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IMPROVED MATRIX INEQUALITIES USING RADICAL CONVEXITY

MOHAMMAD SABABHEH, SHIGERU FURUICHI AND HAMID REZA MORADI

(Communicated by M. Krnić)

Abstract. Convex functions have a key role in mathematical inequalities. In this paper, we em-
ploy radical convexity as a tool that enables us to obtain much sharper bounds than usual bounds
obtained by convexity. Applications of our approach will include real functions and matrices.

1. Introduction

Convex functions have received considerable and renowned attention in the lit-
erature due to their significance in various fields of mathematics, including analysis,
optimization, mathematical physics, functional analysis, and operator theory. Among
the most useful applications of convexity is the way they can be used to obtain in-
equalities among real numbers, real functions, matrices and operators. This includes
celebrated inequalities like Young, Cauchy-Schwarz, Bellman, Heinz, and many other
well-established inequalities.

As a research trend in mathematical inequalities, it is of great interest to minimize
the difference between the two sides of the inequality by adding a certain term to one
side. Such a process is usually referred to as a refinement of inequality. For example,
Young’s inequality states that

a1−tbt � (1− t)a+ tb, 0 � t � 1; a,b > 0. (1.1)

This inequality can be proved using the convexity of the function f (t) = a1−tbt . Then,
using refinements of convex functions, we can obtain refinements of (1.1). We refer the
reader to [1, 11, 12, 13, 14, 15] for a recent list of references that discuss the idea of
employing convexity to obtain refinements or new proofs of known inequalities.

In [9, 10], a new treatment of convex functions was discussed, where a tool for
distinguishing how much a function is convex was presented.

We recall that a convex function f : J ⊆ R → R is a function that satisfies

f ((1− t)a+ tb) � (1− t) f (a)+ t f (b), (1.2)

for all 0 � t � 1 and a,b ∈ J , where J is a real interval. The inequality (1.2) has been
refined in the literature, and many applications were presented for scalars and matrices.
We refer the reader to [1, 11, 12, 13, 14, 15] for further discussion.

To better understand convex functions, the authors introduced the concept of p -
radical convex functions in [9] as follows.
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DEFINITION 1.1. Let f : [0,∞)→ [0,∞) be a continuous function with f (0) = 0,

and let p � 1 be a fixed number. If the function g(x) = f
(
x

1
p

)
is convex on [0,∞) , we

say that f is p -radical convex.

Two examples of 2–radical convex function are listed below.

• The function f (x) := x2 log(x+1) fulfills the conditions f (0) = 0 and f (x) > 0

for x > 0. And also we have
d2 f (

√
x)

dx2 =
2
√

x+3
4
√

x(
√

x+1)2 > 0 for x > 0.

• The function g(x) := (x−1)exp(x−1)+1/e fulfills the conditions g(0) = 0 and

g(x) > 0 for x > 0. And also we have
d2g(

√
x)

dx2 =
e
√

x−1

4
√

x
> 0 for x > 0.

In this article, we focus on 2-radical convex functions. That is, functions f :
[0,∞) → [0,∞) such that f (

√
x) is convex and f (0) = 0. We remark that a 2-radical

convex function is necessarily monotone increasing; see [9, Proposition 1.1].
In particular, we present several inequalities that considerably refine some known

inequalities in the literature for convex functions, then present applications in matrix
settings.

The advantage of this work will be as follows. For example, the function f (x) = x2

is convex. Applying convexity implies certain bounds. However, when looking at the
function f (x) = x2 as a 2-radical convex function, we will be able to obtain sharper
bounds. Thus, it is always wise to check first if the function is 2-radical convex when
dealing with convex functions. Our results can be easily extended to p -radical convex
functions.

Applications that include inequalities for convex functions and matrices will be
presented, emphasizing that the obtained results are much sharper than the existing
bounds in the literature. In the end, examples with visual explanations are given.

2. Inequalities for 2 -radical convex functions

In this section, we further explore 2-radical convex functions by presenting sev-
eral inequalities of these functions. These inequalities significantly improve the corre-
sponding inequalities when the function is treated as a convex function. However, for
organizational purposes, we split this section into two subsections.

2.1. The domain t ∈ [0,1]

In [9, Corollary 2.1], it has been shown that if f is 2-radical convex, then

f ((1− t)a+ tb)+ f
(√

t (1− t)|a−b|
)

� (1− t) f (a)+ t f (b) , (2.1)

for 0 � t � 1 and a,b � 0. We notice that this is a refinement of (1.2).
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As we mentioned earlier, our goal is to show how treating convex functions as
radical convex functions imply better bounds. For the first result, we recall that a convex
function f : [0,∞) → [0,∞) satisfies the inequality [6, 7]

f ((1− t)a+ tb)+2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))
� (1− t) f (a)+ t f (b),

0 � t � 1, a,b � 0, (2.2)

where r = min{t,1− t} . This provides a refinement of (1.2). In the following result,
we show that radical convex functions can have better bounds than the one presented in
(2.2).

THEOREM 2.1. Let f : [0,∞) → [0,∞) be a 2-radical convex function and let
a,b � 0 . Then for any 0 � t � 1 ,

f ((1− t)a+ tb)+ f

(√
r|1−2t|

2
|a−b|

)
+2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))

� (1− t) f (a)+ t f (b)

where r = min{t,1− t} .

Proof. Assume that 0 � t � 1/2 . Noting (2.1), we have

(1− t) f (a)+ t f (b)−2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))

= (1−2t) f (a)+2t f

(
a+b

2

)

� f

(
(1−2t)a+2t

a+b
2

)
+ f

(√
2t (1−2t)

|a−b|
2

)

= f ((1− t)a+ tb)+ f

(√
2t (1−2t)

|a−b|
2

)
.

This proves the desired inequality when 0 � t � 1/2. Now if 1/2 � t � 1, we have

(1− t) f (a)+ t f (b)−2r

(
f (a)+ f (b)

2
− f

(
a+b

2

))

= (2t−1) f (b)+ (2−2t) f

(
a+b

2

)

� f

(
(2t−1)b+(2−2t)

a+b
2

)
+ f

(√
(2t−1)(2−2t)

|a−b|
2

)

= f ((1− t)a+ tb)+ f

(√
2(1− t)(2t−1)

|a−b|
2

)
.

Noting that r = min{t,1− t} , the proof is complete. �
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So, Theorem 2.1 adds the refining term f

(√
r|1−2t|

2 |a−b|
)

to the left side of

(2.2). Of course, when f is 2-radical convex.
The following result presents a more explicit refinement of (1.2) for radical convex

functions. In this result, we use the simple inequality g(αx) � αg(x) , when g : [0,∞)→
[0,∞) is convex such that g(0) = 0, and 0 � α � 1.

THEOREM 2.2. Let f : [0,∞) → [0,∞) be a 2-radical convex function. Then for
any 0 � t � 1 and a,b > 0 ,

f ((1− t)a+ tb) � ((1− t)a+ tb)2

(1− t)a2 + tb2 ((1− t) f (a)+ t f (b)) .

In particular,

f

(
a+b

2

)
� (a+b)2

4(a2 +b2)
( f (a)+ f (b)) .

Proof. Let g(x) = f (
√

x) , x ∈ [0,∞) . Then g is an increasing convex function on
[0,∞) and g(αx) � αg(x) when 0 < α � 1. Thus, for a,b > 0,

g
(
((1− t)a+ tb)2

)
= g

(
((1− t)a+ tb)2

(1− t)a2 + tb2 (1− t)a2 + tb2

)

� ((1− t)a+ tb)2

(1− t)a2 + tb2 g
(
(1− t)a2 + tb2)

� ((1− t)a+ tb)2

(1− t)a2 + tb2

(
(1− t)g

(
a2)+ tg

(
b2)) ,

that is,

f ((1− t)a+ tb) � ((1− t)a+ tb)2

(1− t)a2 + tb2 ((1− t) f (a)+ t f (b)) ,

as desired. �

The fact that Theorem 2.2 provides a refinement of (1.2) follows because ((1−t)a+tb)2

(1−t)a2+tb2

� 1.
In the following, we discuss the behavior of the constant appearing in Theorem

2.2.

REMARK 2.1. For 0 � t � 1 and x > 0, define

ft (x) :=
((1− t)x+ t)2

(1− t)x2 + t
; x > 0, 0 � t � 1.

Since
d ft(x)

dx
=

−2t(1− t)(x−1){(1− t)x+ t}
{(1− t)x2 + t}2 ,
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one can easily verify that the function ft is decreasing when x � 1, and increasing
when x � 1. So, ft (x) � ft(1) = 1. In addition, we can find that the minimum value

of ft (x) is the inverse of the Kantorovich constant K(x) :=
(x+1)2

4x
in the following.

Since we have
d ft(x)

dt
=

(x−1)2{(1− t)x+ t}{(1+ x)t− x}
{(1− t)x+ t}2 ,

it follows that
d ft(x)

dt
� 0 if 0 � t � x

1+ x
, and

d ft (x)
dt

� 0 if 1 � t � x
1+ x

. Thus we

have f0(x) = f1(x) = 1 � ft (x) � f x
1+x

(x) = K−1(x) .

In the following corollary, we present another version of the inequalities in The-
orem 2.2, but in a form where the refining constant is independent of a,b. This, of
course, requires an additional assumption, as follows.

COROLLARY 2.1. Let f : [0,∞) → [0,∞) be a 2-radical convex function and let
0 � t � 1 .

(i) If 0 < m′ � a � m � M � b � M′ , then

f ((1− t)a+ tb) � ((1− t)m+ tM)2

(1− t)m2 + tM2 ((1− t) f (a)+ t f (b)) .

(ii) If 0 < m′ � b � m � M � a � M′ , then

f ((1− t)a+ tb) � ((1− t)M + tm)2

(1− t)M2 + tm2 ((1− t) f (a)+ t f (b)) .

Proof. (i) On account of the assumption and utilizing Remark 2.1, we have

((1− t)a+ tb)2

(1− t)a2 + tb2 = ft
(a

b

)
� ft

(m
M

)
=

((1− t)m+ tM)2

(1− t)m2 + tM2 ,

thereupon

f ((1− t)a+ tb) � ((1− t)m+ tM)2

(1− t)m2 + tM2 ((1− t) f (a)+ t f (b)) ,

as desired.
The inequality in part (ii) can be obtained similarly. �
Similar to Remark 2.1, we have the following lemma, which will be used to present

the more general case of Theorem 2.2.

LEMMA 2.1. The function

gt,x (y) =
((1− t)x+ t)y

(1− t)xy + t
; x > 0, 0 � t � 1,

is decreasing when y � 1 .
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Proof. We calculate

dgt,x(y)
dy

=
{(1− t)x+ t}y h(t,x,y)

{(1− t)xy + t}2 ,

where
h(t,x,y) := −(1− t)xy logx+{(1− t)xy + t} log{(1− t)x+ t}.

We also calculate

dh(t,x,y)
dy

= −(1− t)xy logx log
x

(1− t)x+ t
.

For both cases 0 < x � 1 and x � 1, we find
dh(t,x,y)

dy
� 0 by an elementarily calcu-

lation. Thus we have

h(t,x,y) � h(t,x,1) = −(1− t)x logx+{(1− t)x+ t}log{(1− t)x+ t}.

Since we calculate
dh(t,x,1)

dx
= (1− t) log

(1− t)x+ t
x

,

we have
dh(t,x,1)

dx
� 0 for 0 < x � 1 and

dh(t,x,1)
dx

� 0 for x � 1. Thus we have

h(t,x,1) � h(t,1,1) = 0. From h(t,x,y) � 0, we find that the function gt,x(y) is de-
creasing for y � 1. �

Now we present the general form of Theorem 2.2, for p -radical convex functions
when p � 2, thanks to Lemma 2.1.

THEOREM 2.3. Let f : [0,∞) → [0,∞) be a p-radical convex function for some
p � 2 . Then for any 0 � t � 1 and a,b > 0 ,

f ((1− t)a+ tb) � ((1− t)a+ tb)p

(1− t)ap + tbp ((1− t) f (a)+ t f (b)) .

We know that a convex function f : [0,∞) → [0,∞) with f (0) = 0 satisfies the
super-additive inequality

f (a+b) � f (a)+ f (b);a,b � 0. (2.3)

Again, this inequality can be sharpened if f is a radical convex function, as follows.

THEOREM 2.4. Let f : [0,∞)→ [0,∞) be a 2-radical convex function. If a,b > 0 ,
then

f (a)+ f (b) � a2 +b2

(a+b)2
f (a+b).
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Proof. One can easily check that every 2-radical convex function satisfies the fol-
lowing inequality

f (tx) � t2 f (x) ; 0 � t � 1. (2.4)

This implies, for a,b > 0,

f (a)+ f (b) = f

(
a

a+b
(a+b)

)
+ f

(
b

a+b
(a+b)

)

� a2

(a+b)2
f (a+b)+

b2

(a+b)2
f (a+b) (by (2.4))

=
a2 +b2

(a+b)2
f (a+b).

This completes the proof. �

2.2. The domain t �∈ [0,1]

When f : [0,∞) → [0,∞) is convex, the following inequality holds

(1+ t) f (a)− t f (b) � f ((1+ t)a+ tb), (2.5)

provided that t � 0 or t �−1, so that (1+t)a−tb� 0. This latter condition is assumed
to guarantee that (1+ t)a− tb ∈ [0,∞) ; the domain of f . Interestingly, radical convex
functions satisfy better bounds than this. We refer the reader to [4, 16, 17] for further
discussion of (2.5) when f is a convex function.

THEOREM 2.5. Let f : [0,∞) → [0,∞) be a 2-radical convex function and let
a,b � 0 .

(i) If t � 0 and (1+ t)a− tb � 0 , then

(1+ t) f (a)− t f (b)+ (1+ t) f
(√

t |a−b|)� f ((1+ t)a− tb).

(ii) If t � −1 and (1+ t)a− tb � 0 , then

(1+ t) f (a)− t f (b)− t f
(√

−(1+ t)|a−b|
)

� f ((1+ t)a− tb).

Proof. Let t � 0. Since

a =
1

1+ t
((1+ t)a− tb)+

t
1+ t

b,

we have by (2.1),

f (a) = f

(
1

1+ t
((1+ t)a− tb)+

t
1+ t

b

)

� 1
1+ t

f ((1+ t)a− tb)+
t

1+ t
f (b)− f

(√
t |a−b|) .
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On the other hand, when t � −1, we have

b = −1
t

((1+ t)a− tb)+
1+ t

t
a.

By (2.1), we infer that

f (b) = f

(
−1

t
((1+ t)a− tb)+

1+ t
t

a

)

� −1
t

f ((1+ t)a− tb)+
1+ t

t
f (a)− f

(√
−(1+ t)|a−b|

)
.

This completes the proof. �

REMARK 2.2. The inequalities in Theorem 2.5 are equivalent to

(1− t) f (a)+ t f (b)+ t f
(√

t−1 |a−b|
)

� f ((1− t)a+ tb) ; t � 1,

and

(1− t) f (a)+ t f (b)+ (1− t) f
(√−t |a−b|)� f ((1− t)a+ tb); t � 0.

On the other hand, the following theorem presents the reversed version of Theorem
2.2, when t �∈ [0,1].

THEOREM 2.6. Let f : [0,∞) → [0,∞) be a 2-radical convex function. If (i) 0 <
a < b and t > 1 , or (ii) 0 < b < a and t < 0 , then for any t /∈ [0,1] ,

(1− t) f (a)+ t f (b) � (1− t)a2 + tb2

((1− t)a+ tb)2
f ((1− t)a+ tb).

Proof. Let g(x) = f (
√

x) , x ∈ [0,∞) . Then g is an increasing convex function

on [0,∞) and we have g(αx) � αg(x) ;0 < α � 1. We note that (1−t)a2+tb2

((1−t)a+tb)2
� 1 for

all a,b > 0 and t /∈ [0,1] , and we also have (1−t)a2+tb2

((1−t)a+tb)2
> 0 for (i) or (ii). Thus, by

Remark 2.2,

(1− t)g
(
a2)+ tg

(
b2)� g

(
(1− t)a2 + tb2)

= g

(
(1− t)a2 + tb2

((1− t)a+ tb)2
((1− t)a+ tb)2

)

� (1− t)a2 + tb2

((1− t)a+ tb)2
g
(
((1− t)a+ tb)2

)
.

This completes the proof. �
In the following remark, we discuss the constant appearing in Theorem 2.6.
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REMARK 2.3. We consider the function

f (t,x) :=
(1− t)x2 + t

{(1− t)x+ t}2 , x > 0, t /∈ [0,1].

We see f (t,1) = 1 trivially. Simple calculations show that

d f (t,x)
dt

=
(x−1)2{(1+ x)t− x}

{(x−1)t− x}3 .

Now we can easily verify the following.

(i) If 0 < x < 1 and t > 1, then f (t,x) is monotone decreasing when t > 1.

(ii) If x > 1 and t < 0, then f (t,x) is monotone increasing when t < 0.

We also have
d f (t,x)

dx
=

2t(1− t)(1− x)
{(t−1)x− t}3 .

Thus we also have the following:

(i) If 0 < x < 1 and t > 1, then f (t,x) is monotone increasing in 0 < x < 1.

(ii) If x > 1 and t < 0, then f (t,x) is monotone decreasing in x > 1.

3. Matrix inequalities via 2 -radical convex functions

In this section, we present improved matrix inequalities using 2-radical convex
functions. For this, we need to remind the reader of some terminologies. Let Mn

denote the algebra of all n× n complex matrices. A matrix A ∈ Mn is said to be
Hermitian if A∗ = A , where A∗ denotes the conjugate transpose of A . If A ∈ Mn is
such that 〈Ax,x〉 � 0 for all x ∈ Cn , then A is said to be positive semi-definite, and we
write A � 0. If A � 0 is invertible, then A is said to be positive definite, and we write
A > 0. When A,B ∈ Mn are Hermitian such that A−B � 0, then we write A � B.
In particular, we write A � M for the scalar M if A � MI , where I is the identity
matrix. When A ∈ Mn is Hermitian, we use the notation λk(A) to denote the k -th
largest eigenvalue of A . That is, λ1(A) � λ2(A) � · · · � λn(A).

If A,B ∈ Mn are such that ∑k
i=1 λi(A) � ∑k

i=1 λi(B) for all 1 � k � n , then we
write λ (A) ≺w λ (B). This is usually referred to as A being majorized by B .

While convex functions satisfy (1.2), they do not satisfy the matrix inequality
f ((1− t)A+ tB) � (1− t) f (A)+ t f (B) . Rather, they satisfy the weaker majorization
inequality [2]

λ ( f ((1− t)A+ tB))≺w λ ((1− t) f (A)+ t f (B)), 0 � t � 1 (3.1)

where A,B are Hermitian, with eigenvalues in the domain of f . When f is monotone
and convex, (3.1) was strengthened in [2, Theorem 2.9] as follows

λ ( f ((1− t)A+ tB)) � λ ((1− t) f (A)+ t f (B)), 0 � t � 1, (3.2)
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where we say that λ (X) � λ (Y ) for two Hermitian matrices X ,Y ∈ Mn if λ j(X) �
λ j(Y ) for each j = 1, · · · ,n.

The following theorem shows that radical convex functions satisfy better bounds
than (3.1) and (3.2). In the proof of this theorem, we need to recall that when f : J → R

is convex, and A ∈ Mn is Hermitian such that the spectrum of A is in J , then [5, p.
281]

f (〈Ax,x〉) � 〈 f (A)x,x〉 , (3.3)

for any unit vector x ∈ Cn . We also recall that if X ∈ Mn is Hermitian, then [5, p. 58]

λ j(X) = max
dim M= j

min{〈Xx,x〉 ,‖x‖ = 1,x ∈ M},1 � j � n, (3.4)

where the maximum is taken over all possible subspaces M of C
n with dimension j.

Finding possible relations among the eigenvalues of certain matrices has received
renowned attention in the literature. We refer the reader to [8] and the related references
therein. Now we improve (3.1) and (3.2).

THEOREM 3.1. Let f : [0,∞)→ [0,∞) be a 2-radical convex function, A,B∈Mn

be positive definite, and let 0 � t � 1 .

(i) If 0 < m′ � A � m � M � B � M′ , then

λ ( f ((1− t)A+ tB)) � ((1− t)m+ tM)2

(1− t)m2 + tM2 λ (((1− t) f (A)+ t f (B))) .

(ii) If 0 < m′ � B � m � M � A � M′ , then

λ ( f ((1− t)A+ tB)) � ((1− t)M + tm)2

(1− t)M2 + tm2 λ (((1− t) f (A)+ t f (B))) .

Proof. We prove the case 0 < m′ � A � m � M � B � M′ . Let λ1,λ2, . . . ,λn be
the eigenvalues of (1− t)A+ tB , for any 0 � t � 1. Then, for each 1 � j � n ,

λ j ( f ((1− t)A+ tB))
= max

dim M= j
min{〈 f ((1− t)A+ tB)x,x〉 ,‖x‖ = 1,x ∈ M} (by (3.4))

= f

(
max

dim M= j
min{〈((1− t)A+ tB)x,x〉 ,‖x‖ = 1,x ∈ M}

)
(since f is increasing)

= f

(
max

dim M= j
min{(1− t)〈Ax,x〉+ t 〈Bx,x〉 ,‖x‖ = 1,x ∈ M}

)
= max

dim M= j
min{ f ((1− t)〈Ax,x〉+ t 〈Bx,x〉) ,‖x‖ = 1,x ∈ M})

(since f is increasing)

� ((1− t)m+ tM)2

(1− t)m2 + tM2 max
dim M= j

min{(1− t) f (〈Ax,x〉)+ t f (〈Bx,x〉),‖x‖ = 1,x ∈ M}
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� ((1− t)m+ tM)2

(1− t)m2 + tM2 max
dim M= j

min{(1− t)〈 f (A)x,x〉+ t 〈 f (B)x,x〉 ,‖x‖ = 1,x ∈ M}

=
((1− t)m+ tM)2

(1− t)m2 + tM2 max
dim M= j

min{〈((1− t) f (A)+ t f (B))x,x〉 ,‖x‖ = 1,x ∈ M}

=
((1− t)m+ tM)2

(1− t)m2 + tM2 λ j ((1− t) f (A)+ t f (B))

where we obtained the first inequality using Corollary 2.1, the second inequality using
(3.3) and the last equality using (3.4). This completes the proof. �

Again, in [2], it has been shown that when f : [0,∞) → [0,∞) is convex such that
f (0) = 0, then

λ ( f (X∗AX)) ≺w λ (X∗ f (A)X) , (3.5)

for positive semi-definite matrix A , and any contraction X ∈ Mn , that is ‖X‖ � 1.
When f is monotone, the sign ≺w was replaced by � . We present a sharper bound
satisfied by the radical convex functions in the following.

THEOREM 3.2. Let f : [0,∞)→ [0,∞) be a 2-radical convex function, A � 0 and
let X ∈ Mn be a contraction. Then

λ ( f (X∗AX)) � ‖X‖2λ (X∗ f (A)X) .

Proof. Let λ1,λ2, . . . ,λn be the eigenvalues of X∗AX . Since f is increasing, we
have, for 1 � j � n ,

λ j ( f (X∗AX)) = f (λ j(X∗AX))

= f

(
max

dim M= j
min{〈X∗AXx,x〉 ,‖x‖ = 1,x ∈ M}

)
= max

dim M= j
min{ f (〈X∗AXx,x〉) ,‖x‖ = 1,x ∈ M}.

Now, we have

f (〈X∗AXx,x〉) = f (〈AXx,Xx〉)

= f

(
‖Xx‖2

〈
A

Xx
‖Xx‖ ,

Xx
‖Xx‖

〉)

� ‖Xx‖4 f

(〈
A

Xx
‖Xx‖ ,

Xx
‖Xx‖

〉)
(by (2.4))

� ‖Xx‖4
〈

f (A)
Xx

‖Xx‖ ,
Xx

‖Xx‖
〉

(by (3.3))

= ‖Xx‖2 〈X∗ f (A)Xx,x〉
� ‖X‖2〈X∗ f (A)Xx,x〉.
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Consequently,

λ j ( f (X∗AX)) = max
dim M= j

min{ f (〈X∗AXx,x〉) ,‖x‖ = 1,x ∈ M}

� ‖X‖2 max
dim M= j

min{〈X∗ f (A)Xx,x〉 : ‖x‖ = 1,x ∈ M}

= ‖X‖2λ j (X∗ f (A)X) (by (3.4)).

This completes the proof. �

Now we recall that if A,B ∈Mn are Hermitian, then we have the following equiv-
alence for some unitary matrix U ∈ Mn

λ (A) ≺w λ (B) ⇔ A � U∗BU.

Consequently, the inequality in Theorem 3.2 implies

f (X∗AX) � ‖X‖2U∗ (X∗ f (A)X)U, (3.6)

for some unitary matrix U ∈ Mn .
In the following, we present another interesting consequence of radical convexity

applied to matrix inequalities. In [3, (1)], it has been shown that if f : [0,∞)→ [0,∞) is
convex monotone such that f (0) = 0, and if A,B � 0, then two unitary matrices U,V
exist such that

U f (A)U∗ +V f (B)V ∗ � f (A+B). (3.7)

In the following, a better estimate can be derived using radical convexity. We notice
here that a 2-radical convex function is necessarily monotone [9, Proposition 1.1].

THEOREM 3.3. Let A,B ∈ Mn be positive semi-definite, and let f : [0,∞) →
[0,∞) be a 2 -radical convex function. Then there exist two unitary matrices U,V and
two contractions X ,Y such that

1

‖X‖2U∗ f (A)U +
1

‖Y‖2V ∗ f (B)V � f (A+B) .

Proof. Following [3], we can assume that A+B is invertible. Then

A = X (A+B)X∗ and B = Y (A+B)Y ∗

where X = A
1
2 (A+B)−

1
2 and Y = B

1
2 (A+B)−

1
2 are contractions. Hence, using (3.6)

there exist a unitary matrix U0 such that

f (A) = f (X (A+B)X∗)

� ‖X‖2U∗
0 X f (A+B)X∗U0

= ‖X‖2U∗
0 X( f (A+B))

1
2 ( f (A+B))

1
2 X∗U0.
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If we let T = X( f (A+B))
1
2 , the above inequality can be written as

f (A) � ‖X‖2U∗
0 (TT ∗)U0

= ‖X‖2U∗
0 (U∗

1 T ∗TU1)U0

= ‖X‖2(U1U0)∗( f (A+B))
1
2 X∗X( f (A+B))

1
2 (U1U0)

where we have used the fact that TT ∗ and T ∗T are unitary congruent. Here U1 is
unitary. Letting U = U∗

0U∗
1 , the above inequality is equivalent to

U∗ f (A)U � ‖X‖2 f
1
2 (A+B)X∗X f

1
2 (A+B). (3.8)

Similarly, there exists a unitary V such that

V ∗ f (B)V � ‖Y‖2 f
1
2 (A+B)Y ∗Y f

1
2 (A+B). (3.9)

Adding (3.8) and (3.9), we get

1

‖X‖2U∗ f (A)U +
1

‖Y‖2V ∗ f (B)V � f (A+B) ,

due to XX∗ +YY ∗ = I . This completes the proof. �

The fact that Theorem 3.3 refines (3.7) follows from the observation ‖X‖,‖Y‖ �
1.

4. Examples and comments

In this short section, we present the significance of the above results by comparing
the convex version with the radical convex version of the same inequality. This will
enable the reader to appreciate radical convexity better.

EXAMPLE 4.1. The function f (x) = x2 log(x+1) is 2-convex, hence it is convex.
Treating f as a convex function, we may apply (2.2) while treating it as a 2-radical
convex function allows us to use Theorem 2.1. It is clear that the inequality in this
theorem implies a better bound. In the following figure, we used a = 1,b = 4 and
plotted the left side in (2.2) in blue, the left side of the inequality in Theorem 2.1 in red,
and the common right side of both inequalities in green.

The graph shows how Theorem 2.1 provides a visual refinement of (2.2).

At this point, it is worthwhile mentioning that the inequality in Theorem 2.1 and
the inequality (2.2) become identical for the function f (x) = x2.
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Another visual explanation is given in the following example.

EXAMPLE 4.2. In this example, we plot the (1.2) together with the inequality in
Theorem 2.2. While it is clear that the latter inequality is better, here we give a visual
clarification for the reader. We also notice that the inequalities become identical when
f (x) = x2. In the following figure, we plot the left side of (1.2) in blue, the left side of
the inequality in Theorem 2.2, and the common right side of both inequalities in green
for the function f (x) = x2 log(x+1) , a = 1, b = 20.
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Now we look at (2.3) and Theorem 2.4.

EXAMPLE 4.3. Again, for the function f (x) = x2 log(x+1), we let a = 1. Then,
as functions of b , we plot the left side of (2.3) in blue, the left side of the inequality in
Theorem 2.4 in red and the common right side of both inequalities in green.
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As an upper bound of the green curve, the figure shows how much the red curve is
better than the blue one, thanks to radical convexity.

As a conclusion of the above three examples, we emphasize the following. When
dealing with a convex function and its inequalities, it is always better to test whether the
function is 2-radical convex or not. It is much better to employ inequalities governing
radical convex functions if it is radical convex. This will always lead to better and
sharper bounds!

Now moving to the matrix inequalities, the term ((1−t)m+tM)2

(1−t)m2+tM2 in Theorem 3.1
provides a refinement of (3.1). Direct calculus computations show how this quantity
can be small for larger values of M

m .
Now looking at (3.5) and Theorem 3.2, one can easily comprehend the way this

theorem sharpens (3.5). By making ‖X‖ so small, the inequality in the theorem pro-
vides a significant improvement of (3.5).

A similar argument can be said about the relation between (3.7) and Theorem 3.3.

Conclusion

The authors have recently defined radical convex functions. This paper employed
radical convexity to obtain several significant improvements in known inequalities. As a
conclusion of our discussion, we emphasize testing a given convex function for radical
convexity. If the given function is radical convex, then treating it this way provides
much sharper bounds than just convexity. This approach helps obtain stronger bounds
in many scenarios.
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