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POLYNOMIAL DIFFERENTIATION COMPOSITION OPERATORS FROM

Hp SPACES TO WEIGHTED–TYPE SPACES ON THE UNIT BALL

STEVO STEVIĆ ∗ AND SEI-ICHIRO UEKI

(Communicated by L. Mihoković)

Abstract. We characterize the boundedness, compactness, and estimate essential norm of a poly-
nomial differentiation composition operator from the Hardy space Hp to the weighted-type
spaces of holomorphic functions on the unit ball.

1. Introduction

Let N0 be the set of nonnegative integers. If k, l ∈ N0 , k � l , then the notation
j = k, l is an abbreviation for the notation j = k,k + 1, . . . , l . Let B = Bn ⊂ Cn be
the open unit ball, S = ∂B its boundary, dσ the normalized Lebesgue measure on
S , D = B1 , 〈z,w〉 the inner product in Cn , |z| = 〈z,z〉1/2 , Dj the partial derivative
operator

Dj f (z) =
∂ f
∂ z j

(z), j ∈ {1,2, . . . ,n},

S(Ω) the family of holomorphic self-maps of a domain Ω , H(Ω) the space of holomor-
phic functions on Ω ([22,23,48]), and Hp(B) = Hp , p > 0, the Hardy space consisting
of all f ∈ H(B) such that

‖ f‖Hp = sup
0�r<1

(∫
S

| f (rζ )|pdσ(ζ )
)1/p

< +∞,

(see, e.g., [23, 48]). For p � 1 it is a Banach space.
By W (Ω) we denote the family of positive and continuous functions on Ω and

call them weights. Let μ ∈W (B). The weighted-type space H∞
μ (B) = H∞

μ is defined
as follows

H∞
μ (B) :=

{
f ∈ H(B) : ‖ f‖H∞

μ := sup
z∈B

μ(z)| f (z)| < +∞
}

.
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For μ(z) ≡ 1 we get the space of bounded holomorphic functions H∞(B) = H∞ with
the supremum norm ‖ · ‖∞. The little weighted-type space H∞

μ,0(B) = H∞
μ,0 is a closed

subspace of H∞
μ consisting of f ∈ H(B) such that

lim
|z|→1

μ(z)| f (z)| = 0.

The spaces and operators on them and their generalizations have been studied a lot (see,
for instance, [2,10,16,21,29,30,33,36,37,38,39,43,45,50] and the related references
therein).

Beside the differentiation operator Df = f ′ , some attention to researchers at-
tracted the composition operator Cϕ f = f ◦ ϕ , where ϕ ∈ S(Ω) , the multiplication
operator Mu f = u f , where u ∈ H(Ω), as well as their products. Among the products
containing differentiation operators, the operators DCϕ and CϕD have been studied
among the first ones (see, e.g., [7, 14, 15, 19] and the references therein).

The following extension of the operator CϕD attracted also some attention

Dm
ϕ,u := MuCϕDm (1)

on subspaces of H(D) (see, e.g., [8,13,16,29,32,33,44,45,46,49,50,51,52,53,54,55]).
The following n -dimensional variant of operator (1)

ℜm
ϕ,u := MuCϕℜm, (2)

where ℜ is the radial differentiation operator was introduced in [34]. The investigation
was continued in [35, 38, 39].

Investigations of sums of the operators in (1) was initiated by Stević and Sharma.
The first published results can be found in [40] and [41]. An extension of the sum in [40]
and [41] appeared in [42]. The investigation was continued, for instance, in [1,5,6,9,17,
47]. For some other product type operators consult, e.g., [10,11,12,20,27,28,26,31,43]
and the related references therein.

Investigations of sums of the operators in (2) was suggested by Stević soon after
finishing [42], but the first published results can be found in recent paper [37]. Be-
side the sums he also suggested studying the polynomial differentiation composition
operator of the form

Pm
D,ϕ f :=

m

∑
j=0

u jCϕDlj · · ·Dl1 f , f ∈ H(B), (3)

where m ∈ N0 , u j ∈ H(B) , j = 0,m , and ϕ ∈ S(B) (see [36]).
Let X and Y be two normed spaces. A linear operator T : X →Y is called bounded

if there is M � 0 such that ‖T f‖Y � M‖ f‖X for every f ∈ X . If it maps bounded sets
in X into relatively compact ones, then it is called compact [4, 24]. The essential norm
of the operator T : X → Y is defined as follows

‖T‖e,X→Y = inf{‖T +K‖X→Y : K is compact from X to Y },
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where ‖ · ‖X→Y denote the operator norm. The operator T is compact if and only if
‖T‖e,X→Y = 0. We denote the unit ball in X by BX .

There has been a huge recent interest in investigating the boundedness, compact-
ness, and estimating essential norms of concrete operators on spaces of holomorphic
functions (see, e.g., [3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 18, 20, 26, 27, 28, 29, 30,
31,32,33,34,35,36,40,41,42,37,38,39,43,44,45,46,47,49,50,51,52,53,54,55] and
the references therein).

In this article we characterize the boundedness and compactness of the operator
Pm

D,ϕ : Hp →H∞
μ (orH∞

μ,0) , for p � 1, and estimate the essential norm of the operator in
the case p > 1.

Let C denote unspecified nonnegative constants. They can change from line to
line. The notation a � b (resp. a � b ) means that there is C > 0 such that a � Cb
(resp. a � Cb ). If a � b and b � a , then we use the notation a � b .

2. Auxiliary results

Our first auxiliary result is a characterization for the compactness. It is proved in
a standard way [25], because of which we omit the proof.

LEMMA 1. Let p � 1 , u j ∈ H(B) , j = 0,m, ϕ ∈ S(B) , μ ∈ W (B) and Y ∈
{H∞

μ (B),H∞
μ,0(B)}. Then the bounded operator Pm

D,ϕ : Hp(B) → Y is compact if and
only if for any bounded sequence ( fk)k∈N ⊂ Hp(B) such that fk → 0 uniformly on
compacts of B as k → +∞ , we have

lim
k→+∞

‖Pm
D,ϕ fk‖H∞

μ = 0.

The following folklore lemma is a consequence of Cauchy’s estimate for deriva-
tives and a known estimate for the point evaluation functional on Hp(B) ([23, 48]).

LEMMA 2. Let p > 0 and N ∈ N0 . Then for every multi-index �l = (l1, l2, . . . , l j)
such that |�l| = N , there is C�l > 0 such that∣∣∣∣∣∣

∂N f (z)

∂ zl1
k1

∂ zl2
k2
· · ·∂ z

l j
k j

∣∣∣∣∣∣ �
C�l ‖ f‖Hp

(1−|z|2) n
p +N

,

for every f ∈ Hp(B) and z ∈ B .

The following result, which is a consequence of [23, Proposition 1.4.10] and
monotonicity of the integral means, gives a known family of test functions in Hp space.

LEMMA 3. Let p > 0 , a � 0 and w ∈ B . Then the function

fw,a(z) =
(1−|w|2) n

p+a

(1−〈z,w〉) 2n
p +a

, (4)

belongs to Hp(B) .
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Moreover, we have

sup
w∈B

‖ fw,a‖Hp � 1. (5)

The following lemma is a known generalization of Lemma 1 in [18].

LEMMA 4. A closed set K in H∞
μ,0(B) is compact if and only if it is bounded and

lim
|z|→1

sup
f∈K

μ(z)| f (z)| = 0.

The following lemma gives a useful family of test functions.

LEMMA 5. Let p > 0 , m ∈ N and w ∈ B . Then for each s ∈ {0,1, . . . ,m} there

are c(s)
k , k = 0,m, such that the function

h(s)
w (z) =

m

∑
k=0

c(s)
k fw,k(z)

where fw,a is defined in (4), satisfies

Dls · · ·Dl1h
(s)
w (w) =

wl1wl2 · · ·wls

(1−|w|2) n
p +s

(6)

and
Dlt · · ·Dl1h

(s)
w (w) = 0, (7)

for every t ∈ {0,1, . . . ,m} \ {s} .
We also have

sup
w∈B

‖h(s)
w ‖Hp � 1. (8)

Proof. Let

hw(z) =
m

∑
k=0

ck fw,k(z).

and dk = 2n
p + k , k ∈ N0 . Then

Dlt · · ·Dl1hw(z) =
m

∑
k=0

ck
dkdk+1 · · ·dk+t−1wl1wl2 · · ·wlt (1−|w|2) n

p+k

(1−〈z,w〉)dk+t ,

for t ∈ N0, and consequently

Dlt · · ·Dl1hw(w) =
wl1wl2 · · ·wlt

(1−|w|2) n
p +t

m

∑
k=0

ck

t−1

∏
l=0

dk+l,

for t ∈ N0 .
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Since the determinant of the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
d0 d1 · · · dm
...

...
. . .

...
s−1

∏
k=0

dk

s−1

∏
k=0

dk+1 · · ·
s−1

∏
k=0

dk+m

...
...

. . .
...

m−1

∏
k=0

dk

m−1

∏
k=0

dk+1 · · ·
m−1

∏
k=0

dk+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1
...

cs

...

cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

is not equal to zero ( [30, Lemma 3]), we have that for any s ∈ {0,1, . . . ,m} , it has a

unique solution ck := c(s)
k , k = 0,m . It is easy to see that the function satisfying (6) and

(7) is given by h(s)
w (z) := ∑m

k=0 c(s)
k fw,k(z), and that (5) implies (8). �

3. Main results

The main results in the paper are presented in this section.

THEOREM 1. Let p � 1 , m∈N , μ ∈W (B) , u j ∈H(B) , j = 0,m, ϕ = (ϕ1, . . . ,ϕn)
∈ S(B) ,

min
j=1,n

inf
z∈B

|ϕ j(z)| � δ > 0. (10)

Then Pm
D,ϕ : Hp(B) → H∞

μ (B) is bounded if and only if

L j := sup
z∈B

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
< +∞, j = 0,m. (11)

Moreover, if the operator is bounded, then we have

‖Pm
D,ϕ‖Hp→H∞

μ �
m

∑
j=0

Lj. (12)

Proof. Suppose that Pm
D,ϕ : Hp(B) → H∞

μ (B) is bounded. Lemma 5 implies that

for each s ∈ {0,1, . . . ,m} and ϕ(w) ∈ B , there is h(s)
ϕ(w) ∈ Hp(B) such that

Dls · · ·Dl1h
(s)
ϕ(w)(ϕ(w)) =

ϕl1(w)ϕl2(w) · · ·ϕls(w)

(1−|ϕ(w)|2) n
p+s

, (13)

Dlt · · ·Dl1h
(s)
ϕ(w)(ϕ(w)) = 0, (14)
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for every t ∈ {0,1, . . . ,m} \ {s} . We also have supw∈B ‖h(s)
ϕ(w)‖Hp < +∞.

This together with the boundedness, (13), (14), as well as (10), implies

‖Pm
D,ϕ‖Hp→H∞

μ �‖Pm
D,ϕh(s)

ϕ(w)‖H∞
μ

=sup
z∈B

μ(z)
∣∣∣∣ m

∑
j=0

u j(z)Dlj · · · Dl1h
(s)
ϕ(w)(ϕ(z))

∣∣∣∣
�μ(w)

∣∣∣∣ m

∑
j=0

u j(w)Dlj · · · Dl1h
(s)
ϕ(w)(ϕ(w))

∣∣∣∣
=μ(w)|us(w)| |ϕl1(w)| · · · |ϕls(w)|

(1−|ϕ(w)|2) n
p +s

�δ s μ(w)|us(w)|
(1−|ϕ(w)|2) n

p +s
, (15)

for every w ∈ B , from which it easily follows that Ls < +∞ , s ∈ {0,1, . . . ,m} , and

Ls � ‖Pm
D,ϕ‖Hp→H∞

μ , s = 0,m,

and consequently

m

∑
j=0

Lj � ‖Pm
D,ϕ‖Hp→H∞

μ . (16)

If (11) holds, then Lemma 2 implies

μ(z)|Pm
D,ϕ f (z)| =μ(z)

∣∣∣∣ m

∑
j=0

u j(z)Dlj · · ·Dl1 f (ϕ(z))
∣∣∣∣

�C
m

∑
j=0

μ(z)|u j(z)|
(1−|ϕ(z)|2) n

p + j
‖ f‖Hp , (17)

from which along with (11), the boundedness of Pm
D,ϕ : Hp(B) → H∞

μ (B) follows, as
well as the asymptotic estimate

‖Pm
D,ϕ‖Hp→H∞

μ �
m

∑
j=0

Lj. (18)

Asymptotic estimates (16) and (18) imply (12). �
THEOREM 2. Let p � 1 , m∈N , u j ∈H(B) , j = 0,m, ϕ ∈ S(B) , and μ ∈W (B) .

Then Pm
D,ϕ : Hp(B) → H∞

μ,0(B) is bounded if and only if Pm
D,ϕ : Hp(B) → H∞

μ (B) is
bounded and

lim
|z|→1

μ(z)|u j(z)| = 0, j = 0,m. (19)
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Proof. If Pm
D,ϕ : Hp(B) → H∞

μ (B) is bounded and (19) holds, then for any polyno-
mial p we have

μ(z)
∣∣∣∣ m

∑
j=0

u j(z)Dlj · · ·Dl1 p(ϕ(z))
∣∣∣∣ �

m

∑
j=0

μ(z)|u j(z)||Dlj · · ·Dl1 p(ϕ(z))|

�
m

∑
j=0

μ(z)|u j(z)|‖Dlj · · ·Dl1 p‖∞,

from which together with (19) it easily follows that Pm
D,ϕ p ∈ H∞

μ,0(B) .
Since for every f ∈ Hp(B) there is a sequence of polynomials (pk)k∈N such that

lim
k→+∞

‖ f − pk‖Hp = 0,

and the following inequality holds

‖Pm
D,ϕ f −Pm

D,ϕ pk‖H∞
μ � ‖Pm

D,ϕ‖Hp→H∞
μ ‖ f − pk‖Hp ,

by letting k → +∞ , and using the fact that H∞
μ,0(B) = H∞

μ (B) , we have Pm
D,ϕ f ∈

H∞
μ,0(B) , from which the boundedness of Pm

D,ϕ : Hp(B) → H∞
μ,0(B) follows.

Suppose that Pm
D,ϕ : Hp(B) → H∞

μ,0(B) is bounded. Then Pm
D,ϕ : Hp(B) → H∞

μ (B)
is also such. Since f0(z) ≡ 1 ∈ Hp(B), we have Pm

D,ϕ( f0) ∈ H∞
μ,0(B), that is

lim
|z|→1

μ(z)|Pm
D,ϕ ( f0)(z)| = lim

|z|→1
μ(z)|u0(z)| = 0. (20)

Hence (19) holds for j = 0.
Suppose that for some s ∈ {1,2, . . . ,m−1} , (19) holds for 0 � j � s . Let

fs+1(z) = zl1zl2 · · · zls+1 .

Since fs+1 ∈ Hp(B), we have Pm
D,ϕ( fs+1) ∈ H∞

μ,0(B). Note that

fs+1(z) = zα1
1 · · ·zαn

n ,

where α j ∈ N0 , j = 1,n, are such that ∑n
j=1 α j = s+1. It is easy to see that for each

t ∈ N0 , 0 � t � s+1

Djt · · ·Dj1 fs+1(z) = γt z
α1−k1(t)
1 · · ·zαn−kn(t)

n ,

for some γt ∈ N , where ki(t) is the number of operators Di in the product Djt · · ·Dj1 .
Note that ∑n

j=1 ki(t) = t and

Djs+1 · · ·Dj1 fs+1(z) = γs+1, (21)

for some γs+1 ∈ N. Hence

lim
|z|→1

μ(z)|Pm
D,ϕ fs+1(z)| = lim

|z|→1
μ(z)

∣∣∣∣ s+1

∑
j=0

u j(z)γ j

n

∏
i=1

(ϕi(z))αi−ki( j)
∣∣∣∣ = 0,
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from which, along with |ϕi(z)| < 1, i = 1,n, αi � ki( j) , for i = 1,n , j = 0,s+1, the
hypothesis u j ∈ H∞

μ,0(B) , j = 0,s , (21) and γs+1 
= 0, we obtain

lim
|z|→1

μ(z)|us+1(z)| = 0.

Hence (19) holds for j = 0,m. �
THEOREM 3. Let p � 1 , m ∈ N , u j ∈ H(B) , j = 0,m, ϕ ∈ S(B) , μ ∈ W (B) ,

and (10) holds. Then the operator Pm
D,ϕ : Hp(B) → H∞

μ (B) is compact if and only if the
operator is bounded and the following condition holds

lim
|ϕ(z)|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
= 0, (22)

for j ∈ {0,1, . . . ,m}.

Proof. Suppose Pm
D,ϕ : Hp(B) → H∞

μ (B) is bounded and (22) holds. Then for
every ε > 0 there is δ ∈ (0,1) such that for |ϕ(z)| > δ

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
< ε, j = 0,m. (23)

Suppose that supk∈N ‖ fk‖Hp � M and

fk → 0 (24)

uniformly on compacts of B . Let Kδ = {z ∈ B : |ϕ(z)| > δ}. Then Lemma 2 and (23)
imply

‖Pm
D,ϕ fk‖H∞

μ =sup
z∈B

μ(z)
∣∣∣ m

∑
j=0

u j(z)Dlj · · ·Dl1 fk(ϕ(z))
∣∣∣

� sup
z∈Kδ

μ(z)
∣∣∣ m

∑
j=0

u j(z)Dlj · · ·Dl1 fk(ϕ(z))
∣∣∣

+ sup
z∈B\Kδ

μ(z)
∣∣∣ m

∑
j=0

u j(z)Dlj · · ·Dl1 fk(ϕ(z))
∣∣∣

�C
m

∑
j=0

sup
z∈Kδ

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
‖ fk‖Hp

+C
m

∑
j=0

sup
z∈B\Kδ

μ(z)|u j(z)||Dlj · · ·Dl1 fk(ϕ(z))|

�(m+1)MCε +C
m

∑
j=0

sup
z∈B\Kδ

μ(z)|u j(z)| sup
|ϕ(z)|�δ

∣∣Dlj · · ·Dl1 fk(ϕ(z))
∣∣

�(m+1)MCε +C
m

∑
j=0

‖u j‖H∞
μ sup
|w|�δ

∣∣Dlj · · ·Dl1 fk(w)
∣∣. (25)
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Condition (24) together with Cauchy’s estimate imply

Dlj · · ·Dl1 fk → 0, (26)

uniformly on compacts of B as k → +∞ , for j = 0,m.
Let

fs(z) =
s

∏
j=1

zl j , s = 0,m.

Arguing as in the proof of Theorem 2 we get u j ∈ H∞
μ , j = 0,m, from which along

with (26), the compactness of |w| � δ , and (25), we easily obtain

lim
k→+∞

‖Pm
D,ϕ fk‖H∞

μ = 0.

This fact with Lemma 1 implies the compactness of Pm
D,ϕMu : Hp(B) → H∞

μ (B) .
If Pm

D,ϕ : Hp(B) → H∞
μ (B) is compact, then it is bounded. If ‖ϕ‖∞ < 1, then (22)

holds.
Assume that ‖ϕ‖∞ = 1. Let (zk)k∈N ⊂ B be a sequence such that |ϕ(zk)| → 1 as

k → +∞ , and
h(s)

k := h(s)
ϕ(zk)

, s = 0,m,

where h(s)
w , s = 0,m , are as in Lemma 5. Then

sup
k∈N

‖h(s)
k ‖Hp < +∞, s = 0,m, (27)

and h(s)
k → 0 uniformly on compacts of B as k → +∞ , for s ∈ {0,1, . . . ,m} . This

along with Lemma 1 implies

lim
k→+∞

‖Pm
D,ϕh(s)

k ‖H∞
μ = 0, s = 0,m. (28)

From (15) we have

μ(zk)|us(zk)|
(1−|ϕ(zk)|2)

n
p +s

� ‖Pm
D,ϕh(s)

k ‖H∞
μ , s = 0,m. (29)

From (28) and (29), (22) easily follows. �
When p > 1, we can estimate the essential norm of the bounded operator Pm

D,ϕ :
Hp(B) → H∞

μ (B) as follows.

THEOREM 4. Let p > 1 , m ∈ N , u j ∈ H(B) , j = 0,m, ϕ ∈ S(B) , μ ∈ W (B) ,
and (10) holds. If the operator Pm

D,ϕ : Hp(B) → H∞
μ (B) is bounded then

‖Pm
D,ϕ‖e,Hp→H∞

μ � max
j=1,m

limsup
|ϕ(z)|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
. (30)
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Proof. Let take a sequence (zk)k∈N ⊂ B such that |ϕ(zk)| → 1 as k → +∞ , and

h(s)
k := h(s)

ϕ(zk)
, s = 0,m,

where h(s)
w , s = 0,m , are as in Lemma 5. Then (27) holds, and we have that h(s)

k → 0
uniformly on compacts of B as k → +∞ , for each s ∈ {0,1, . . . ,m} . Since the dual of

Hp(B) is known [48], it is easily verified that h(s)
k → 0 weakly in Hp(B) . Hence, we

have
lim

k→+∞
‖Kh(s)

k ‖H∞
μ = 0

for any compact operator K : Hp(B) → H∞
μ (B) .

From this, (13), (14) and (10) we have

‖Pm
D,ϕ‖e,Hp→H∞

μ � limsup
k→∞

(
‖Pm

D,ϕh(s)
k ‖H∞

μ −‖Kh(s)
k ‖H∞

μ

)

� limsup
k→∞

μ(zk)|us(zk)| |ϕl1(zk)| · · · |ϕls(zk)|
(1−|ϕ(zk)|2)

n
p +s

� δ s limsup
k→∞

μ(zk)|us(zk)|
(1−|ϕ(zk)|2)

n
p+s

for each s ∈ {0,1, . . . ,m} . This implies that the lower estimate in (30) holds.
Next we prove the upper estimate in (30). For fixed t, 0 < t < 1, put Ct f (z) =

f (tz) . Since Ct is a compact operator on Hp(B) , Pm
D,ϕCt is also compact from Hp(B)

into H∞
μ (B) . Thus we have

‖Pm
D,ϕ‖e,Hp→H∞

μ � sup
‖ f‖Hp�1

‖Pm
D,ϕ f −Pm

D,ϕCt f‖H∞
μ . (31)

Now we fix f ∈ Hp(B) with ‖ f‖Hp � 1 and R, 0 < R < 1. Note that for each z ∈ B it
holds that ∣∣Pm

D,ϕ f (z)−Pm
D,ϕCt f (z)

∣∣
=

∣∣∣∣∣
m

∑
j=0

u j(z)
{

Dlj · · ·Dl1 f (ϕ(z))− t jDl j · · ·Dl1 f (tϕ(z))
}∣∣∣∣∣ .

By combining this with Lemma 2, we have

sup
‖ f‖Hp�1

sup
|ϕ(z)|>R

μ(z)
∣∣Pm

D,ϕ f (z)−Pm
D,ϕCt f (z)

∣∣
�

m

∑
j=0

sup
|ϕ(z)|>R

μ(z)|u j(z)|
(1−|ϕ(z)|2) n

p + j

� max
j=0,m

sup
|ϕ(z)|>R

μ(z)|u j(z)|
(1−|ϕ(z)|2) n

p+ j
. (32)
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On the other hand, by using the mean value theorem and the Cauchy inequality, we
obtain

sup
|ϕ(z)|�R

∣∣∣Dlj · · ·Dl1 f (ϕ(z))−Dlj · · ·Dl1 f (tϕ(z))
∣∣∣

� sup
|ϕ(z)|�R

(1− t)|ϕ(z)| sup
|w|�R

∣∣∣∇(Dlj · · ·Dl1 f )(w)
∣∣∣

� R
1−R

(1− t) sup
|w|� 1+R

2

∣∣∣Dlj · · ·Dl1 f (w)
∣∣∣ .

Hence, Lemma 2 also shows that

sup
|ϕ(z)|�R

∣∣∣Dlj · · ·Dl1 f (ϕ(z))−Dlj · · ·Dl1 f (tϕ(z))
∣∣∣ � R(1− t)

(1−R)(1− ( 1+R
2 )2)

n
p + j

(33)

for each j ∈ 0,m . Furthermore it follows from Lemma 2 that

sup
|ϕ(z)|�R

∣∣∣Dlj · · ·Dl1 f (tϕ(z))− t jDl j · · ·Dl1 f (tϕ(z))
∣∣∣ � 1− t j

(1−R2)
n
p + j

(34)

for each j ∈ {0,1, . . . ,m} . Inequalities (33) and (34) give

sup
‖ f‖Hp�1

sup
|ϕ(z)|�R

μ(z)
∣∣Pm

D,ϕ f (z)−Pm
D,ϕCt f (z)

∣∣
�

m

∑
j=0

{
R(1− t)

(1−R)(1− ( 1+R
2 )2)

n
p+ j

+
1− t j

(1−R2)
n
p + j

}
sup

|ϕ(z)|�R
μ(z)|u j(z)|

→ 0, (35)

as t → 1. From (31), (32) and (35), we obtain

‖Pm
D,ϕ‖e,Hp→H∞

μ � max
j∈0,m

sup
|ϕ(z)|>R

μ(z)|u j(z)|
(1−|ϕ(z)|2) n

p + j
. (36)

Letting R → 1− in (36), we also obtain the upper estimate in (30). �
THEOREM 5. Let p � 1 , m ∈ N , u j ∈ H(B) , j = 0,m, ϕ ∈ S(B) , μ ∈ W (B) ,

and condition (10) holds. Then the operator Pm
D,ϕ : Hp(B)→H∞

μ,0(B) is compact if and
only if the operator is bounded and

lim
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
= 0, j = 0,m. (37)

Proof. Assume (37) holds. Then (11) holds. From this and Theorem 1 the bound-
edness of Pm

D,ϕ : Hp(B) → H∞
μ (B) easily follows. Letting |z| → 1 in (17) and using

(37), we have Pm
D,ϕ f ∈ H∞

μ,0(B) for any f ∈ Hp(B) , from which the boundedness of
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Pm
D,ϕ : Hp(B) → H∞

μ,0(B) follows. Taking the supremum in (17) over B and BHp(B) ,
and using (11), we obtain

sup
f∈BHp(B)

sup
z∈B

μ(z)|Pm
D,ϕ f (z)| � C

m

∑
j=0

Lj < +∞, (38)

where Lj , j = 0,m , are the quantities in (11). So {Pm
D,ϕ f : f ∈ BHp(B)} is a bounded

subset of H∞
μ,0(B) . Taking the supremum in (17) over BHp(B) and letting |z| → 1 we

have
lim
|z|→1

sup
f∈BHp(B)

μ(z)
∣∣Pm

D,ϕ f (z)
∣∣ = 0,

from which along with Lemma 4 the compactness of Pm
D,ϕ : Hp(B) →H∞

μ,0(B) follows.
If Pm

D,ϕ : Hp(B) → H∞
μ,0(B) is compact, then Pm

D,ϕ : Hp(B) → H∞
μ (B) is compact,

from which and Theorem 3 we get (23). From Theorem 2 we get (19), so that there is
η ∈ (0,1) such that

μ(z)|u j(z)| < ε(1− δ 2)
n
p + j, j = 0,m,

when η < |z| < 1, for ε chosen such that (23) holds, and consequently

μ(z)|u j(z)|
(1−|ϕ(z)|2) n

p + j
� μ(z)|u j(z)|

(1− δ 2)
n
p+ j

< ε, j = 0,m,

when |ϕ(z)| � δ and η < |z| < 1. This along with (23) imply (37). �

In addition to Theorem 5, we also obtain the estimate for the essential norm of the
operator Pm

D,ϕ : Hp(B) → H∞
μ,0(B) , in the case p > 1.

THEOREM 6. Let p > 1 , m ∈ N , u j ∈ H(B) , j = 0,m, ϕ ∈ S(B) , μ ∈ W (B) ,
and condition (10) holds. If the operator Pm

D,ϕ : Hp(B) → H∞
μ,0(B) is bounded then

‖Pm
D,ϕ‖e,Hp→H∞

μ ,0
� max

j=1,m
limsup
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
. (39)

Proof. By Theorem 2, the boundedness of Pm
D,ϕ : Hp(B) → H∞

μ,0(B) implies u j ∈
H∞

μ,0(B) for j = 0,m . There are two cases to be considered.
Case ‖ϕ‖∞ < 1 . In this case we see that Pm

D,ϕ : Hp(B) → H∞
μ,0(B) is compact, so

‖Pm
D,ϕ‖e,Hp→H∞

μ ,0
= 0. On the other hand, from ‖ϕ‖∞ < 1 and u j ∈ H∞

μ,0(B) we have
that the limit on the right-hand side of (39) equals to zero. Hence (39) holds in this
case.

Case ‖ϕ‖∞ = 1 . By Theorem 4, it is enough to prove that

limsup
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p+ j
= limsup

|ϕ(z)|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
, (40)
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for j = 0,m .
Note that

limsup
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p+ j
� limsup

|ϕ(z)|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p+ j
, j = 0,m. (41)

Assume that a sequence (zk)k∈N ⊂ B satisfies

limsup
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
= lim

k→∞

μ(zk)
∣∣u j(zk)

∣∣
(1−|ϕ(zk)|2)

n
p + j

, j = 0,m.

If supk∈N |ϕ(zk)| < 1, then since u j ∈ H∞
μ,0(B) , j = 0,m, we have that the first

limit in (41) is zero and consequently the second one.
If supk∈N |ϕ(zk)|= 1, then there is a subsequence (ϕ(zkl ))l∈N such that |ϕ(zkl )|→

1 as l → ∞ . Hence we obtain

limsup
|z|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
= lim

l→∞

μ(zkl )
∣∣u j(zkl )

∣∣
(1−|ϕ(zkl )|2)

n
p + j

� limsup
|ϕ(z)|→1

μ(z)
∣∣u j(z)

∣∣
(1−|ϕ(z)|2) n

p + j
. (42)

From (41) and (42), (40) follows, finishing the proof of the theorem. �
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[1] M. S. AL GHAFRI, J. S. MANHAS, On Stević-Sharma operators from weighted Bergman spaces to
weighted-type spaces, Math. Inequal. Appl. 23 (3) (2020), 1051–1077.

[2] K. D. BIERSTEDT, W. H. SUMMERS, Biduals of weighted Banach spaces of analytic functions, J.
Austral. Math. Soc. A 54 (1993), 70–79.
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Mathematical Institute of the Serbian Academy of Sciences

Knez Mihailova 36/III, 11000 Beograd, Serbia
and

Department of Medical Research
China Medical University Hospital, China Medical University

Taichung 40402, Taiwan, Republic of China
e-mail: sscite1@gmail.com

sstevic@ptt.rs

Sei-ichiro Ueki
Department of Mathematical Science

Faculty of Engineering, Yokohama National University
Hodogaya, Yokohama, 240–8501 Japan

e-mail: ueki-seiichiro-zg@ynu.ac.jp

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


