξ (resp. P) will
be denoted by Eξ (resp. E).
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For sake of brevity, we write p j = p j(ξ0) and h j = h j(ξ0) . Throughout the paper,
we always assume that

P(p0 = 0) = 1 and P(p1 = 1) < 1, (1.3)

which means that each individual produces at least one offspring, and the probability
of producing at least two offspring is positive.

For n ∈ N and t ∈ R , define

mn(t) =
∞

∑
j=0

p j(ξn) jt .

It can be seen that mn(t) = Eξ Xt
n . We write mn = mn(1) and Xn = Xn,1 . Under the

assumption (1.3), one has E logm0 > 0, which means that the corresponding branching
process is supercritical. Denote

Π0 = 1 and Πn =
n−1

∏
i=0

mi, n = 1,2, · · · .

It can be seen that Πn = Eξ Zn . For n ∈ N , define

Wn =
Zn

Πn
and Wn =

Zn

Πn
. (1.4)

It is well known that Wn forms a nonnegativemartingale and the limit W∞ = limn→∞Wn

exists almost surely (a.s.) with EξW∞ � 1. As for Wn , it is known that Wn is a non-
negative submartingale, and it converges to some limit W∞ = limn→∞Wn under certain
moment conditions.

THEOREM 1.1. (Convergence of Wn , [27, 15]) Assume that E logm0 ∈ (0,∞) .

(a) If E log+ Y0
m0

< ∞ , then W∞ = limn→∞Wn exists a.s. with values in [0,∞) .

(b) If E log+
Eξ ( X0

m0
)p < ∞ and E log+

Eξ ( Y0
m0

)p < ∞ for some p > 1 , then supn EξW p
n

< ∞ a.s., and Wn converges a.s. and in Pξ -Lp to W∞ with EξW p
∞ ∈ (0,∞) .

(c) If ξ = (ξn) is i.i.d., E( X0
m0

)p < ∞ and E( Y0
m0

)p < ∞ for some p > 1 , then supn EW p
n

< ∞ , and Wn converges a.s. and in Lp to W∞ with EW p
∞ ∈ (0,∞) .

In this paper, we are interested in convergence rates of Wn in terms of the rate
at which the ratio Wn+k/Wn converges to 1, for each fixed k ∈ {1,2, · · · ,∞} . Note
that k can take the infinity if W∞ exists. Obviously, if k = ∞ , the convergence rates of
W∞/Wn to 1 reflects those of Wn to its limit W∞ ; if k is finite, the rates of Wn+k/Wn can
reveal the asymptotic changes of Zn+k/Zn which can be regarded as the population ratio
across k generations. In particular, when k = 1, Zn+1/Zn is the ratio of the population
of two neighbouring generations whose asymptotic properties were studied in many
related literatures, see e.g. [1, 21, 10, 9, 18].
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Let T be the shift operator that Tξ = (ξ1,ξ2, · · ·) if ξ = (ξ0,ξ1,ξ2, · · ·) . For
k ∈ {1,2, · · · ,∞} , set

ηn =
∏n(Wn+k −Wn)√

Znσ(Tnξ )
=

√
Zn

σ(Tnξ )

(
Wn+k

Wn
−1

)
, n ∈ N, (1.5)

where σ(ξ ) =
√

Varξ (Wk) . One can calculate

σ2(ξ ) =
k−1

∑
i=0

Π−1
i

(
mi(2)
m2

i

−1

)
.

It is clear that ηn concerns with the convergence rates of Wn+k/Wn to 1. Our interest
is the limit behaviours of the distributions of ηn , under both quenched and annealed
laws. For the Galton-Watson process, Heyde [11] showed a central limit theorem on
ηn which says that the distribution of ηn converges to the standard normal distribution
N (0,1) , and Heyde and Brown [12] gave an estimation of its convergence rate under
a third moment condition. Such results were extended to BPRE with weaker moment
condition in Wang et al. [28] by considering the annealed law, and then Huang and Liu
[13] improved the corresponding convergence rate by giving the precise asymptotics of
the harmonic moments of Zn . The quenched central limit theorem was shown by Zhang
and Hong [29], but the convergence rate is still unclear. For the case with immigration,
Gao and Zhang [8] established the central limit theorem on ηn for a branching process
in a varying environment, and estimated its convergence rate by harmonic moments of
Zn . However, the rate that they obtained seemed very rough, and could not coincide
with the case without immigration when applied to the Galton-Watson process. For
these reasons, we aim to extend the results for the case without immigration to BPIRE,
and to improve them by establishing the non-uniform Berry-Esseen-type inequalities.

For n ∈ N , let

Gn(x;ξ ) = Pξ (ηn � x) and Gn(x) = P(ηn � x) (x ∈ R)

be the quenched and annealed distributions of ηn respectively. The main results of the
paper are the following two Berry-Esseen-type inequalities which can reflect the rates
of convergence in central limit theorems on ηn .

THEOREM 1.2. (Quenched Berry-Esseen-type inequality) Assume that (1.3) holds,

E log+
Eξ |Wk−1

σ(ξ ) |a < ∞ and E log+
Eξ |Wk−Wk

σ(ξ ) |b < ∞ for some a > 2 and b > 0 . Let

ε ∈ (0, 1] satisfying ε < b. Then there exists a positive random variable C(ξ ) depend-
ing on ξ and satisfying E log+C(ξ ) < ∞ such that

sup
x∈R

(1+ |x|)λ |Gn(x;ξ )−Φ(x)| � C(Tnξ )Eξ Z−δ/2
n a.s., (1.6)

where λ = (a∧b)(1− ε
b ) and δ = min{a−2, ε} , and Φ(x) = 1√

2π

∫ x
−∞ e−t2/2dt is the

standard normal distribution function.
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THEOREM 1.3. (Annealed Berry-Esseen-type inequality) Assume (1.3) and that

ξ = (ξn) is i.i.d., E

(
Eξ |Wk−1

σ(ξ ) |a
)1+ε̃

< ∞ and E

(
Eξ |Wk−Wk

σ(ξ ) |b
)1+ε̃

< ∞ for some a >

2 , b > 0 and ε̃ ∈ [0,1] . Let ε ∈ (0, 1] satisfying ε < b. Then there exists a positive
constant C such that

sup
x∈R

(1+ |x|)λ |Gn(x)−Φ(x)| � CEZ−δ/2
n , (1.7)

where λ = (a∧b)min{ε̃, 1− ε
b} and δ = min{a−2, ε} , and Φ(x) = 1√

2π

∫ x
−∞ e−t2/2dt

is the standard normal distribution function.

In Theorem 1.3 and throughout the paper, C represents a general positive constant,
which does not stand for the same constant and can differ from line to line.

REMARK 1.2. In Theorems 1.2 and 1.3, we use the harmonic moments of Zn to
characterize the convergence rates in central limit theorems on ηn . Under (1.3), it is not
difficult to know that the harmonic moments of Zn decay to 0 with exponential rates.
For the convenience of application, we give below more accurate results on decay rates
of the harmonic moments of Zn , and apply them with the conclusions of Theorems
1.2 and 1.3. In order to illustrate precise rates, the additional assumption (H) below is
needed:

(H) There exist constants q > 1 and A2 > A1 > 1 such that A1 � m0 and m0(q) � Aq
2

a.s., and ess sup p1 < 1.

Based on (H), we can obtain the conditions for the existence of harmonic moments of
Wn and further describe the decay rates of harmonic moments of Zn more precisely.
Let r > 0. According to [14], one has a.s.,

limsup
n→∞

1
n

logEξ Z−r
n �

{
max{−rE logm0, E log(p1h0)}, if (H) holds,

E logm0(−r), if (H) does not hold.
(1.8)

This result implies that Eξ Z−r
n decays to 0 with an exponential rate. Set

ρ1 =

{
emax{− δ

2 E logm0, E log(p1h0)}, if (H) holds,

eE logm0(− δ
2 ), if (H) does not hold.

Combining (1.6) with (1.8), we deduce that a.s., for x ∈ R ,

|Gn(x;ξ )−Φ(x)| � C(Tnξ )Eξ Z−δ/2
n (1+ |x|)−λ � ρn(1+ |x|)−λ ,

for ρ > ρ1 and 0 � λ � λ1 := (a∧b)(1− ε/b) . When ξ = (ξn) is i.i.d., according to
Huang et al. [15], one has

EZ−r
n � C

{
an(r), if (H) holds,

(Em0(−r))n, if (H) does not hold,
(1.9)
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where

an(r) =

⎧⎪⎪⎨
⎪⎪⎩

(Em−r
0 )n, if r < r0,

n(Ep1h0)n, if r = r0,

(Ep1h0)n, if r > r0,

and r0 is the solution of the equation Em−r0
0 = Ep1h0. Set

ρ2 =

⎧⎪⎨
⎪⎩

max{Em
− δ

2
0 , Ep1h0}, if (H) holds,

Em0(− δ
2 ), if (H) does not hold.

Combining (1.7) with (1.9) gives that for x ∈ R ,

|Gn(x)−Φ(x)| � CEZ−δ/2
n (1+ |x|)−λ � ρn(1+ |x|)−λ , (1.10)

for ρ > ρ2 and 0 � λ � λ2 := (a∧b)min{ε̃,1− ε/b} . One can observe that ρ1 � ρ2

and λ1 � λ2 .

REMARK 1.3. For BPRE, Wang et al. [28, Theorem 2.2] showed that

sup
x∈R

|Gn(x)−Φ(x)| � CEZ−δ/2
n � C

(
Em0(−δ

2
)
)n

(1.11)

under the moment condition that E|Wk−1
σ(ξ ) |a < ∞ for some a > 2, where δ = min{a−

2,1} . Note that in (1.11), the upper bound is independent of x . This kind of inequal-
ity is called the uniform Berry-Esseen-type inequality. If that upper bound depends
on x such as (1.10), corresponding result is called the non-uniform Berry-Esseen-type
inequality. In Theorem 1.3, we actually establish the annealed non-uniform Berry-
Esseen-type inequality on the distribution of ηn for BPIRE. This result is a general-
ization and improvement of Wang et al. [28, Theorem 2.2] and Huang and Liu [13,
Theorem 1.7]. Similarly, Theorem 1.2 shows the corresponding quenched non-uniform
Berry-Esseen-type inequality. Applied to BPRE, it improves Zhang and Hong [29, The-
orem 1.3] by showing the rate of convergence in the quenched central limit theorem.
Meanwhile, Theorem 1.2 also weakens the moment condition and estimates a faster
convergence rate at the same time in comparison with Gao and Zhang [8, Theorem
1.4]. Applied to the Galton-Watson process with a = 3, Theorem 1.2 implies Heyde
and Brown [12, Theorem 2].

REMARK 1.4. Note that in Theorems 1.2 and 1.3, the δ depends on both a and b .
This fact reveals that for the case with immigration, the convergence rate in central limit
theorem is affected not only by the offspring distribution, but also by the immigration
distribution. Moreover, there exists certain mutual constraint between δ and λ , and
the increase of one may lead to the decrease of the other.
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2. Preliminaries

In this section, we do some preliminary work. For the convenience of compre-
hension, we introduce the family system. We regard Zn as the total population of the
n -th generation of the family. In this sense, the condition Z0 = 1 means that the family
begins with an initial ancestor of generation 0. We denote un,i the i-th individual of the
n -th generation, i = 1,2, · · · ,Zn .Then Xn,i can be understood as the offspring number
of un,i , and Yn is the number of new immigrants of generation n+1.

For a particle u of the family, we use W
(u)
k (resp. W (u)

k ) to denote the correspond-
ing martingale (resp. submartingale) defined similarly to (1.4) for the BPRE (resp.
BPIRE) originating from the particle u . Fix k ∈ {1,2, · · · ,∞} . According to the differ-
ences of the predecessors at the n -th generation, we decompose

ηn = σ(Tnξ )−1Z−1/2
n

[
Zn

∑
i=1

(W
(un,i)
k −1)+D

(un,1)
k

]
, (2.1)

where
D

(un,1)
k = W

(un,1)
k −W

(un,1)
k .

When the current n -th generation of the family is known, all the information about
the immigrants from (n+1)-th generation to (n+ k)-th generation will be included in

D
(un,1)
k , while the first term of the sum in the right hand side of (2.1) only depends on

the offspring distribution. In particular, one has D
(un,1)
k = 0 for BPRE, since there is no

immigration. Thanks to the decomposition (2.1), we can study the limit behaviours of
ηn by controlling two kinds of conditions: one is about the offspring distribution, and

the other is about the immigration distribution hidden behind D
(un,1)
k . Set

S(n)
j = σ(Tnξ )−1

j

∑
i=1

(W
(un,i)
k −1) and U (n) = σ(Tnξ )−1D

(un,1)
k .

For x ∈ R , define two distribution functions as follows:

Φ(n)
j (x) = Pξ ( j−1/2S(n)

j � x),

G(n)
j (x) = Pξ ( j−1/2S(n)

j + j−1/2U (n) � x).

By the formula of total probability,

Gn(x;ξ )−Φ(x) =
∞

∑
j=1

Pξ (Zn = j)(G(n)
j (x)−Φ(x)). (2.2)

Notice that for n fixed, Φ(n)
j (x) is the distribution function of the normalized partial

sum of the i.i.d. sequence {W (un,i)
k −1}i�1 under the quenched law Pξ . We can apply

the classical Berry-Esseen inequality to Φ(n)
j (x) .



332 X. WANG, J. WU AND C. HUANG

LEMMA 2.1. (Berry-Esseen inequality for i.i.d. sequence, [5, 22]) Let X be a ran-
dom variable with EX = μ and E(X − μ)2 = σ2 . Let Xn be independent copies of X
and set Sn = ∑n

i=1(Xi − μ) . If σ > 0 and E|X |a < ∞ for some a > 2 , then∣∣∣∣P
(

Sn√
nσ

� x

)
−Φ(x)

∣∣∣∣ � Cmax

{
1,E

∣∣∣∣X − μ
σ

∣∣∣∣
a}

n−γ/2(1+ |x|)−a,

where γ = min{a−2,1} .

Put

A(ξ , a) = Eξ

∣∣∣∣∣Wk −1
σ(ξ )

∣∣∣∣∣
a

and B(ξ , a) = Eξ

∣∣∣∣∣Wk −Wk

σ(ξ )

∣∣∣∣∣
b

. (2.3)

For a > 2, set
γ = min{a−2, 1}.

By Lemma 2.1, we have a.s. for all x ∈ R ,∣∣∣Φ(n)
j (x)−Φ(x)

∣∣∣ � Cmax{1,A(Tnξ ,a)} j−γ/2(1+ |x|)−a (2.4)

provided that A(ξ ,a) < ∞ a.s. for some a > 2. Noticing (2.4) and the fact that

G(n)
j (x)−Φ(x) = G(n)

j (x)−Φ(n)
j (x)+ Φ(n)

j (x)−Φ(x), (2.5)

we need to deal with G(n)
j (x)−Φ(n)

j (x) .
It is easy to see that

G(n)
j (x)−Φ(n)

j (x) =Pξ

(
j−1/2S(n)

j + j−1/2U (n) � x, j−1/2S(n)
j > x

)
−Pξ

(
j−1/2S(n)

j + j−1/2U (n) > x, j−1/2S(n)
j � x

)
. (2.6)

Take m = [
√

j] . Denote ν(n)
ξ (ds, dt) = Pξ ( j−1/2S(n)

m ∈ ds, j−1/2U (n) ∈ dt) . We deduce
that

Pξ

(
j−1/2S(n)

j + j−1/2U (n) � x, j−1/2S(n)
j > x

)
=

∫
Pξ

(
s+ t + j−1/2(S(n)

j −S(n)
m ) � x, s+ j−1/2(S(n)

j −S(n)
m ) > x

)
ν(n)

ξ (ds, dt)

=
∫
t<0

[
Φ(n)

j−m((x− s− t)Rj)−Φ(n)
j−m((x− s)Rj)

]
ν(n)

ξ (ds, dt), (2.7)

where Rj =
√

j√
j−m

. Similarly, we can obtain

Pξ

(
j−1/2S(n)

j + j−1/2U (n) > x, j−1/2S(n)
j � x

)
=

∫
t>0

[
Φ(n)

j−m((x− s)Rj)−Φ(n)
j−m((x− s− t)Rj)

]
ν(n)

ξ (ds,dt). (2.8)
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Noticing (2.4), we calculate

|Φ(n)
j−m((x− s)Rj)−Φ(n)

j−m((x− s− t)Rj)|
�|Φ((x− s)Rj)−Φ((x− s− t)Rj)|+ |Φ(n)

j−m((x− s)Rj)−Φ((x− s)Rj)|
+ |Φ(n)

j−m((x− s− t)Rj)−Φ((x− s− t)Rj)|
�|Φ((x− s)Rj)−Φ((x− s− t)Rj)|

+Cmax{1,A(Tnξ ,a)} j−γ/2 [
(1+ |x− s|)−a +(1+ |x− s− t|)−a)

]
, (2.9)

where we have used the fact that Rj � 1. Combining (2.6)–(2.9), we get∣∣∣G(n)
j (x)−Φ(n)

j (x)
∣∣∣ � I(n)

1 j +Cmax{1,A(Tnξ ,a)} j−γ/2
(
I(n)
2 j + I(n)

3 j

)
, (2.10)

where

I(n)
1 j =

∫
|Φ((x− s)Rj)−Φ((x− s− t)Rj)|ν(n)

ξ (ds, dt),

I(n)
2 j =

∫
(1+ |x− s|)−aν(n)

ξ (ds, dt),

I(n)
3 j =

∫
(1+ |x− s− t|)−aν(n)

ξ (ds, dt).

We will give upper bounds for I(n)
l j , l = 1,2,3, in Section 3. Before that work, we

present two preliminary lemmas.

LEMMA 2.2. Let c > 0 be a fixed constant and ε̃ ∈ [0,1] . Assume that A(ξ ,a) <
∞ a.s. for some a > 2 . Then a.s., for all |x| � 1 ,∫

|s|>c|x|
ν(n)

ξ (ds, dt) � Cmax
{

1, A(Tnξ , a)ε̃
}

j−γε̃/2(1+ |x|)−aε̃ , (2.11)

where γ = min{a−2,1} .

Proof. By (2.4), we derive that∫
|s|>c|x|

ν(n)
ξ (ds, dt)

=Pξ (| j−1/2S(n)
m | > c|x|)

=1−Φ(n)
m

(
c

√
j√
m
|x|

)
+ Φ(n)

m

(
−c

√
j√
m
|x|

)

�2

[
1−Φ

(
c

√
j√
m
|x|

)]
+Cmax{1,A(Tnξ ,a)}m−γ/2

(
1+ c

√
j√
m
|x|

)−a

. (2.12)

In addition,

1−Φ
(

c

√
j√
m
|x|

)
� C

( √
j√
m
|x|

)−2a

� C j−a/2(1+ |x|)−a, (2.13)
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and

m−γ/2
(

1+ c

√
j√
m
|x|

)−a

� C j−γ/2(1+ |x|)−a, (2.14)

since a > γ . Combining (2.12) with (2.13) and (2.14) yields
∫
|s|>c|x|

ν(n)
ξ (ds, dt) � Cmax{1, A(Tnξ , a)} j−γ/2(1+ |x|)−a. (2.15)

Since ε̃ ∈ [0,1] and ∫
|s|>c|x|

ν(n)
ξ (ds, dt) � 1, (2.16)

we obtain (2.11) by (2.15) and (2.16). �

LEMMA 2.3. Let c > 0 be a fixed constant and ε̃ ∈ [0,1] . Assume that B(ξ , b) <
∞ for some b > 0 . Then a.s., for all |x| � 1 ,

∫
|t|>c|x|

ν(n)
ξ (ds, dt) � CB(Tnξ , b)ε̃ j−bε̃/2(1+ |x|)−bε̃ . (2.17)

Proof. By Markov’s inequality, we get
∫
|t|>c|x|

ν(n)
ξ (ds, dt) = Pξ

(∣∣∣ j−1/2U (n)
∣∣∣ > c|x|

)

� C j−b/2
Eξ

∣∣∣U (n)
∣∣∣b |x|−b

� CB(Tnξ , b) j−b/2(1+ |x|)−b,

which leads to (2.17), since ε̃ ∈ [0,1] and
∫
|t|>c|x| ν

(n)
ξ (ds, dt) � 1. �

3. Proofs of Theorems 1.2 and 1.3

In this section, we will go to proofs of the main theorems. Recall (2.10). From

it we see that in order to get the rate of convergence of G(n)
j (x)−Φ(n)

j (x) , we need to
analyse In

l j , l = 1,2,3. Recall A(ξ , a) and B(ξ , b) defined in (2.3).

LEMMA 3.1. Let ε̃ ∈ [0,1] . If A(ξ , a) < ∞ a.s. for some a > 2 , then a.s., for all
x ∈ R ,

I(n)
2 j � Cmax

{
1, A(Tnξ , a)ε̃

}
(1+ |x|)−aε̃ . (3.1)

Proof. For |x| < 1, noticing that (1+ |x|)−aε̃ � 2−aε̃ , we have

I(n)
2 j � 1 � C(1+ |x|)−aε̃ . (3.2)
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For |x| � 1, by Lemma 2.2,

I(n)
2 j �

∫
|s|� 1

2 |x|
(1+ |x− s|)−aν(n)

ξ (ds, dt)+
∫
|s|> 1

2 |x|
ν(n)

ξ (ds, dt)

�
(

1+
1
2
|x|

)−aε̃
+Cmax

{
1, A(Tnξ , a)ε̃

}
j−γε̃/2(1+ |x|)−aε̃

� Cmax
{

1, A(Tnξ , a)ε̃
}

(1+ |x|)−aε̃ . (3.3)

Combining (3.2) and (3.3), we get (3.1). �

LEMMA 3.2. Let ε̃ ∈ [0,1] . If A(ξ , a) < ∞ a.s. for some a > 2 and B(ξ , b) < ∞
for some b > 0 , then a.s., for all x ∈ R ,

I(n)
3 j � Cmax

{
1, A(Tnξ , a)ε̃ , B(Tnξ , b)ε̃

}
(1+ |x|)−(a∧b)ε̃ . (3.4)

Proof. For |x| < 1, it is obvious that

I(n)
3 j � 1 � C(1+ |x|)−(a∧b)ε̃ . (3.5)

For |x| � 1, applying Lemmas 2.2 and 2.3, we obtain

I(n)
3 j �

∫
|s+t|� 1

2 |x|
(1+ |x− s− t|)−aν(n)

ξ (ds, dt)

+
∫
|s|> 1

4 |x|
ν(n)

ξ (ds, dt)+
∫
|t|> 1

4 |x|
ν(n)

ξ (ds, dt)

�
(

1+
1
2
|x|

)−aε̃
+max

{
1, A(Tnξ , a)ε̃

}
(1+ |x|)−aε̃

+B(Tnξ , b)ε̃(1+ |x|)−bε̃

�max
{

1, A(Tnξ , a)ε̃ , B(Tnξ , b)ε̃
}

(1+ |x|)−(a∧b)ε̃ . (3.6)

Combining (3.5) and (3.6), we get (3.4). �

LEMMA 3.3. Assume that A(ξ , a) < ∞ a.s. for some a > 2 and B(ξ , b) < ∞
a.s. for some b > 0 . Let ε ∈ (0, 1] satisfying ε < b. Then a.s., for all x ∈ R ,

I(n)
1 j � Cmax{1,A(Tnξ ,a),B(Tnξ ,b)} j−δ/2(1+ |x|)−λ , (3.7)

where λ = (a∧b)(1− ε
b ) and δ = min{a−2, ε} .

Proof. We first consider |x| < 1. It is obvious that

|Φ((x− s)Rj)−Φ((x− s− t)Rj)| � min{1, C|t|} � C|t|ε .
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Therefore, by Hölder’s inequality,

I(n)
1 j � C

∫
|t|ε ν(n)

ξ (ds, dt) � C

(∫
|t|bν(n)

ξ (ds, dt)
)ε/b

= CB(Tnξ , b)ε/b j−ε/2 � Cmax{1, B(Tnξ , b)} j−δ/2(1+ |x|)−λ .

Next we consider |x| � 1. Decompose

I(n)
1 j = I(n)

A j + I(n)
B j ,

where

I(n)
A j =

∫
(x−s)(x−s−t)<0

|Φ((x− s)Rj)−Φ((x− s− t)Rj)|ν(n)
ξ (ds, dt),

I(n)
B j =

∫
(x−s)(x−s−t)�0

|Φ((x− s)Rj)−Φ((x− s− t)Rj)|ν(n)
ξ (ds, dt).

For I(n)
A j , noticing that

{(x− s)(x− s− t) < 0} ⊂
{
|s| > 1

2
|x|

}
∪

{
|t| > 1

2
|x|

}
,

by Lemmas 2.2 and 2.3, we get a.s., for |x| � 1,

I(n)
A j �

∫
|s|> 1

2 |x|
ν(n)

ξ (ds, dt)+
∫
|t|> 1

2 |x|
ν(n)

ξ (ds, dt)

� Cmax{1, A(Tnξ , a),B(Tnξ ,b)} j−
1
2 min{a−2, 1, b}(1+ |x|)−(a∧b). (3.8)

Now we deal with I(n)
B j . By differential mean value theorem, we get

Φ((x− s)Rj)−Φ((x− s− t)Rj) = ϕ(ζ )tR j,

where ϕ(x) = 1√
2π e−x2/2 is the density function of the standard normal distribution,

and ζ is between (x− s)Rj and (x− s− t)Rj . When (x− s)(x− s− t) � 0, we have

ϕ(ζ ) � max
{

ϕ((x− s)Rj), ϕ((x− s− t)Rj)
}

� Cmax
{

e−
1
2 (x−s)2 , e−

1
2 (x−s−t)2

}
,

so that

|Φ((x− s)Rj)−Φ((x− s− t)Rj)| � Cmax
{

e−
1
2 (x−s)2 , e−

1
2 (x−s−t)2

}
|t|. (3.9)

Besides, it is clear that

|Φ((x− s)Rj)−Φ((x− s− t)Rj)| � 1. (3.10)
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Noticing (3.9) and (3.10), we deduce that

I(n)
B j � C

∫
min

{
1, max

{
e−

1
2 (x−s)2 , e−

1
2 (x−s−t)2

}
|t|

}
ν(n)

ξ (ds, dt)

� C
∫

max
{

e−
ε
2 (x−s)2 , e−

ε
2 (x−s−t)2

}
|t|ε ν(n)

ξ (ds, dt).

Denote q = b
b−ε . By Hölder’s inequality,

I(n)
B j �C

(∫
max

{
e−

ε
2 q(x−s)2 , e−

ε
2 q(x−s−t)2

}
ν(n)

ξ (ds, dt)
) 1

q

·
(∫

|t|bν(n)
ξ (ds, dt)

) ε
b

. (3.11)

Obviously, ∫
|t|bν(n)

ξ (ds, dt) = j−b/2B(Tnξ , b). (3.12)

Let c > 0 be a constant. Using Lemma 2.2, we derive that a.s., for |x| � 1,∫
e−c(x−s)2ν(n)

ξ (ds, dt)

�
∫
|s|� 1

2 |x|
e−c(x−s)2ν(n)

ξ (ds, dt)+
∫
|s|> 1

2 |x|
ν(n)

ξ (ds, dt)

�e−
c
4 x2

+
∫
|s|> 1

2 |x|
ν(n)

ξ (ds, dt)

�Cmax{1, A(Tnξ , a)}(1+ |x|)−a. (3.13)

Similarly, by Lemmas 2.2 and 2.3, we have a.s., for |x| � 1,∫
e−c(x−s−t)2ν(n)

ξ (ds, dt)

�
∫
|s+t|� 1

2 |x|
e−c(x−s−t)2ν(n)

ξ (ds, dt)+
∫
|s|> 1

4 |x|
ν(n)

ξ (ds, dt)

+
∫
|t|> 1

4 |x|
ν(n)

ξ (ds, dt)

�Cmax{1, A(Tnξ , a), B(Tnξ , b)}(1+ |x|)−(a∧b). (3.14)

Combining (3.11)–(3.14), we get a.s., for |x| � 1,

I(n)
B j � Cmax{1, A(Tnξ , a), B(Tnξ , b)} j−ε/2(1+ |x|)−(a∧b)/q. (3.15)

Combining (3.8) and (3.15), we assert that (3.7) is hold for |x| � 1. �

Proof of Theorem 1.2. Let ε̃ ∈ [0,1] . Noticing (2.10), by Lemmas 3.1–3.3, we get
a.s., for all x ∈ R ,

|G(n)
j (x)−Φ(n)

j (x)| � Cε̃ (Tnξ ) j−δ/2(1+ |x|)−(a∧b)min{ε̃, 1− ε
b }, (3.16)
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where δ = min{a−2,ε} and

Cε̃ (ξ ) = Cmax
{

1, A(ξ , a)1+ε̃ , B(ξ , b)1+ε̃
}

.

Combining (2.2) with (2.4), (2.5) and (3.16), we get

|Gn(x;ξ )−Φ(x)| � Cε̃(Tnξ )Eξ Z−δ/2
n (1+ |x|)−(a∧b)min{ε̃, 1− ε

b }. (3.17)

Since E log+
Eξ |Wk−1

σ(ξ ) |a < ∞ and E log+
Eξ |Wk−Wk

σ(ξ ) |b < ∞ , it can be verified that

E log+Cε̃ (ξ ) < ∞.

The proof is finished by taking ε̃ = 1 and C(ξ ) = C1(ξ ) . �

Proof of Theorem 1.3 Taking the expectation of (3.17), we obtain

|Gn(x)−Φ(x)| = |E(Gn(x;ξ )−Φ(x))|
� E|Gn(x;ξ )−Φ(x)|
� ECε̃ (ξ )EZ−δ/2

n (1+ |x|)−(a∧b)min{ε̃, 1− ε
b }.

The proof is finished by noticing that ECε̃ (ξ ) < ∞ . �
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