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EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SQUARE–MEAN

S–ASYMPTOTICALLY PERIODIC SOLUTIONS FOR

STOCHASTIC EVOLUTION EQUATION INVOLVING DELAY

QIANG LI ∗ AND XU WU

(Communicated by L. Mihoković)

Abstract. This paper studies the stochastic evolution equations with finite delay. By means of
the compact semigroup theory and Schauder fixed point theorem, the existence of square-mean
S -asymptotically periodic mild solutions is obtained under certain growth conditions. In addi-
tion, using the contraction mapping principle and Gronwall integral inequality, the uniqueness
and global asymptotic stability of the square-mean S -asymptotically periodic mild solutions are
discussed. Finally, an example is given to illustrate our abstract results.

1. Introduction

In this paper, we assume that H and K are two real separable Hilbert spaces
and L(K,H) denotes the space of all bounded linear operators from K into H . For
convenience, we will use the same notation (·, ·) to denote the inner product of H and
K , and use ‖ · ‖ to denote the norms in H , K and L(K,H) without any confusion.
Let (Ω,F ,P) be a complete probability space with some filtration {Ft}t�0 satisfying
the usual conditions, that is, the filtration is a right continuous increasing family and
F0 contains all P-null sets of F . Let {W(t) : t � 0} be a K -valued Wiener process
with a finite trace nuclear covariance operator Q � 0 defined on (Ω,F ,P) . Moreover,
we assume that L2(Ω,H) is the collection of all strong measurable square-integrable
H -valued random variables.

In this paper, we investigate the existence and global asymptotic behavior of square-
mean S -asymptotically periodic mild solutions of the following delayed stochastic evo-
lution equation {

u′(t)+Au(t) = F(t,ut)+G(t,ut)W′(t), t � 0,
u(t) = ϕ(t), t ∈ [−r,0], (1.1)
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where the state u(·) takes values in H ; A : D(A) ⊂ H → H is a closed linear operator
and T (t) (t � 0) is a C0 -semigroup generated by −A in H ; the nonlinear functions
F : R

+ ×B → L2(Ω,H) and G : R
+ ×B → L(K,H) are continuous functions which

will be appointed later; B is a phase space specified later, ϕ ∈ B is a given initial data.
For t � 0, ut ∈ B denotes a stochastic process defined by ut(s) = u(t + s) , s ∈ [−r,0] ,
here u : [−r,∞) → L2(Ω,H) is a random bounded continuous process.

Due to the application of stochastic differential equations in physics, chemistry, so-
cial sciences, big data, finance and other fields, more and more scholars pay attention to
the study of stochastic differential equations. Stochastic evolution equation theory is an
important branch of stochastic differential equations. Because many models with noise
or random interference in applied disciplines can be transformed into abstract stochas-
tic evolution equations, many researchers have studied the existence, uniqueness and
asymptotic stability of solutions for stochastic evolution equations, and obtained some
meaningful results(see [17, 10, 3, 5, 15, 40, 8, 1, 23, 16] and the references therein). In
addition, the evolution equation with delay has a wide background and important appli-
cation value in many disciplines such as chemistry, physics, biology, ecology, economy,
humanities and realistic mathematical models. Hence, the theory of delayed partial dif-
ferential equations, especially the existence and global asymptotic stability of solutions,
has attracted extensive attention in recent years (see [41, 18, 24, 25, 2, 34, 30, 4] and the
references therein).

Naturally, more and more researchers have paid their attentions to the existence,
uniqueness and global asymptotic behavior of solutions for stochastic evolution equa-
tions with delays and some interesting results have brought to our view (see [36,38,29,
45, 14, 37, 22, 42, 43, 28, 39, 9]). Taniguchi [38] studied the existence, uniqueness, p -th
moment and almost sure Lyapunov exponents of mild solutions for delayed stochas-
tic partial functional differential equations by means of analytic semigroups. Luo [29]
obtained the exponential stability of mild solutions for delayed stochastic partial dif-
ferential equations by applying the principle of compressed mapping and stochastic
integral techniques. Xu et al. [42] investigated square-mean exponential stability of
delayed stochastic partial differential equations by establishing differential inequality
with delays and utilizing the stochastic analysis technique. Shen and Ren [37] proved
an existence and uniqueness result of the mild solution for a neutral stochastic partial
differential equations with finite delay driven by Rosenblatt process in a real separa-
ble Hilbert space. Zhang et al. [45] established the convergence for a class of highly
nonlinear stochastic differential equations with delay under the local Lipschitz condi-
tion plus Khasminskii-type condition. Gao and Li [14] obtained the existence and the
mean-square exponential stability of mild solutions for impulsive stochastic partial dif-
ferential equations with varying-time delays by means of the Hausdorff measure of non-
compactness and some inequality technique. Hu and Huang [22] investigated the delay
dependent stability of the semidiscrete and fully discrete systems for a linear stochas-
tic delay partial differential equation by using the standard central difference scheme
in space and the stochastic exponential Euler method in time. Yan and Han [43] ob-
tained the globally exponential stability of p -mean piecewise pseudo almost periodic
mild solutions of impulsive partial stochastic differential equations with infinite delay
in Hilbert spaces by means of operator semigroups theory and stochastic analysis tech-
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niques.
On the other hand, the periodic problem of partial differential equations is also

an important research field in recent years. However, in real life, many phenomena
observed by people do not meet the strict periodicity due to many interference factors.
To better study these periodic phenomena and characterize these mathematical models,
many researchers have some generalized periodic functions, such as almost periodic
functions, asymptotic periodic functions, asymptotic almost periodic functions, pseudo
almost periodic functions and S -asymptotic periodic functions and so on. It is worth
noting that, S -asymptotically period function between asymptotically periodic func-
tion and asymptotically almost periodic function, is a more general approximate period
function, which was first proposed and established by Henrı́quez et al. [20]. The exis-
tence and uniqueness of S -asymptotically periodic solutions for differential equations
have been investigated in [19, 20, 32, 33, 11, 12, 13, 35, 6].

However, the existence of S -asymptotically periodic solutions for the stochastic
evolution equations with delay have not received much attention, specially, most of the
existing literatures assume that the nonlinear terms satisfy the Lipschitz condition to
get the existence of global mild solution. Furthermore, the global asymptotic behavior
of S -asymptotically ω -periodic solutions for delayed stochastic evolution equations
is also an untreated topic in the literatures. Thus, inspired by the above literature,
we investigate the existence and global asymptotic behavior of the S -asymptotically
periodic mild solutions for the delayed stochastic evolution equation.

This article is organized as follows. Section 2 introduces some notions, definitions,
and preliminary facts. In section 3, based on the Schauder fixed point theorem, the
existence of the square-mean S -asymptotically periodic mild solution of the equation
(1.1) is obtained in the case that the corresponding linear partial differential operator
generates a compact semigroup, which is very convenient for equations with compact
resolvent. Specially, we only assume that the nonlinear functions satisfy some growth
conditions that are weaker than Lipschitz conditions. In Section 4, the uniqueness and
global exponential stability of the square-mean S -asymptotically ω -periodic mild so-
lution of the equation (1.1) are considered by using the principle of contraction mapping
and Gronwall integral inequality. Since our condition involves the growth index of C0 -
semigroup or the first eigenvalue of the infinitesimal generator of compact semigroup,
our results improve and generalize the conclusions in the existing literature. Finally, an
example is given to illustrate our abstract results.

2. Preliminaries

In this paper, we always assume that H and K are two real separable Hilbert
spaces. For convenience, the same notations ‖ · ‖ and (·, ·) are used to represent the
norms and the inner products in H and K , respectively. Let L(H) be the Banach space
of all bounded linear operators with the topology defined by operator norm on H . Let
A : D(A) ⊂ H → H be a closed linear operator and T (t) (t � 0) is a C0 -semigroup
generated by −A in H . From [31] it follows that there are constants M � 1 and ν ∈ R

such that
‖T (t)‖ � Meνt , t � 0. (2.1)
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The growth exponent of the C0 -semigroup T (t) (t � 0) is given by

ν0 = inf{ν ∈ R| There exists M � 1 such that ‖T (t)‖ � Meνt , ∀t � 0}. (2.2)

The semigroup T (t) (t � 0) is called exponentially stable whenever ν0 < 0. Next, we
give the definition of compact semigroups. A C0 -semigroup T (t) is said to be compact
if T (t) is compact for each t > 0.

As is known to all, the compact semigroup is continuous in the uniform operator
topology, hence ν0 can also be determined by σ(A) (the spectrum of A)

ν0 = − inf{Reλ | λ ∈ σ(A)}. (2.3)

Let (Ω,F ,P) be a complete probability space with some filtration {Ft}t�0 satis-
fying the usual conditions, that is, the filtration is a right continuous increasing family
and F0 contains all P-null sets of F . Let {W(t) : t � 0} be a K -valued Wiener
process defined on (Ω,F ,P) with a finite trace nuclear covariance operator Q � 0 sat-
isfying Tr(Q) = ∑∞

k=1 λk = λ < ∞ and Qek = λkek,k ∈ N , where {ek : k ∈ N} is a
complete orthonormal basis in K . Assume that {Wk,k ∈ N} is a series of independent
one-dimensional standard Wiener processes defined on (Ω,F ,P) , then

W(t) =
∞

∑
k=1

√
λkWk(t)ek, t � 0.

For φ ,ψ ∈ L(K,H) , deonte (φ ,ψ) = Tr(φQψ∗) , where ψ∗ is the adjoint of the oper-
ator ψ . Hence, for every bounded operator ψ ∈ L(K,H) , one can find

‖ψ‖2
Q = Tr(ψQψ∗) =

∞

∑
k=1

‖
√

λkψek‖2.

We use the collection of all strongly-measurable, square-integrable H -valued ran-
dom variables to represent L2(Ω,H) , which is a Banach space with the norm

‖x(·)‖L2 = (E‖x(·,ϖ)‖2)
1
2 , ϖ ∈ Ω,

where E(·) is the expectation defined by Ex =
∫

Ω x(ϖ)dP . Let

L2
0(Ω,H) := {x ∈ L2(Ω,H)| x is F0−measurable},

then L2
0(Ω,H) is a subspace of L2(Ω,H) .

Specially, according to [10, Lemma 7.7], one can obtain the following result.

LEMMA 2.1. Let p � 2 . For any t > 0 , if L(K,H)-valued predictable process Φ
satisfies E

∫ t
0 ‖Φ(s)‖2ds < ∞ then

sup
0�s�t

E

∥∥∥∫ s

0
Φ(τ)dW(τ)

∥∥∥p
�

( p(p−1)
2

) p
2
(∫ t

0
(E‖Φ(s)‖p)

2
p ds

) p
2
. (2.4)

A stochastic process u : [0,∞) → L2(Ω,H) is called randomly bounded if
supt�0 E‖u(t)‖2 < ∞ , and randomly continuous if limt→s E‖u(t)− u(s)‖2=0 for all
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t,s � 0. We denote by Csb the Banach space of all stochastically bounded continuous
processes from [0,∞) into L2(Ω,H) with the norm ‖u‖C=(supt�0 E‖u(t)‖2)

1
2 , and de-

note by B=C([−r,0],L2
0(Ω,H)) the Banach space of all stochastically bounded contin-

uous processes from [−r,0] into L2
0(Ω,H) with the norm ‖ϕ‖B=(sups∈[−r,0] E‖ϕ(s)‖2)

1
2 ,

r > 0 is a constant.

DEFINITION 2.2. Let u ∈Csb , if there exists ω > 0 such that lim
t→∞

E‖u(t + ω)−
u(t)‖2 = 0, then u is said to be a square-mean S -asymptotically ω -periodic function.
Here, ω is said to be an asymptotic periodic of u .

Let SAPω(L2(Ω,H)) ⊂ Csb be composed of all square mean S -asymptotic ω -
periodic stochastic processes with uniform convergence norm ‖ · ‖C . From the [20], it
follows that SAPω(L2(Ω,H)) is a Banach space. If u ∈ SAPω(L2(Ω,H)) , then we can
easily test and verify that the function t → ut ∈ SAPω(B)(see [26]).

DEFINITION 2.3. Let ϕ ∈ B . An H -valued stochastic process u : [−r,∞)→ H is
said to be a mild solution of the problem (1.1) if

(1) u(t) is an Ft -adapted stochastic process for t � 0;

(2) u(t) ∈ H has cádlág paths on t ∈ [0,∞) almost surely;

(3) u(t) = ϕ(t) for t ∈ [−r,0] , and

u(t) = T (t)ϕ(0)+
∫ t

0
T (t−s)F(s,us)ds+

∫ t

0
T (t−s)G(s,us)dW(s) for t � 0. (2.5)

Moreover, if u|t�0 ∈ SAPω(L2(Ω,H)) , then u is said to be an S -asymptotically ω -
periodic mild solution of the problem (1.1).

DEFINITION 2.4. Assume that u is a square-mean S -asymptotically ω -periodic
mild solution of the problem (1.1) corresponding to the initial conditions u(s) = ϕ(s)
for s ∈ [−r,0] , and v(t) is a mild solution of the problem (1.1) corresponding to the
initial conditions v(s) = φ(s), s ∈ [−r,0]. If there exist positive constants M and α ,
such that

E‖u(t)− v(t)‖2 � M‖ϕ −φ‖2
B · e−αt , t � 0,

then the square-mean S -asymptotically ω -periodic mild solution u is said to be glob-
ally exponentially stable.

LEMMA 2.5. ([44] Schauder fixed point theorem) Let X be a Banach space and
D be a bounded convex closed set in X . If Q : D → D is completely continuous, then
Q has a fixed point in D.

3. Existence result

Assume that h : R
+ → R

+ is a continuous and nondecreasing function satisfying
h(t) � 1 for all t ∈ R

+ and lim
t→∞

h(t) = ∞ . Introduce the space

Ch :=
{

u ∈C([0,∞),L2(Ω,H))
∣∣∣ lim
t→∞

E‖u(t)‖2

h(t)
= 0

}



386 Q. LI AND X. WU

as the space of (stochastically continuous) processes with the finite squared norm

‖u‖2
h = sup

t�0

E‖u(t)‖2

h(t)
.

Obviously, Ch is a Banach space. Note that since h(t) � 1, we have that ‖u‖h � ‖u‖C ,
and therefore Csb ⊂Ch .

From [7, 21], one can easily verify the following result.

LEMMA 3.1. A set D ⊂Ch is relatively compact if the following conditions hold

(i) lim
t→∞

1
h(t)E‖u(t)‖2 = 0 uniformly for every u ∈ D;

(ii) for any constant a > 0 , the functions in D are equicontinuous in [0,a];

(iii) D(t) = {u(t) : u ∈ D} is relatively compact in L2(Ω,H) for every t � 0 .

THEOREM 3.2. Assume that A : D(A) ⊂ H → H is a closed linear operator and
−A generates an exponentially stable compact semigroup T (t) (t � 0) in Hilbert space
H , whose growth exponent denotes ν0 < 0 . Let functions F(t, ·) : B → L2(Ω,H) and
G(t, ·) : B → L(K,H) be continuous for a.e. t � 0 , which satisfy the following condi-
tions

(H1) there exists ω > 0 such that

lim
t→∞

E‖F(t + ω ,φ)−F(t,φ)‖2 = 0, lim
t→∞

E‖G(t + ω ,φ)−G(t,φ)‖2 = 0,

uniformly for φ ∈ B ,

(H2) for all t � 0 and φ ∈B , there exist nonnegative constants a1,b1 and positive
constants a0,b0 such that

E‖F(t,h
1
2 (t)φ)‖2 � a1‖φ‖2

B +a0, E‖G(t,h
1
2 (t)φ)‖2 � b1‖φ‖2

B +b0,

then for a given ϕ ∈B , the problem (1.1) has at least one square-mean S-asymptotically
ω -periodic mild solution u satisfying u|t�0 ∈ SAPω(L2(Ω,H)) and u(t) = ϕ(t) for
t ∈ [−r,0] provided that

3M2a1

|ν0|2 +
3M2b1

2|ν0| < 1. (3.1)

Proof. For a given ϕ ∈B , u∈Ch , we define the function u[ϕ ] : [−r,∞)→ L2(Ω,H)
as follows:

u[ϕ ](t) =

{
u(t), for t � 0

ϕ(t), for t ∈ [−r,0].

We denote
Cϕ,h = {u ∈Ch : u(0) = ϕ(0)}. (3.2)

Then Cϕ,h is a closed subspace of Ch .



EXISTENCE FOR STOCHASTIC EVOLUTION EQUATION INVOLVING DELAY 387

Define an operator Q on Cϕ,h by

Qu(t) = T (t)ϕ(0)+
∫ t

0
T (t − s)F(s,u[ϕ ]s)ds+

∫ t

0
T (t − s)G(s,u[ϕ ]s)dW(s), (3.3)

for each u ∈Cϕ,h and t � 0. From continuity of the functions F,G and the condition
(H2), one can easily verify that Q : Cϕ,h → Cϕ,h is well defined. In fact, for every
u ∈Cϕ,h and t � 0, one can see E‖u(t)‖2 � h(t)‖u‖2

h and

‖u[ϕ ]t‖2
B = sup

s∈[−r,0]
E‖u[ϕ ](t + s)‖2

� sup
s∈[−r,0]

E‖ϕ(s)‖2 + sup
t�0

E‖u(t)‖2

� h(t)‖ϕ‖2
B +h(t)‖u‖2

h (3.4)

By the condition (H2), the Hölder inequality, (2.1) and (2.4), we obtain

E‖Qu(t)‖2

� 3E‖T(t)ϕ(0)‖2 +3E
∥∥∥∫ t

0
T (t − s)F(s,u[ϕ ]s)ds

∥∥∥2

+3E
∥∥∥∫ t

0
T (t − s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 3M2
E‖ϕ(0)‖2 +3

∫ t

0
‖T (t− s)‖ds

∫ t

0
‖T (t− s)‖ ·E‖F(s,u[ϕ ]s)‖2ds

+3
∫ t

0
‖T (t− s)‖2 ·E‖G(s,u[ϕ ]s)‖2ds

� 3M2‖ϕ‖2
B +3

∫ t

0
‖T (t − s)‖ds

∫ t

0
‖T (t− s)‖

(
a1

‖u[ϕ ]s‖2
B

h(s)
+a0

)
ds

+3
∫ t

0
‖T (t− s)‖2

(
b1

‖u[ϕ ]s‖2
B

h(s)
+b0

)
ds

� 3M2‖ϕ‖2
B +3

(∫ t

0
Meν0(t−s)ds

)2(
a1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+a0

)

+3M2
∫ t

0
e2ν0(t−s)ds

(
b1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+b0

)

� 3M2(1+
a1

|ν0|2 +
b1

2|ν0| )‖ϕ‖2
B +

3M2

|ν0|2 (a1‖u‖2
h +a0)+

3M2

2|ν0| (b1‖u‖2
h +b0).

Therefore, we have

1
h(t)

E‖Qu(t)‖2

� 3M2

h(t)

(
(1+

a1

|ν0|2 +
b1

2|ν0| )‖ϕ‖2
B +

1
|ν0|2 (a1‖u‖2

h +a0)+
1

2|ν0| (b1‖u‖2
h +b0)

)
→ 0, as t → ∞, (3.5)
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which implies that Q : Cϕ,h →Cϕ,h is well defined. Therefore, according to (3.2) and
Definition 2.3, we can assert u is the fixed point of operator Q , then u[ϕ ] is the mild
solution for the problem (1.1) on [−r,∞) . Moreover, if u∈ SAPω(L2(Ω,H)) , then u[ϕ ]
is the square-mean S -asymptotically ω -periodic mild solution of the problem (1.1).

Next, we complete the proof in five steps.

Step 1. Q is continuous on Cϕ,h .
Let the sequence {u(n)} ⊂Cϕ,h and u(n) → u in Cϕ,h as n → ∞ , then u(n)[ϕ ]t →

u[ϕ ]t(n → ∞) for any t ∈ [0,∞) . By the continuity of F and G , for any ε > 0 and
large enough n , one can see

E‖F(t,u(n)[ϕ ]t)−F(t,u[ϕ ]t)‖2 � |ν0|2ε
M2 , a.e. t � 0. (3.6)

E‖G(t,u(n)[ϕ ]t)−G(t,u[ϕ ]t)‖2 � 2|ν0|ε
M2 , a.e. t � 0. (3.7)

Hence, by the dominated convergence theorem and (3.6), (3.7), one can find

E‖Qu(n)(t)−Qu(t)‖2

� 2E

∥∥∥∫ t

0
T (t − s) · (F(s,u(n)[ϕ ]s)−F(s,u[ϕ ]s))ds

∥∥∥2

+2E

∥∥∥∫ t

0
T (t− s) · (G(s,u(n)[ϕ ]s)−G(s,u[ϕ ]s))dW(s)

∥∥∥2

� 2
∫ t

0
‖T (t − s)‖ds

∫ t

0
‖T (t− s)‖ ·E‖F(s,u(n)[ϕ ]s)−F(s,u[ϕ ]s)‖2ds

+2
∫ t

0
‖T (t− s)‖2 ·E‖G(s,u(n)[ϕ ]s)−G(s,u[ϕ ]s)‖2ds

� 2
(∫ t

0
Meν0(t−s)ds

)2 · |ν0|2ε
M2 +2M2

∫ t

0
e2ν0(t−s)ds · 2|ν0|ε

M2

� 2 · M2

|ν0|2 · |ν0|2ε
M2 +2 · M2

2|ν0| ·
2|ν0|ε
M2

� 4ε.

Thus

‖Qu(n)−Qu‖h =
(

sup
t�0

1
h(t)

E‖Qu(n)(t)−Qu(t)‖2
) 1

2 → 0, as n → ∞,

which implies that the operator Q : Cϕ,h →Cϕ,h is continuous.
For any R > ‖ϕ‖2

B , let

ΘR := {u ∈Cϕ,h| ‖u‖2
h � R−‖ϕ‖2

B}. (3.8)

Clearly, ΘR is a closed ball in Cϕ,h .
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Step 2. There is a constant R0 > 0 such that Q(ΘR0) ⊂ ΘR0 .
If it was invalid, then there exist u ∈ ΘR such that ‖Qu‖2

h > R−‖ϕ‖2
B for any

R > ‖ϕ‖2
B . By the Hölder inequality, the condition (H2), one can see for t � 0,

E‖(Qu)(t)‖2

h(t)
� E‖(Qu)(t)‖2

� 3E‖T (t)ϕ(0)‖2 +3E

∥∥∥∫ t

0
T (t− s)F(s,u[ϕ ]s)ds

∥∥∥2

+3E

∥∥∥∫ t

0
T (t − s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 3M2
E‖ϕ(0)‖2 +3

∫ t

0
‖T (t − s)‖ds

∫ t

0
‖T (t− s)‖ ·E‖F(s,u[ϕ ]s)‖2ds

+3
∫ t

0
‖T (t − s)‖2 ·E‖G(s,u[ϕ ]s)‖2ds

� 3M2‖ϕ‖2
B +3

(∫ t

0
Meν0(t−s)ds

)2(
a1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+a0

)

+3M2
∫ t

0
e2ν0(t−s)ds

(
b1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+b0

)

� 3M2‖ϕ‖2
B +

3M2

|ν0|2 (a1R+a0)+
3M2

2|ν0| (b1R+b0),

thus,

R−‖ϕ‖2
B � 3M2‖ϕ‖2

B +
3M2

|ν0|2 (a1R+a0)+
3M2

2|ν0| (b1R+b0). (3.9)

Dividing both sides of (3.9) by R and taking the lower limit as R → ∞ , and combining
with (3.1), one can get that

1 � 3M2a1

|ν0|2 +
3M2b1

2|ν0| < 1,

which is a contradiction. Therefore, there is a constant R0 > 0 such that Q(ΘR0)⊂ΘR0 .
Moreover, according to the property of the function h(t) , it is easy to see that for

any u ∈ ΘR0

lim
t→∞

1
h(t)

E‖Qu(t)‖2 = 0. (3.10)

Step 3. The set Λ(t) := {Qu(t)|u∈ΘR0 ,t ∈ [0,a]} is relatively compact in L2(Ω,H)
for every a ∈ (0,∞) .

Define a set

Λε(t) := {Qεu(t)|u ∈ ΘR0 ,t ∈ [0,a],ε ∈ (0, t)},



390 Q. LI AND X. WU

where

Qεu(t) = T (t)ϕ(0)+
∫ t−ε

0
T (t − s)F(s,u[ϕ ]s)ds

+
∫ t−ε

0
T (t− s)G(s,u[ϕ ]s)dW(s)

= T (t)ϕ(0)+T (ε)
∫ t−ε

0
T (t− ε − s)F(s,u[ϕ ]s)ds

+T (ε)
∫ t−ε

0
T (t − ε − s)G(s,u[ϕ ]s)dW(s).

Since the semigroup T (t) (t � 0) is compact, the set Λε(t) is relatively compact in
L2(Ω,H) for every ε ∈ (0,t) . Futhermore, for every u ∈ ΘR0 , t ∈ [0,a] , by the Hölder
inequality, (2.4) and the condition (H2), one can obtain

E‖Qu(t)−Qεu(t)‖2

= E

∥∥∥∫ t

t−ε
T (t− s)F(s,u[ϕ ]s)ds+

∫ t

t−ε
T (t− s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 2E

∥∥∥∫ t

t−ε
T (t− s)F(s,u[ϕ ]s)ds

∥∥∥2
+2E

∥∥∥∫ t

t−ε
T (t − s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 2M2
(∫ t

t−ε
eν0(t−s)ds

)2(
a1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+a0

)

+2M2
∫ t

t−ε
e2ν0(t−s)ds

(
b1 sup

s�0

‖u[ϕ ]s‖2
B

h(s)
+b0

)

� 2M2(a1(‖ϕ‖2
B +‖u‖2

h)+a0)
(∫ t

t−ε
eν0(t−s)ds

)2

+2M2(b1(‖ϕ‖2
B +‖u‖2

h)+b0)
∫ t

t−ε
e2ν0(t−s)ds

� 2M2(a1R0 +a0)
(∫ t

t−ε
eν0(t−s)ds

)2

+2M2(b1R0 +b0)
∫ t

t−ε
e2ν0(t−s)ds

→ 0 as ε → 0.

Therefore, the set Λ(t) ⊂ L2(Ω,H) is relatively compact for any t ∈ [0,a] .

Step 4. We show that Q(ΘR0) is a family of locally equicontinuous functions in
Cϕ,h .

For each u ∈ ΘR0 and 0 � t1 < t2 � a , from (3.3), it follows that

E‖Qu(t2)−Qu(t1)‖2

� 5E‖T (t2)ϕ(0)−T(t1)ϕ(0)‖2

+5E

∥∥∥∫ t1

0
(T (t2− s)−T(t1 − s))F(s,u[ϕ ]s)ds

∥∥∥2
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+5E

∥∥∥∫ t2

t1
T (t2− s)F(s,u[ϕ ]s)ds

∥∥∥2

+5E

∥∥∥∫ t1

0
(T (t2− s)−T(t1 − s))G(s,u[ϕ ]s)dW(s)

∥∥∥2

+5E

∥∥∥∫ t2

t1
T (t2− s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

:= J1 + J2 + J3 + J4 + J5.

Next, we check that Ji → 0 independently of u ∈ ΘR0 as t2 − t1 → 0, i = 1,2,3,4,5.
By the equicontinuity of semigroup ‖T (t)‖(t � 0) , one can obtain

J1 = 5E‖T (t2)ϕ(0)−T(t1)ϕ(0)‖2

� 5‖T (t2)−T (t1)‖2‖ϕ‖2
B

� 5‖T (t2 − t1)− I‖2‖T (t1)‖2‖ϕ‖2
B

→ 0 as t2− t1 → 0.

From the condition (H2), there exist positive constants Mf ,Mg such that for all u∈ΘR0

sup
t�0

E‖F(t,u[ϕ ]t)‖2 � Mf , sup
t�0

E‖G(t,u[ϕ ]t)‖2 � Mg. (3.11)

For t1 = 0 and t2 > 0, it is easy to see that J2 = 0. For t1 > 0 and taking ε > 0 small
enough which is independent of t1 and t2, by (3.11), and the Hölder inequality, one can
get that

J2 = 5E

∥∥∥∫ t1

0
(T (t2 − s)−T(t1− s))F(s,u[ϕ ]s)ds

∥∥∥2

� 5
∫ t1

0
‖T (t2 − s)−T(t1− s)‖ds

×
∫ t1

0
‖T (t2 − s)−T(t1− s)‖E‖F(s,u[ϕ ]s)‖2ds

� 10MMf

|ν0|
(∫ t1−ε

0
‖T (t2 − s)−T(t1− s)‖ds

+
∫ t1

t1−ε
‖T (t2 − s)−T(t1− s)‖ds

)

� 10MMf

|ν0|
(
‖T (t2− t1 + ε)−T(ε)‖

∫ t1−ε

0
‖T (t1− s− ε)‖ds

+
∫ t1

t1−ε
(‖T (t2 − s)‖+‖T(t1− s)‖)ds

)

� 10MMf

|ν0|
( M
|ν0|‖T (t2− t1 + ε)−T(ε)‖+2Mε

)
→ 0 as t2− t1 → 0, ε → 0.
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By (3.11), and the Hölder inequality, one can obtain

J3 = 5E

∥∥∥∫ t2

t1
T (t2− s)F(s,u[ϕ ]s)ds

∥∥∥2

� 5
∫ t2

t1
‖T (t2 − s)‖ds

∫ t2

t1
‖T (t2− s)‖E‖F(s,u[ϕ ]s)‖2ds

� 5Mf

(∫ t2

t1
‖T (t2 − s)‖ds

)2

� 5M2Mf (t2− t1)2

→ 0 as t2 − t1 → 0.

On the other hand, for t1 = 0 and t2 > 0, it is easy to see that J4 = 0. For t1 > 0 and
ε > 0 small enough, by (2.4) and (3.11), one can see that

J4 = 5E

∥∥∥∫ t1

0
(T (t2− s)−T(t1 − s))G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 5
∫ t1

0
‖T (t2− s)−T(t1 − s)‖2

E‖G(s,u[ϕ ]s)‖2ds

� 5Mg

(∫ t1−ε

0
‖T (t2 − s)−T(t1− s)‖2ds

+
∫ t1

t1−ε
‖T (t2 − s)−T(t1 − s)‖2ds

)

� 5Mg

(
‖T (t2− t1 + ε)−T(ε)‖2

∫ t1−ε

0
‖T (t1 − s− ε)‖2ds

+
∫ t1

t1−ε
(‖T (t2 − s)‖2 +‖T(t1− s)‖2)ds

)

� 5M2Mg

( 1
2|ν0| ‖T (t2 − t1 + ε)−T(ε)‖2 +2ε

)
→ 0 as t2− t1 → 0, ε → 0.

And from (2.4), (3.11), one can obtain

J5 = 5E

∥∥∥∫ t2

t1
T (t2− s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 5
∫ t2

t1
‖T (t2 − s)‖2

E‖G(s,u[ϕ ]s)‖2ds

� 5M2Mg(t2 − t1)
→ 0 as t2 − t1 → 0.

Thus, it can be deduced that E‖Qu(t2)−Qu(t1)‖2 → 0 independently of u ∈ ΘR0 as
t2 − t1 → 0, which means that Q : ΘR0 → ΘR0 is equicontinuous in [0,a] . Hence, the
operator Q : ΘR0 → ΘR0 is locally equicontinuous.

Now, according to Lemma 3.1, we can deduce that QΘR0 is relatively compact in
Cϕ,h , which implies that Q : ΘR0 → ΘR0 is completely continuous.
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Step 5. We show that Q is SAPω(L2(Ω,H))-valued.
Obviously, SAPω(L2(Ω,H)) is a closed subspace of Csb and u∈ SAPω(L2(Ω,H))

implies that the function t 	→ u[ϕ ]t belongs to SAPω(B) .
For a given ϕ ∈ B , and u ∈ SAPω(L2(Ω,H)) , we consider

(Qu)(t + ω)− (Qu)(t)

= T (t + ω)ϕ(0)+
∫ t+ω

0
T (t + ω − s)F(s,u[ϕ ]s)ds

+
∫ t+ω

0
T (t + ω − s)G(s,u[ϕ ]s)dW(s)−T (t)ϕ(0)

−
∫ t

0
T (t− s)F(s,u[ϕ ]s)ds−

∫ t

0
T (t − s)G(s,u[ϕ ]s)dW(s)

= T (t + ω)ϕ(0)−T(t)ϕ(0)+
∫ ω

0
T (t + ω − s)F(s,u[ϕ ]s)ds

+
∫ t

0
T (t− s)(F(s+ ω ,u[ϕ ]s+ω)−F(s,u[ϕ ]s))ds

+
∫ ω

0
T (t + ω − s)G(s,u[ϕ ]s)dW(s)

+
∫ t

0
T (t− s)(G(s+ ω ,u[ϕ ]s+ω)−G(s,u[ϕ ]s))dW(s)

= T (t + ω)ϕ(0)−T(t)ϕ(0)+
∫ ω

0
T (t + ω − s)F(s,u[ϕ ]s)ds

+
∫ t

0
T (t− s)(F(s+ ω ,u[ϕ ]s+ω)−F(s,u[ϕ ]s+ω))ds

+
∫ t

0
T (t− s)(F(s,u[ϕ ]s+ω)−F(s,u[ϕ ]s))ds

+
∫ ω

0
T (t + ω − s)G(s,u[ϕ ]s)dW(s)

+
∫ t

0
T (t− s)(G(s+ ω ,u[ϕ ]s+ω)−G(s,u[ϕ ]s+ω))dW(s)

+
∫ t

0
T (t− s)(G(s,u[ϕ ]s+ω)−G(s,u[ϕ ]s))dW(s)

:= I1(t)+ I2(t)+ I3(t)+ I4(t)+ I5(t)+ I6(t)+ I7(t).

Firstly, by the exponential stability of semigroup T (t) (t � 0) ,

E‖I1(t)‖2 � 2E‖T (t + ω)ϕ(0)‖2 +2E‖T(t)ϕ(0)‖2

� 2(M2e2ν0(t+ω) +M2e2ν0t)‖ϕ‖2
B

� 4M2e2ν0t‖ϕ‖2
B

→ 0, as t → ∞.

Since u ∈ SAPω(L2(Ω,H)) , there is a constant tε,1 > 0 such that E‖u[ϕ ](t +ω)−
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u[ϕ ](t)‖2 � ε for any t � tε,1 . Thus, u[ϕ ]t ∈ SAPω(B) for any t � 0 and E‖u[ϕ ]t+ω −
u[ϕ ]t‖2

B � ε for any t � tε,1 .
By the continuity of F and G , one can find that for t � tε,1

E‖F(t,u[ϕ ]t+ω )−F(t,u[ϕ ]t)‖2 � |ν0|
M

ε, (3.12)

E‖G(t,u[ϕ ]t+ω)−G(t,u[ϕ ]t)‖2 � 2|ν0|
M2 ε. (3.13)

From the condition (H1), it is easy to test that there exists a constant tε,2 large enough
such that for t � tε,2 ,

E‖F(t + ω ,u[ϕ ]t+ω)−F(t,u[ϕ ]t+ω )‖2 � |ν0|
M

ε, (3.14)

E‖G(t + ω ,u[ϕ ]t+ω)−G(t,u[ϕ ]t+ω)‖2 � 2|ν0|
M2 ε. (3.15)

According to the Hölder inequality, exponential stability of semigroup T (t) (t � 0)
and (3.11), one can see

E‖I2(t)‖2 �
∫ ω

0
‖T (t + ω − s)‖ds

∫ ω

0
‖T (t + ω − s)‖E‖F(s,u[ϕ ]s)‖2ds

� Mf

(∫ ω

0
‖T (t + ω − s)‖ds

)2

� M2Mf

(
eν0t

∫ ω

0
eν0(ω−s)ds

)2

� M2Mf e2ν0t

|ν0|2
→ 0, as t → ∞.

For t > tε := max{tε,1,tε,2} , by the Hölder inequality, (3.11) and (3.14), one can see
that

E‖I3(t)‖2 �
∫ t

0
‖T (t− s)‖ds

∫ t

0
‖T (t− s)‖E‖F(s+ ω ,u[ϕ ]s+ω)−F(s,u[ϕ ]s+ω)‖2ds

� M
|ν0| ×

(∫ tε

0
‖T (t − s)‖E‖F(s+ ω ,u[ϕ ]s+ω)−F(s,u[ϕ ]s+ω)‖2ds

+
∫ t

tε
‖T (t− s)‖E‖F(s+ ω ,u[ϕ ]s+ω)−F(s,u[ϕ ]s+ω)‖2ds

)

� M
|ν0|

(
2Mf

∫ tε

0
‖T (t− s)‖ds+

|ν0|
M

ε
∫ t

tε
‖T (t − s)‖ds

)

� M
|ν0|

(
2MMf

∫ tε

0
eν0(t−s)ds+ ε

)

� M
|ν0|

(
2MMf

eν0(t−tε )

|ν0| + ε
)
,
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which means that E‖I3(t)‖2 → 0 as t → ∞ . Similarly, from (3.12), one can find that
E‖I4(t)‖2 → 0 as t → ∞ . According to the exponential stability of semigroup T (t)
(t � 0) , (2.4) and (3.11), one can find

E‖I5(t)‖2 �
∫ ω

0
‖T (t + ω − s)‖2

E‖G(s,u[ϕ ]s)‖2ds

� Mg

∫ ω

0
M2e2ν0(t+ω−s)ds

� M2Mge2ν0t

2|ν0|
→ 0, as t → ∞.

For t > tε := max{tε,1,tε,2} , by (2.4), (3.11) and (3.15), one can obtain that

E‖I6(t)‖2 �
∫ t

0
‖T (t − s)‖2

E‖G(s+ ω ,u[ϕ ]s+ω)−G(s,u[ϕ ]s+ω)‖2ds

�
∫ tε

0
‖T (t − s)‖2

E‖G(s+ ω ,u[ϕ ]s+ω)−G(s,u[ϕ ]s+ω)‖2ds

+
∫ t

tε
‖T (t− s)‖2

E‖G(s+ ω ,u[ϕ ]s+ω)−G(s,u[ϕ ]s+ω)‖2ds

� 2M2Mg

∫ tε

0
e2ν0(t−s)ds+

2|ν0|
M2 ε

∫ t

tε
M2e2ν0(t−s)ds

� M2Mge2ν0(t−tε )

|ν0| + ε,

which implies that E‖I6(t)‖2 → 0 as t → ∞ . Similarly, from (3.13), we can get
E‖I7(t)‖2 tends to 0 as t → ∞ .

Thus, we can conclude that

lim
t→∞

E‖Qu(t + ω)−Qu(t)‖2 = 0,

namely, Q(SAPω(L2(Ω,H))) ⊂ SAPω(L2(Ω,H)) .

From the above results, we have that

Q : ΘR0 ∩SAPω(L2(Ω,H)) → ΘR0 ∩SAPω(L2(Ω,H))

is a completely continuous operator. According to the Schauder fixed point theorem,
the operator Q has at least one fixed point u ∈ ΘR0 ∩SAPω(L2(Ω,H)) . Let {u(n)} ⊂
ΘR0 ∩SAPω(L2(Ω,H)) converge to u , then {Qu(n)} converges to Qu = u uniformly in
[0,∞) . Therefore, we can easily deduce that u[ϕ ] is the square-mean S -asymptotically
ω -periodic mild solution of the problem (1.1). �
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4. Uniqueness and global asymptotic behavior

Now, we prove the uniqueness and globally asymptotically stable property of the
square-mean S -asymptotically ω -periodic mild solution of the equation (1.1).

THEOREM 4.1. Assume that A : D(A) ⊂ H → H is a closed linear operator and
−A generate an exponentially stable semigroup T (t) (t � 0) in Hilbert space H ,
whose growth exponent denotes ν0 < 0 . Let F : R

+ ×B → L2(Ω,H) , G : R
+ ×B →

L(K,H) be continuous functions and supt�0 E‖F(t,θ )‖2 < ∞ , supt�0 E‖G(t,θ )‖2 <
∞ . If the conditions (H1) and (H3) for all t � 0 and φ ,ψ ∈ B , there exist positive
constants a1,b1 such that

E‖F(t,φ)−F(t,ψ)‖2 � a1‖φ −ψ‖2
B, E‖G(t,φ)−G(t,ψ)‖2 � b1‖φ −ψ‖2

B,

hold, then for a given ϕ ∈B , the problem (1.1) has a unique square-mean S-asymptoti-
cally ω -periodic mild solution provided that

M2a1

|ν0|2 +
M2b1

|ν0| <
1
2
. (4.1)

Moreover, if the constants a1,b1 in the condition (H3) satisfy

M2a1e|ν0|r

|ν0|2 +
M2b1e|ν0|r

|ν0| <
1
3
, (4.2)

then the unique S-asymptotically ω -periodic mild solution is globally exponentially
stable in square-mean sense.

Proof. Given ϕ ∈B , and u∈Csb , we define the function u[ϕ ] : [−r,∞)→ L2(Ω,H)
as follows:

u[ϕ ](t) =
{

u(t), for t � 0
ϕ(t), for t ∈ [−r,0].

We denote
Cϕ = {u ∈Csb : u(0) = ϕ(0)}.

Then Cϕ is a closed subspace of Csb .
For u ∈Cϕ and t � 0, let Qu(t) defined by (3.3). By the condition (H3), one can

find

E‖Qu(t)‖2 � 3E‖T (t)ϕ(0)‖2 +3E

∥∥∥∫ t

0
T (t − s)F(s,u[ϕ ]s)ds

∥∥∥2

+3E

∥∥∥∫ t

0
T (t− s)G(s,u[ϕ ]s)dW(s)

∥∥∥2

� 3M2‖ϕ‖2
B +

3M2

|ν0|2 (2a1(‖ϕ‖2
B +‖u‖2

C)+2E‖F(t,θ )‖2)

+
3M2

|ν0| (2b1(‖ϕ‖2
B +‖u‖2

C)+2E‖G(t,θ )‖2),
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which implies that Q :Cϕ →Cϕ is well defined. According to the proof of Theorem3.2,
one can see that Q(SAPω(L2(Ω,H)))⊂ SAPω(L2(Ω,H)) . Thus, the fixed point u of the
operator Q in SAPω(L2(Ω,H)) implies that u[ϕ ] is the square-mean S -asymptotically
ω -periodic mild solution of the problem (1.1).

For all t � 0, and u,v ∈ SAPω(L2(Ω,H)) , by the condition (H3), the Hölder in-
equality, (2.4), and (3.3), we get that

E‖Qu(t)−Qv(t)‖2

= E

∥∥∥∫ t

0
T (t − s)(F(s,u[ϕ ]s)−F(s,v[ϕ ]s))ds

+
∫ t

0
T (t− s)(G(s,u[ϕ ]s)−G(s,v[ϕ ]s))dW(s)

∥∥∥2

� 2E

∥∥∥∫ t

0
T (t− s)(F(s,u[ϕ ]s)−F(s,v[ϕ ]s))ds

∥∥∥2

+2E

∥∥∥∫ t

0
T (t − s)(G(s,u[ϕ ]s)−G(s,v[ϕ ]s))dW(s)

∥∥∥2

� 2
∫ t

0
‖T (t− s)‖ds

∫ t

0
‖T (t− s)‖E‖F(s,u[ϕ ]s)−F(s,v[ϕ ]s)‖2ds

+2
∫ t

0
‖T (t− s)‖2

E‖G(s,u[ϕ ]s)−G(s,v[ϕ ]s)‖2ds

� 2
∫ t

0
‖T (t− s)‖ds

∫ t

0
‖T (t− s)‖(a1‖u[ϕ ]s− v[ϕ ]s‖2

B)ds

+2
∫ t

0
‖T (t− s)‖2(b1‖u[ϕ ]s− v[ϕ ]s‖2

B)ds

� 2M2a1

|ν0|2 ‖u− v‖2
C +

2M2b1

|ν0| ‖u− v‖2
C

� 2
(M2a1

|ν0|2 +
M2b1

|ν0|
)
‖u− v‖2

C,

which implies that

‖Qu−Qv‖2
C � 2

(M2a1

|ν0|2 +
M2b1

|ν0|
)
‖u− v‖2

C, (4.3)

thus, by (4.1), we can conclude that Q is a contraction mapping. Hence, the problem
(1.1) has a unique square-mean S -asymptotic ω -periodic mild solution u∗[ϕ ] .

Next, we prove the global exponentially stability of the unique square-mean S -
asymptotically ω -periodic mild solution. Assume that u∗[ϕ ] is the unique square-
mean S -asymptotically ω -periodic mild solution of the problem (1.1). Moreover, for
any φ ∈ B , it is easy to test that the problem (1.1) has a unique mild solution v[φ ] with
v ∈Csb .
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For every t � 0, from the definition of Q , one can find

E‖u∗[ϕ ](t)− v[φ ](t)‖2 = E‖u∗(t)− v(t)‖2

� 3E‖T (t)(ϕ(0)−φ(0))‖2

+3E

∥∥∥∫ t

0
T (t − s)(F(s,u∗[ϕ ]s)−F(s,v[φ ]s))ds

∥∥∥2

+3E

∥∥∥∫ t

0
T (t − s)(G(s,u∗[ϕ ]s)−G(s,v[φ ]s))dW(s)

∥∥∥2

� 3M2eν0tE‖ϕ(0)−φ(0)‖2 +3
∫ t

0
‖T (t − s)‖ds

×
∫ t

0
‖T (t− s)‖E‖F(s,u∗[ϕ ]s)−F(s,v[φ ]s)‖2ds

+3
∫ t

0
‖T (t − s)‖2

E‖G(s,u∗[ϕ ]s)−G(s,v[φ ]s)‖2ds

� 3M2eν0tE‖ϕ(0)−φ(0)‖2 +
3M
|ν0|

∫ t

0
‖T (t− s)‖(a1‖u∗[ϕ ]s− v[φ ]s‖2

B)ds

+3
∫ t

0
‖T (t − s)‖2(b1‖u∗[ϕ ]s − v[φ ]s‖2

B)ds

� 3M2eν0tE‖ϕ(0)−φ(0)‖2

+
3M2

|ν0|
∫ t

0
eν0(t−s)

(
a1 sup

τ∈[−r,0]
E‖u∗[ϕ ](s+ τ)− v[φ ](s+ τ)‖2

)
ds

+3M2
∫ t

0
e2ν0(t−s)

(
b1 sup

τ∈[−r,0]
E‖u∗[ϕ ](s+ τ)− v[φ ](s+ τ)‖2

)
ds

� 3M2eν0tE‖ϕ(0)−φ(0)‖2 +
(3M2a1

|ν0| +3M2b1

)

×
∫ t

0
eν0(t−s)

(
sup

τ∈[−r,0]
E‖u∗[ϕ ](s+ τ)− v[φ ](s+ τ)‖2

)
ds.

For any t � 0, let Ψ(t) = e|ν0|tE‖u∗[ϕ ](t)− v[φ ](t)‖2 , one can see

Ψ(t) � Λ1Ψ(0)+
∫ t

0
Λ2 sup

τ∈[−r,0]
Ψ(s+ τ)ds, (4.4)

where Λ1 = 3M2 , Λ2 =
(

3M2a1
|ν0| +3M2b1

)
e|ν0|r .

From the Gronwall integral inequality ([24, 27]), it follows that for all t � 0,

e|ν0|t ·E‖u∗[ϕ ](t)− v[φ ](t)‖2 = Ψ(t) � Λ1‖ϕ −φ‖2
B · eΛ2t . (4.5)
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By (4.2), one can find that

α := |ν0|−Λ2

= |ν0|−
(3M2a1

|ν0| +3M2b1

)
e|ν0|r

=
|ν0|2 −3M2a1e|ν0|r −3M2|ν0|b1e|ν0|r

|ν0|

=
|ν0|2

(
1− 3M2a1e

|ν0|r
|ν0|2 − 3M2b1e

|ν0|r
|ν0|

)
|ν0| > 0,

from (4.5), one can get

E‖u[ϕ ](t)− v[φ ](t)‖2 � Λ1‖ϕ −φ‖2
B · e−αt.

Therefore, the unique square-mean S -asymptotic ω -periodic mild solution of the prob-
lem (1.1) is globally exponentially stable. �

5. Example

Consider the following delayed stochastic partial differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂ t

u(t,x)− ∂ 2

∂x2 u(t,x) =
sin2πt

4e
t
2

u(t + τ,x)

+
cos2πt

8e
t
2

u(t + τ,x)W′(t), t ∈ R
+, x ∈ [0,π ],

u(t,0) = u(t,π) = 0, t ∈ R
+,

u(τ,x) = ϕ(τ,x), τ ∈ [−r,0], x ∈ [0,π ],

(5.1)

where W(t) is a standard Wiener process defined on a probability space (Ω,F ,P) .
In order to write the problem (5.1) into the abstract form (1.1), we assume that

H = L2[0,π ] is a Hilbert space with the L2 -norm ‖·‖2 . Denote the operator A : D(A)⊂
H → H by

D(A) := {u ∈ H| u′,u′′ ∈ H,u(0) = u(π) = 0}, Au = −∂ 2u
∂x2 . (5.2)

From [31], it can be known that −A generates an exponentially stable compact analytic
semigroup T (t) (t � 0) in H and ‖T (t)‖ � e−t for any t � 0, then M = 1, ν0 = −1.

For every t ∈ R
+ , x ∈ [0,π ] , denote u(t)(x) = u(t,x) , ut(τ)(x) = u(t + τ,x) for

every t ∈ R
+,x ∈ [0,π ] , τ ∈ [−r,0] , and

F(t,ut)(x) =
sin2πt

4e
t
2

u(t + τ,x), (5.3)

G(t,ut)(x) =
cos2πt

8e
t
2

u(t + τ,x). (5.4)
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For any ω > 0, we have

lim
t→∞

∣∣∣ sin2π(t + ω)

4e
(t+ω)

2

− sin2πt

4e
t
2

∣∣∣ = 0, lim
t→∞

∣∣∣cos2π(t + ω)

8e
(t+ω)

2

− cos2πt

8e
t
2

∣∣∣ = 0.

Thus, F,G are continuous and satisfy the condition (H1) of Theorem 3.2. Let h(t) = et ,
then

E‖F(t,et/2η)‖2 � sin2 2πt
16et E‖et/2η‖2 � 1

16
‖η‖2

B, (5.5)

E‖G(t,et/2η)‖2 � cos2 2πt
64et E‖et/2η‖2 � 1

64
‖η‖2

B, (5.6)

for all t � 0, η ∈ B . From (5.5) and (5.6), it can be seen that the condition (H2) is
satisfied. By M = 1,ν0 = −1, one can see

3M2a1

|ν0|2 +
3M2b1

2|ν0| =
3
16

+
3

128
=

27
128

< 1. (5.7)

Hence, from Theorem3.2, the equation (5.1) has at least one square-mean S -asymptotically
1-periodic mild solution.

From the definition of F,G , one can get

E‖F(t,η1)−F(t,η2)‖2 � 1
16

‖η1−η2‖2
B, (5.8)

E‖G(t,η1)−G(t,η2)‖2 � 1
64

‖η1−η2‖2
B, (5.9)

for every t � 0, η1,η2 ∈ B , this means that the condition (H3) is satisfied. Since
M = 1, ν0 = −1, one has

M2a1

|ν0|2 +
M2b1

|ν0| =
1
16

+
1
64

=
5
64

<
1
2
, (5.10)

which implies that the (4.1) holds. Thus, according to Theorem 4.1, the equation (5.1)
has a unique square-mean S -asymptotically 1-periodic mild solution. For 0 < r < ln3,
we can find that

M2a1e|ν0|r

|ν0|2 +
M2b1e|ν0|r

|ν0| =
1
16

×3+
1
64

×3 =
15
64

<
1
3
, (5.11)

it means that the (4.2) is holds. Therefore, from Theorem 4.1, it can be seen that the
S -asymptotically 1-periodic mild solution of equation (5.1) is globally exponentially
stable.
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[13] W. DIMBOUR, G. N’GUÉRÉKATA, S -asymptotically ω -periodic solutions to some classes of partial
evolution equations, Appl. Math. Comput., 218 (2012), 7622–7628.

[14] D. GAO, J. LI, Existence and mean-square exponential stability of mild solutions for impulsive
stochastic partial differential equations with noncompact semigroup, J. Math. Anal. Appl., 484 (2020),
123717.

[15] M. GARRIDO-ATIENZA, A. NEUENKIRCH, B. SCHMALFUSS, Asymptotical stability of differential
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