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EXPECTATIONS OF LARGE DATA MEANS

TOMISLAV BURIĆ ∗ , NEVEN ELEZOVIĆ AND LENKA MIHOKOVIĆ

(Communicated by J. Pečarić)

Abstract. In this paper we present estimation formulas for the expectations of power means
of large data and associate them with means of probability distribution and means of random
sample. The proposed method follows from the asymptotic expansion of power means which is
applicable for sufficiently large data and it is especially useful when value of such expectation is
hard to obtain. We will show the accuracy of these approximations for random samples which
have uniform and normal distribution and analyse their behaviour for large sample volume.

1. Introduction

Let X be a random variable with mathematical expectation μ and standard de-
viation σ and consider the random sample X = (X1,X2, . . . ,Xn) of volume n from
distribution X . Furthermore, define sample moments of order k about c ∈ R by

mk(X,c) :=
1
n

n

∑
i=1

(Xi − c)k, k ∈ N,

and also let
μk := E[(X − μ)k] = E[mk(X,μ)].

For the n -tuple a = (a1, . . . ,an) with positive entries, the n -variable (unweighted)
power mean can be defined as

Mr(a) =

⎧⎪⎨
⎪⎩
[

ar
1+ar

2+...+ar
n

n

]1/r

, r �= 0,

n
√

a1a2 · · ·an, r = 0.

Some well known classical means such as harmonic mean H , geometric mean G ,
arithmetic mean A and quadratic mean Q belong to the class of power means for r =
−1,0,1,2 respectively. Goal of this paper is to approximate the power mean of random
sample and its expectation E[Mr(X)] .
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Similary, for a positive random variable X we may also define distribution power
mean of order r , if it exists, by

mr =
(
E[Xr]

)1/r
,

where harmonic, geometric, arithmetic, quadratic mean of a probability distribution are
obtained for r = −1,0,1,2 respectively:

h :=
(
E[ 1

X ]
)−1

, g := eE[lnX ], a := E[X ] = μ , q :=
(
E[X2]

) 1
2 .

Geometric and harmonic means have been studied within theory of financial math-
ematics. In establishing criteria for choosing among strategies, Latané [12] uses the fact
that the final value of the investment converges in probability to the power of geometric
mean. Later, Latané and Tuttle [13] established the geometric mean criterion for maxi-
mizing the income. In both papers the following approximation of geometric mean was
used

g � (μ2−σ2)
1
2 , (1)

which holds when the deviation is small compared to the arithmetic mean of the distri-
bution.

Markowitz [14] presented two geometric mean approximations:

lng � (μ −1)− 1
2
((μ −1)2 + σ2) (2)

and

lng � lnμ − σ2

2μ2 , (3)

and gave the advantage to (3) when estimating the error of both approximations.
According to Renshaw [18], similar approximation to (3) was suggested by John-

son

g � μ − σ2

2μ
. (4)

Young and Trent [20] proposed the geometric mean approximation involving the
first four sample moments:

G(X) � A(X)− m2(X,A(X))
2A(X)

+
m3(X,A(X))

3A(X)2 − m4(X,A(X))
4A(X)3 , (5)

and examined its quality in context of convergence in mean. From here, Johnson’s (4),
Markowitz (3) and Latané’s (1) approximations follow. Young and Trent empirically
tested several geometric mean approximations including (1), (4) and (5) up to the third
and fourth moment and concluded that approximations with two terms were better.

Along with the geometric mean criterion, stochastic dominance models were also
developed for the same purpose. Jean [8] extended previous approximations to the
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infinite series representation of the geometric mean of probability distribution using
Taylor series expansion:

lng = lnμ −
∞

∑
k=1

(−1)k

k
μkμ−k. (6)

Jean and Helms [10] presented series inferred from the approximations developed
by Young and Trent as

G(X) � A(X)+
∞

∑
k=1

(−1)k+1 mk(X,A(X))
kA(X)k ,

but it doesn’t seem to converge to the geometric mean by adding more terms. In the
same paper, the comparison of several approximations was also done and Jean series
with two terms appeared to be the most accurate:

G(X) � exp

(
lnA(X)− σ2

2A(X)2

)
.

Jean [9] recognized ranking of harmonic means as necessary condition for stochas-
tic dominance rankings. He found an infinite convergent series expansion of the har-
monic mean

1
h

=
1
b

+
∞

∑
k=1

k!
bk+1 Fk+1(b),

where b is the finite upper bound for range of X and Fk denotes the k -th integral of
the probability density function.

Komarova and Rivin [11] studied the limiting behaviour of harmonic mean of X
which is uniformly distributed on [0,1] , and for large n we have:

E[H(X)] ∼ 1
lnn

, n → ∞.

Shi, Wang and Reid [19] obtained an approximation for the expectation of a func-
tion of a sum of random variables, up to a given order of 1/n :

E[ f (
n

∑
i=1

Xn)] = f0 +
f2κ2

2n
+

3 f4κ2
2 +4 f3κ3

24n2 +O(| f0|n−3),

where p(x) is probability density function of independently identical distributed (i.i.d.)
random variables Xi , K(t) = ln

∫
etx p(x)dx , κr = K(r)(0) and fr = nr f (r)(nκ1) .

This method can also be used to obtain the asymptotic expansion of the expectation
of harmonic mean when n → ∞ , but it is not applicable when the first moment of 1/X
is infinite. Under some conditions on distribution X , Rao, Shi, Wu [17], found the
approximation even in that case when the first moment can be infinite:

E[H(X)] ∼ 1
lnn

(
1− 1√

lnn

)
, n → ∞.



406 T. BURIĆ, N. ELEZOVIĆ AND L. MIHOKOVIĆ

Komarova and Rivin [11] studied random matrices, explored the behaviour of the
harmonic mean of i.i.d. random variables and presented limit theorems for the expec-
tation of the harmonic mean for large n . For other possible applications of means in
statistics, see [15] and references therein.

From all these results and examples, we may see that approximation of the power
mean of probability distribution, the power mean of random sample and the expectation
of power mean of random sample are useful in financial mathematics and other areas.

In this paper we will obtain estimations for the expectation of power mean of
random sample and associate all three kinds of power means mentioned above. The
method we propose follows from the asymptotic expansion of means which is appli-
cable for sufficiently large value of μ . Presented approximation formulas are based
on large values of data, rather than on large sample volume. These methods are es-
pecially useful when exact or even approximative value of such expectation is hard to
obtain. Advantage of presented approximations will be shown numerically for random
samples which have uniform and normal distribution. Finally, in order to compare our
results with the known results from the introduction, we will analyse behaviour of our
expansions for large sample volume.

2. Preliminaries and auxiliary results

Let us denote e = (1,1, . . . ,1) , with n units. Then n -tuple (x1,x2, . . . ,xn) can be
written in the form

(x1,x2, . . . ,xn) = (x+a1,x+a2, . . . ,x+an) = xe+a,

where x can be taken as a mean of x1,x2, . . . ,xn . The asymptotic behaviour of nu-
merous classical and parametric means for large value of x was recently analysed in
several papers, see for example [3, 4, 5, 6], and we will now mention some of these
results which will be used in the sequel.

Let us denote in this section

mk = mk(a,0) =
ak

1 + . . .+ak
n

n
= Mk(a)k, m0 := 1.

THEOREM 1. ([4]) General power mean has the following asymptotic expansion

Mr(xe+a) = x ·
∞

∑
k=0

ck(r,a)x−k, (7)

where c0 = 1 and

ck(r,a) =
1
k

k

∑
j=1

[
j

(
1+

1
r

)
− k

](
r
j

)
mjck− j(r,a), k ∈ N.
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The first few coefficients are

c0(r,a) = 1,

c1(r,a) = m1,

c2(r,a) = − 1
2(r−1)(m2

1−m2),

c3(r,a) = 1
6(r−1)

(
(2r−1)m3

1−3(r−1)m1m2 +(r−2)m3
)
,

c4(r,a) = − 1
24(r−1)

(
(3r−1)(2r−1)m4

1−6(r−1)(2r−1)m2
1m2

+3(r−1)2m2
2 +4(r−2)(r−1)m1m3− (r−3)(r−2)m4

)
.

Asymptotic expansions of special cases of power means can be obtained by substi-
tuting parameter r with appropriate values, even in the limiting case r = 0 for geometric
mean as it was proved in [6]. Since the corresponding formulas have simpler form with
special values of parameter r , we state them separately.

Since for all x it holds

A(xe+a) = x+A(a),

the asymptotic expansion for this mean has only these two terms.

COROLLARY 1. ([4]) Geometric mean has the following asymptotic expansion

G(xe+a) = x ·
∞

∑
k=0

ckx
−k,

where c0 = 1 and

ck =
1
k

k

∑
j=1

(−1) j−1mjck− j, k � 1.

COROLLARY 2. ([4]) Harmonic mean has the following expansion

H(xe+a) = x
∞

∑
k=0

ckx
−k+1,

where coefficients are given by c0 = 1 and

ck =
k

∑
j=1

(−1) j−1mjck− j, k � 1.

COROLLARY 3. ([4]) Quadratic mean has the following asymptotic expansion

Q(xe+a) = x ·
∞

∑
k=0

ckx
−k,

where c0 = 1 , c1 = m1 and

ck =
(

3
k
−2

)
m1ck−1 +

(
3
k
−1

)
m2ck−2, k � 2.
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In particular, the first few coefficients are

G(xe+a) = x+m1 + 1
2 (m2

1 −m2)x−1 + 1
6 (m3

1−3m1m2 +2m3)x−2

+ 1
24(m4

1−6m2
1m2 +3m2

2 +8m1m3 −6m4)x−3 + . . . (8)

H(xe+a) = x+m1 +(m2
1−m2)x−1 +(m3

1−2m1m2 +m3)x−2

+(m4
1−3m2

1m2 +m2
2 +2m1m3−m4)x−3 + . . . (9)

Q(xe+a) = x+m1 + 1
2 (−m2

1 +m2)x−1 + 1
2m1(m2

1−m2)x−2

+ 1
8(−5m4

1 +6m2
1m2−m2

2)x
−3 + . . . (10)

In the sequel, we will also use the following property of the coefficients which was
proved in the same paper.

THEOREM 2. ([4]) Coefficients ck , k∈N0 , are homogeneouspolynomials in vari-
ables (a1, . . . ,an) and have the following form:

ck(r,a) = ∑
α1,α2,...,αk�0

α1+2α2+···+kαk=k

qα1,...,αk(r)m1(a)α1 · · ·mk(a)αk ,

where

∑
α1,α2,...,αk�0

α1+2α2+···+kαk=k

qα1,...,αk(r) = 0, k � 2.

3. Expectation of power mean

Let X1 , X2 ,. . . , Xn be independent copies of random variable X which satisfy
following properties:

1) the distribution of X is known and it is symmetric with respect to some point
μ , obviously the expectation of X ,

2) μ is sufficiently large with respect to the essential support of X , in a sense that
P(X < 0) → 0 as μ → ∞ ,

3) E[(X − μ)k] is finite for k ∈ N .

Let us denote centered random variables

Ai := Xi − μ ,

and random sample
A = (A1,A2, . . . ,An).

In order to estimate the expectation E[Mr(X)] , we shall use the asymptotic expansion
(7):

E[Mr(X)] = E[Mr(xe+A)] = x ·
∞

∑
k=0

E[ck(r,A)]x−k, x → ∞. (11)
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Recall the moments

mk = mk(X,μ) =
Ak

1 + . . .+Ak
n

n
.

Then, for each i we have k -th central moment of variable Xi :

μk = E[mk] = E[Ak
i ].

It holds E[Ai] = 0 for all i and we also have μk = 0 for all odd k , since by assumption
the distribution of each Ai is symmetric.

LEMMA 1. For all odd k we have E[ck(r,A)] = 0 .

Proof. Because of Theorem 2, it is sufficient to prove that

E[mα1
1 · · ·mαk

k ] = 0.

After expanding the polynomial in the brackets into sum of monomials, each term will
be of the form

Aβ1
1 Aβ2

2 · · ·Aβn
n ,

where β1, . . . ,βn � 0 and β1 + . . .+βn = k . Therefore, at least one of exponents is odd.
Now,

E[Aβ1
1 Aβ2

2 · · ·Aβn
n ] = E[Aβ1

1 ]E[Aβ2
2 ] · · ·E[Aβn

n ] = 0. �

LEMMA 2. It holds

E[m2
1] =

μ2

n
,

E[m4
1] =

μ4

n3 +
3(n−1)μ2

2

n3 ,

E[m2
1m2] =

μ4

n2 +
(n−1)μ2

2

n2 ,

E[m2
2] =

μ4

n
+

(n−1)μ2
2

n
,

E[m1m3] =
μ4

n
.

Proof. We have

E[m2
1] =

1
n2 E

[ n

∑
i=1

Ai

]2

=
1
n2

(
n

∑
i=1

E[A2
i ]+ ∑

i�= j

E[Ai]E[Aj]

)
=

μ2

n
.

E[m4
1] =

1
n4

(
n

∑
i=1

E[A4
i ]+3∑

i�= j

E[A2
i ]E[A2

j ]

)
=

μ4

n3 +
3(n−1)μ2

2

n3 .

The rest follows in a similar way. �
Finally, using previous two lemmas, we can estimate the expectation of power

mean with the first few terms from (11) in a following way.
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THEOREM 3. Expectation of the power mean has the following expansion:

E[Mr(X)] = μ +
d2

μ
+

d4

μ3 +O(μ−5), μ → ∞,

where μ is the expectation of X and

d2 =
r−1

2
· n−1

n
μ2,

d4 = − r−1
24

· n−1
n

[
3μ2

2

(
(3r−1)(2r−1)

n2 − 2(r−1)(2r−1)
n

+(r−1)2
)

− μ4

(
(3r−1)(2r−1)

n2 − (2r−1)(3r−5)
n

+(r−2)(r−3)
) ]

.

In the sequel, we will show application to the geometric, harmonic and quadratic
mean which follows from this theorem for r = 0,−1,2, respectively. For the conve-
nience of the reader, let us state them in the following corollaries. Note that they can
also be deduced from (8), (9) and (10).

COROLLARY 4. For the expectation of the geometric mean it holds:

E[G(X)] = μ − μ2

2

(
1− 1

n

)
μ−1

+
1
24

[
3μ2

2
(n−1)3

n3 + μ4
(1−n)(1−2n)(1−3n)

n3

]
μ−3 +O(μ−5).

(12)

COROLLARY 5. For the expectation of the harmonic mean it holds:

E[H(X)] = μ −
(

1− 1
n

)
μ2μ−1

+
(

1− 1
n

)[
μ2

2

(
1− 3

n
+

3
n2

)
− μ4

(
1− 1

n

)2
]

μ−3 +O(μ−5).

COROLLARY 6. For the expectation of the quadratic mean it holds:

E[Q(X)] = μ +
1
2

(
1− 1

n

)
μ2μ−1

− 1
8

(
1− 1

n

)[
μ2

2

(
1− 6

n
+

15
n2

)
+ μ4

(
1
n
− 5

n2

)]
μ−3 +O(μ−5).

Note that the case for geometric mean is important since we can establish the
quality of the approximation (12). Namely, for the geometric mean we have the exact
formula for its expectation:

E[G(X)] =
n

∏
i=1

E[X1/n
i ] =

(
E[X1/n]

)n
. (13)

Hence, for the specific distributions, we will be able to numerically check precision of
our approximation formula which will be done in the next sections.



EXPECTATIONS OF LARGE DATA MEANS 411

4. Uniform distribution

First, we shall apply the results from the previous section to the case of the uni-
formly distributed random variable. Here we assume that X has an uniform distribution
on [a,b] , where 0 < a < b . Then

x = μ = E(X) = (a+b)/2,

random variables A1, . . . ,An are uniform on
[
− b−a

2 , b−a
2

]
=: [−t,t] and we have

μ2 = E[A2
1] =

(b−a)2

12
=

1
3
t2, μ4 = E[A4

1] =
(b−a)4

80
=

1
5
t4.

With these central moments, we have the following consequence of Theorem 3.

COROLLARY 7. Let X be a uniform variable on interval [a,b] ⊂ R
+ . Then the

expectation of the power mean has the following expansion:

E[Mr(X)] = μ +
d2

μ
+

d4

μ3 +O(μ−5), μ → ∞,

where

d2 =
r−1

6
· n−1

n
t2,

d4 = − r−1
360

· n−1
n

[
2(3r−1)(2r−1)

n2 − (2r−1)(r+5)
n

+(2r2 +5r−13)

]
t4.

As mentioned before, we will discuss the results for the geometric, harmonic and
quadratic mean. In particular, for r = 0,−1,2 we get the expectations for the geometric,
harmonic and quadratic mean, when μ → ∞ :

E[G(X)] = μ − 1
6
· n−1

n
t2μ−1 +

1
360

· n−1
n

(
2
n2 +

5
n
−13

)
t4μ−3 +O(μ−5), (14)

E[H(X)] = μ − 1
3
· n−1

n
t2μ−1 +

1
90

· n−1
n

(
12
n2 +

6
n
−8

)
t4μ−3 +O(μ−5), (15)

E[Q(X)] = μ +
1
8
· n−1

n
t2μ−1− 1

360
· n−1

n

(
30
n2 − 21

n
+5

)
t4μ−3 +O(μ−5). (16)

For the geometric mean we also have the exact formula for the expectation which fol-
lows from (13):

E[G(X)] =

[
n

n+1
· b

1+1/n−a1+1/n

b−a

]n

. (17)

Numerical results will be shown in the next three tables for sample size of n =
10,20,100 on intervals [100,110] and [1000,1010] . In Table 1 we have the follow-
ing data: the exact value of the mean (17), asymptotic approximation (14) up to order
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Table 1: Expectation of the geometric mean for uniform distribution

n = 10 n = 20 n = 100

a = 100

b = 110

exact 104.964268853 104.962283411 104.960695039
asym 104.964268869 104.962283429 104.960695059
MC4 104.973283147 104.964084374 104.955314488
MC5 104.961915767 104.963161009 104.960514008

a = 1000

b = 1010

exact 1004.9962686375058 1004.9960613391589 1004.9958955004609
asym 1004.9962686375060 1004.9960613391591 1004.9958955004611
MC4 1004.9795366485 1005.0035736128 1004.9924337216
MC5 1004.9975345659 1004.9976453115 1004.9960081227

μ−3 and Monte-Carlo simulation with 104 and 105 repetitions (MC4 and MC5 respec-
tively). As we can see, for larger data we obviously obtain better results where the error
of asymptotic expansion is less than 10−12 .

Similar numerical calculations can be made for harmonic and quadratic mean us-
ing (15) and (16) (up to order μ−3 ), which is presented in the Tables 2 and 3. Note
that here we don’t have the exact value for the approximation so we compare it with
Monte-Carlo simulations.

Table 2: Expectation of the harmonic mean for uniform distribution

n = 10 n = 20 n = 100

a = 100

b = 110

asym 104.928532124 104.924559464 104.921381424
MC4 104.939539156 104.934724836 104.923835838
MC5 104.923631934 104.924903744 104.921067563

a = 1000

b = 1010

asym 1004.99253727 1004.99212267 1004.99179099
MC4 1004.99600812 1004.97657863 1005.00017099
MC5 1004.99473527 1004.98943082 1004.99329475

5. Normal distribution

Let us now show application to the random variable X which has normal distribu-
tion with mean μ > 0 and standard deviation σ . Then it holds

μ2 = σ2, μ4 = 3σ4,

and the result of the Theorem 3 reads as:
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Table 3: Expectation of the quadratic mean for uniform distribution

n = 10 n = 20 n = 100

a = 100

b = 110

asym 105.035709967 105.037692678 105.039278598
MC4 105.019672348 105.033824351 105.036214548
MC5 105.031103452 105.038155429 105.038242199

a = 1000

b = 1010

asym 1005.00373134 1005.00393863 1005.00410447
MC4 1005.01124638 1005.00192709 1005.00280217
MC5 1005.00191186 1005.00619483 1005.00485681

COROLLARY 8. Let X be a normal variable with mean μ > 0 and standard de-
viation σ . Then the expectation of the power mean has the following expansion:

E[Mr(X)] = μ +
d2

μ
+

d4

μ3 +O(μ−5), μ → ∞,

where

d2 =
r−1

2
· n−1

n
σ2,

d4 = − r−1
8

· n−1
n

[
(2r−1)(r−3)

n
+(3r−5)

]
σ4.

Specifically, for r = 0,−1,2 we get the expectations for the geometric, harmonic
and quadratic mean:

E[G(X)] = μ − n−1
2n

σ2μ−1− (n−1)(5n−3)
8n2 σ4μ−3 +O(μ−5), (18)

E[H(X)] = μ − n−1
n

σ2μ−1− (n−1)(2n−3)
n2 σ4μ−3 +O(μ−5), (19)

E[Q(X)] = μ +
n−1
2n

σ2μ−1− (n−1)(n−3)
8n2 σ4μ−3 +O(μ−5). (20)

Here we have to note that Mr(X) is defined only for the positive entries, but normal
variable is defined on R and can take negative vaules. However, since we are studying
asymptotic behaviour for large values of μ , probability P(X < 0) does not have an
effect on the results. Namely, let φ(x) be probability density function of the standard
(unit) normal variable Z :

φ(x) =
1√
2π

e−
1
2 x2

, x ∈ R.

Then it holds:

P(Z > x) =
∫ ∞

x
φ(u)du �

∫ ∞

x

u
x

φ(u)du =
1
x

φ(x).
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Now for general variable X we have

P(X < 0) = P(Z < −μ
σ

) = P(Z >
μ
σ

) � 1√
2π

σ
μ

e
− μ2

2σ2 → 0, μ → ∞. (21)

The geometric mean can again serve as a control point for our approximations
since (13) holds. Explicit formulas for the p -th order moments, E[X p] , of the normal
distribution are known and they involve special functions on C . But because of (21),
we have

E[X p] = E[|X |p]+O(σ
μ e

− μ2

2σ2 ),

and therefore we can use a known formula for absolute moments involving special
functions on R , see [7]:

E[|X |p] = 1√
π σ p 2p/2 Γ( p+1

2 )1F1(− p
2 , 1

2 ,− 1
2 ( μ

σ )2),

where 1F1 is confluent hypergeometric function. Finally, for large μ we have:

E[G(X)] ≈ σ
√

2
πn

(
Γ( n+1

2n )1F1(− 1
2n , 1

2 ,− 1
2 ( μ

σ )2)
)n

. (22)

In the next three tables we will show numerical results in a same way as in previous
section. We use sample sizes n = 10,20,100 and normal distribution with μ = 105
and μ = 1005 with σ = 5/

√
3 which corresponds with mean and standard deviation

of uniform distribution from before. Note that in this case formula (22) has error less
than 10−289 so in the Table 4 we call it exact. Asymptotic formula (18) is up to order
μ−3 and as we can see, the error of asymptotic expansion is again less than 10−10 and
10−12 respectively, and of course it is better for larger data.

Table 4: Expectation of the geometric mean for normal distribution

n = 10 n = 20 n = 100

μ = 105

σ = 5√
3

exact 104.9642539163 104.9622669495 104.9606772947
asym 104.9642539952 104.9622670375 104.9606773904
MC4 104.9765259849 104.9675671710 104.9610958531
MC5 104.9668869488 104.9632025986 104.9606851131

μ = 1005

σ = 5√
3

exact 1004.996268620542 1004.996061320465 1004.995895480310
asym 1004.996268620543 1004.996061320467 1004.995895480311
MC4 1004.988085274467 1004.989778581215 1004.998768562838
MC5 1004.995026427079 1004.998085981116 1004.996087905275

In Tables 5 and 6 we show numerical results of asymptotic formulas up to order
μ−3 for harmonic (19) and quadratic mean (20). Since we do not have the exact value,
we compare with Monte-Carlo simulations MC4 and MC5 same as before.
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Table 5: Expectation of the harmonic mean for normal distribution

n = 10 n = 20 n = 100

μ = 105

σ = 5√
3

asym 104.9284796458 104.9244977444 104.9213115754
MC4 104.9515265759 104.9377540489 104.9234181353
MC5 104.9301124738 104.9237058313 104.9206201061

μ = 1005

σ = 5√
3

asym 1004.9925372088 1004.9921225995 1004.9917909114
MC4 1004.9961238421 1004.9906718465 1004.9880447393
MC5 1004.9939451195 1004.9937613795 1004.9914757101

Table 6: Expectation of the quadratic mean for normal distribution

n = 10 n = 20 n = 100

μ = 105

σ = 5√
3

asym 105.0357095616 105.0376923576 105.0392785134
MC4 105.0429017594 105.0406447484 105.0413994623
MC5 105.0309596004 105.0368516623 105.0386420319

μ = 1005

σ = 5√
3

asym 1005.0037313379 1005.0039386332 1005.0041044694
MC4 1004.9989585130 1004.9985805634 1005.0025865899
MC5 1005.0029674739 1005.0013258903 1005.0053547868

REMARK 1. As a consequence of symmetry of distribution and Lemma 1, coeffi-
cients in Lemma 2 and subsequent Theorems have simpler form. Similar analysis could
be done without the assumption of symmetry.

REMARK 2. In the case of unknown distribution of X , similar results for power
mean of random sample could be obtained by approximating distribution mean μ and
higher order distribution moments with a sample mean A(X) and corresponding sample
moments.

6. Large sample volume

Altough this is not the main goal of our paper, in order to compare our expansions
with known results from the introduction we shall make analysis for large n .

We may apply the strong law of large numbers on i.i.d. variables Xr
i , r �= 0, to see

that

Mr(X)r =
1
n

n

∑
i=1

Xr
i

a.s.−−→ E[Xr] = mr
r, n → ∞,

hence
Mr(X) a.s.−−→ mr, n → ∞,
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and
E[Mr(X)] → mr, n → ∞.

Same reasoning can be done for i.i.d. variables lnXi (case r = 0), where we have

E[G(X)] → g, n → ∞.

Therefore, for all r , the distribution power mean mr may be approximated with
the expectation of the power mean of random sample for large n . Then from Theorem
3, it follows, as n → ∞ :

mr ≈ μ +
r−1

2
μ2μ−1− r−1

24

[
3μ2

2 (r−1)2− μ4(r−2)(r−3)
]

μ−3. (23)

Note that for r = 0, we have:

g ≈ μ − 1
2

μ2μ−1 +
1
8

(
μ2

2 −2μ4
)

μ−3, (24)

which corresponds with the terms obtained from the formula (6) and it has better nu-
merical precision than other formulas from the introduction.

Let us now show examples of these approximations for the uniform and normal
distribution.

6.1. Uniform distribution

Notice that for X uniformly distributed, we may easily calculate the distribution
geometric mean in the following way:

lng = E[lnX ] =
∫ b

a

lnx
b−a

dx =
b lnb−a lna

b−a
−1,

wherefrom it follows

g =
1
e

(
aa

bb

) 1
a−b

.

We may conclude that g equals the identric mean (the special case of Stolarsky mean)
whose asymptotic expansion for large values of a and b has been derived in [5]. With
a = x− t and b = x+ t , we have

g = I(a,b) = x− 1
6
t2x−1− 13

360
t4x−3 +O(x−5),

which is exactly the same as (24) with x = μ , and μ2 and μ4 were obtained in Section
4.

Analogously as with geometric mean, we have

h =
(

1
b−a

∫ b

a

1
x

dx

)−1

=
b−a

lnb− lna
.
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Now h equals the logarithmic mean L(a,b) whose asymptotic expansion for large val-
ues of a and b has also been derived in [5]. With a = x− t and b = x+ t , we have

h = L(a,b) = x− 1
3
t2x−1− 4

45
t4x−3 +O(x−5),

which is again same as (23) for r = −1.

6.2. Normal distribution

When X is normally distributed, the distribution power means are not repre-
sentable in terms of elementary functions and are not easy to compute. In this case
the discussion from the beginning of this section justifies to approximate g , h , q and
other distribution power means, using the expressions (18), (19) and (20) when n → ∞ ,
that is with negative powers of n neglected:

g ≈ μ − 1
2

σ2μ−1− 5
8

σ4μ−3,

h ≈ μ −σ2μ−1−2σ4μ−3,

q ≈ μ +
1
2

σ2μ−1− 1
8

σ4μ−3.

In general, either from (23) or from Corollary 8, for normal distribution we have

mr ≈ μ +
r−1

2
σ2μ−1− (r−1)(3r−5)

8
σ4μ−3.
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[4] N. ELEZOVIĆ, L. MIHOKOVIĆ, Asymptotic behaviour of power means, Math. Inequal. Appl. 19 (4)
(2016), 1399–1412, doi:10.7153/mia-19-103 .
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