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ASYMPTOTIC DISTRIBUTION OF THE WAVELET-BASED
ESTIMATORS OF MULTIVARIATE REGRESSION
FUNCTIONS UNDER WEAK DEPENDENCE

SOUMAYA ALLAOUI*, SALIM BOUZEBDA AND JICHENG LIU

(Communicated by M. Krni¢)

Abstract. This paper investigates the nonparametric linear wavelet-based estimators of multi-
variate regression functions. Under mild conditions, we establish the asymptotic normality under
the weak dependence, which incorporates mixing and association concepts. This framework ap-
plies to numerous classes of intriguing statistical processes, primarily Gaussian sequences and,
more generally, Bernoulli shifts. We give an application for the confidence interval.

1. Introduction

The regression analysis has demonstrated its adaptability and provided a robust
statistical modeling framework in various applied and theoretical contexts where the
predictive relationship between related responses and predictors is to be modeled. It is
important to note that parametric regression models provide useful tools for analyzing
practical data when the models are correctly specified but may be susceptible to large
modeling biases if the model structures are incorrectly specified, which is the case
for many practical problems. As an alternative, nonparametric smoothing techniques
alleviate modeling bias concerns. In this article, we will focus on the study of estimators
of the wavelet type. Let (X,Y) be R? x R valued random variable with common joint
Lebesgue density fxy(-) and marginals fx(-) and fy(-). For a chosen measurable
function @(-) and x € RY, the regression function, whenever it exists, is defined to be

m(¢,x) :=E(p(Y) [ X =x). (1.1)

A well-known estimator for the regression function m(-,¢), often used in nonpara-
metric statistics, is the kernel regression function estimator. This estimator is, under
suitable conditions, strongly consistent, i.e., it converges almost surely to the unknown
regression function at x. Similarly to the kernel density estimator of fx(-), which is,
under suitable conditions, strongly consistent. Because of numerous applications and
their important role in mathematical statistics, the problem of estimating m(-,¢) and
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Jx(-) has been a subject of considerable interest during the last decades. For good
sources of references to the research literature in this area along with statistical appli-
cations, consult [20], [51], [43], [53], [28], [211, [32], [50], [14], and the references
therein. However, a major problem with this approach appears in the estimation of
compactly supported or discontinuous curves at boundary points. In the kernel method
estimation, we typically require that the density satisfy certain smoothness conditions
like two-times continuous differentiability. In situations where the density does not
fulfill these requirements, the wavelet method is an attractive alternative that often per-
forms relatively well by the fact that it adapts automatically to the regularity of the
curve to be estimated. Wavelet estimators assume that the underlying curve belongs
to a function space with certain degrees of smoothness. The wavelet estimators do not
depend on the smoothness parameters; nevertheless, they behave as if the true curve is
known in advance and attain the optimal convergence rates. In the present contribution,
the smoothness assumptions on the underlying regression curve are considerably re-
laxed by using the wavelets methods in estimating functions in Besov spaces. For more
details on wavelet’s theory, we refer to [41], [17] and [52], among others. The statistical
curve estimation using wavelets methodology is surveyed in [35]. For wavelet linear
estimators in various settings, we can refer to ([37, 38, 39]), [57], [15, 16]. However,
the asymptotic normality of wavelet estimators has received little attention. [5] have
established strong consistency in the supremum norm, and the asymptotic normality
results for the wavelet density and regression function estimators in the setting of the
R -valued ergodic process. These results were extended to time continuous R -valued
ergodic process by [12], for recent references see [7, 6], [23, 22].

Our aim in this work is to relax the concept of mixing conditions that are quite
restrictive or even fail to fit some processes of interest; for instance, take an AR(1)-
input solution of the recursion

Xy = é(Xk—l+§k)7 keZ,
where b > 2 is an integer and (&),cy are independent and uniformly distributed ran-
dom variables on the set U(b) :={0,1,...,b — 1}. This process is not mixing in the
sense of Rosenblatt, as this is shown in [3] for b = 2; however, [26] proved that such
a process is weakly dependent. To overcome this situation, some new ideas of weak
dependence proposed by [26] and [4] leading to the dependence structure in terms of
covariance bounds of functions defined on Lipschitz bounded or bounded variations
spaces rather than uniformly bounded functions ones and sigma algebras as in mixing.
In the last reference, another type of weak dependence, was introduced. It turns out
that the notion of weak dependence is more general than mixing and allows for treat-
ment; for example, all the usual causal or non-causal time series are weakly dependent
processes: this is the case, for instance, of Gaussian, associated, linear, ARCH( ), etc.
Inference techniques for weakly dependent processes have gained importance because
of their relevance in modern applications. In this framework, only a few results on cen-
tral limit theorems have been investigated, refer to [27]. [19] in Section 2.2.3, proposed
dependence coefficients as distances of conditional expectations of quadrants indicators
such the supremum is taken over a sequence of o -algebras from the past and several
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points of the sequence of the variables defined on R%" in the future. We consider in the
present paper the weakest coefficient type of &(r), defined bellow, that is appropriate
for the study of the time series problems.

To the best of our knowledge, the results presented here respond to a problem
that has not been studied systematically until recently, giving this paper the primary
motivation. Indeed, our paper is to provide a first full theoretical justification of the
normality of the wavelet estimation for multivariate regression functions when the ob-
served data are assumed to be generated from an R?— process under weak dependence.
The present paper complements our previous work [2], where we have provided strong
uniform consistency properties with rates of the linear wavelet estimators over compact
subsets of RY.

The rest of the paper is structured as follows. In Section 2, we recall some basic
definitions for wavelets and Besov spaces. In Section 3, we give some details concern-
ing the weak dependence, Subsection 3.1, and introduce the linear wavelet estimators
of density and regression functions, Subsection 3.2. In Section 4, we give the assump-
tions with some comments and asymptotic normality of the linear wavelet estimators
together with an application for the confidence intervals. We conclude our paper with
some concluding remarks and possible future developments in Section 5. To avoid in-
terrupting the flow of the presentation, all mathematical developments are relegated to
Section 6.

2. Wavelets and Besov space

In this section, we briefly introduce notation corresponding to wavelets and Besov
spaces. First, we provide a general introduction to wavelet multiresolution theory,
which is detailed in [41] and [37, 38, 39]. Define {Vj}j“:l a multiresolution analy-

sis of L2(R?) ! as a decomposition of the space L?(R?) into an increasing sequence
of closed subspaces {V;: j € Z} such that:

(i) V; CVjy1, j€Z,where Z denotes the set of integers,
(i) N;V;=0, U,V;=L*R7),
(iii) f(x) €V, < f(2x) €Viyy, f(X)EV;= f(x+k)€V;, keZ9,

(iv) There exists a scaling function ¢(-) € L2(R?), integrated to 1 on R? such that
{0ux) = ¢ (x—k) ke 2’}

forms an orthonormal basis on Vo = span{¢(- —k)} of L (R?),

IThe vector space L,(IR?),1 < p < e is the set of all measurable functions such that [p [f(x)|Pdx < .

The norm is defined by
1/p
_ P
i, = ( [, roorax)
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by that, ' '
{¢jx(x) =279 (2/x — k) : k € Z¢}
constitute an orthonormal basis for V;. For the purpose of the paper, ¢(-) is supposed

to be r-regular (r > 1), i.e., the scaling function ¢(-) belongs to the class ¥ and
satisfies, for each i > 0,

C:

‘(Dﬁq)) (x)’ < W forall |B] <r, @2.1)

where C; is constant depending only on i,

<Dﬂ(])> (x) aﬂq)(x)

- aﬁlxl...aﬁdxd
and
d
ﬂ = (Bl7"'7ﬁd>7 |ﬁ‘ = ZBI
i=1
Take

VieW;=Vj.

Following the methodology of [17], one may derive N = 2¢ — 1 associated wavelet
functions {y;;i=1,...,N} such that

W.1) {yi(x—k):ke€Z?:i=1,...,N} is an orthonormal basis for W,
(W.2) the family {y; jk(x):i=1,...,N.ke 74, j € 7} composed by functions
Wi jk(x) =27y (2/x — k)
forms an orthonormal basis for L?(R?),

(W.3) y;(-) has the same regularity as ¢(-) and both functions have compact support
[~L,L]* for some L > 0.

Then, starting from an integer jo, any fx(-) € L>(R?) can be represented as

241 o
FX) =Y ajxjox(®)+ D D D bijxvijk(x) (2.2)
kezd i=1 j=jokezd

where, aj, k and b; jx represent the wavelet coefficients given as

Qjok = /R S (W)@, (u)du

and
bz}j,k:/Rdf(u)u/i,ﬁk(u)du-
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The orthogonal projection of fx(-) on some subspace V; C L?>(R?) can be written in
two equivalent ways, for any jo </,

(Pv.f) (x) ==Y arxdex(x)

keZzd
¢ N
= Y ajoxfiox(X)+ X, X, Y, bijkWiik(X). (2.3)
kezd J=Joi=lkezd

As usual in the wavelet estimation literature, the Besov spaces B , , are considered es-
sential for their exceptional expressive power in describing the smoothness proprieties
in functional estimation and approximation theory they contain a wide variety of ho-
mogeneous and inhomogeneous functions spaces used in statistical research. In terms
of wavelet coefficients, [41] characterized the Besov space as follows: for 0 < s < r is
a real-valued smoothness parameter of f € LP(R?), then f € B, ), ; equivalent to

B.1) Jupa(f) = P f s + (Sim0 (27 1B fllr)) " < o,

) a\ /aq
(B.2) JL,q(f) = llao-[l;, + (zm (2/(5-&-[1(1/2—1/17))“[71..Hl’)> ) < oo
with
1/p
llao - Il;, = ( Y laok ”)
kezd

N 1/p
16, = (Z Y |bi,j,k|p>

i=lkezd
and with the usual sup-norm modification for ¢ = e=. For more equivalent character-
izations of Besov space and its advantages in approximation theory and statistics, we
refer to [24].

and

3. Statistical framework

Now we give the notation and definitions needed for the detailed statement of our
results concerning the setting of the weak dependence conditions and the wavelet esti-
mator of the multivariate regression function. Let € and M be some positive constants
that may differ from one term to the other. |X||, := [E(|X|?)]'/P, and 14(-) is the
indicator function of A. Also for the numerical sequences of positive constants «,,
by, where {a,,n > 1} and {b,,n > 1}, we have the following notation: a, = o(by),
(The sequence a, is negligible with respect to the sequence b,,) if for all € > 0, there
is some integer ng € N such that a, < €b, forallintegers n > ng. a, = O(b,)
(The sequence a, is dominated by the sequence b, ), if for a relevant constant C > 0,
a, <Cb, forallintegers n e N. Similarly, the sequences a, and b, have the same
order, i.e., a, < b, if a, = O(b,) and b, = O(a,). Throughout the paper, any mathe-
matical symbol referring to a multivariate point X = (x1,...,x4 ) € R% will be print in
bold symbol.
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3.1. Weak dependence notion

The idea of general notion of weak dependence can be summarized in the fol-
lowing way. Consider two finite samples with time indices Pa in the past and the
future Fu, separated by a gap r. The independence of Pa and Fu is equivalent to
cov(gi(Fu),g2(Pa)) = 0 for a suitable class of measurable functions. A natural way
to weaken this condition is to provide precise control of these covariances as the gap r
becomes larger, and to fix the rate of decrease of the control as r tends to infinity. We
will precise in this section the dependence that we will consider. Let us introduce

=

L” = JL"(R"),
n=1
the set of real-valued and bounded functions on the space R" for n=1,2,.... Consider

a function g : R” — R where R” is equipped with its ¢! -norm (i.e., || (x1,...,%,)|[1 =
|x1] 4 - -+ |x,|) and define the Lipschitz modulus of g(-) as

(e — lg(x) —g(y)|
Liple) = Wby,

This paper deals with the estimation of the regression function by wavelet estimators
for a strictly stationary d-dimensional weakly dependent process. This investigation is
not reported in previous statistical frameworks. Besides, as was mentioned before, in
our contribution we give assumptions of ¢&-weakly dependence on the process. First,
we recall the definition of ¢(r) coefficient from [19, Definition 2.5].

DEFINITION 3.1. Let X be an R?-valued random process defined on the proba-
bility space (Q,.#,P). Let Xy,...,X, an n copies of X. For t= (t,...,t,) a n-tuple
of t; € R? and for x € R?, define

gti(x) = Lixey —P(Xi < 1),

The coefficient & (.#,X) is given by the equation:

o (A ,X) = sup
teRdn

)

/Hgtl Xi IP)X|// dX EHgtl

1

where Py , is the conditional distribution of X given .# a sub-sigma algebra of .7
Take (dy,dy) € N*? and write A(d,,dy,r) be the set of (i, ) € Z4 x Z® such that
Aldy,da,r) =iy < -+ <lgy <lgy +r < j1 < < gy,

where r = |ji —ig | > 0. Let (.#;)icz be the sequence of sub- ¢ -algebras of .7 . For
the general case when (X;);cz is a sequence of RY valued random variables, we define

Oy(r)= max  sup )5( (///,-, <X./1,...,Xq,»d2>> .

1<V<"(z J)EA(L,dy,r
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The main advantage of this definition is that it allows measuring the dependence be-
tween the sequences (X;)icz and (.#;);cz by considering d;-tuples of some process
X in the future. According to [19, Remark 2.4, p17]), in the special case of n =1,

=1, i.e., X is an R-valued random variable, the coefficient a(.#,X) was intro-
duced by [47] as follows

a( ,X) = supE[P(X <x|.4) —P(X <x)|.

x€R

Notice that the usual o(.#,0(X))-mixing coefficient defined by [48] satisfies
&M X) < o, (X)),
An R?-process (X;);cz is said to be &-weak dependent if

o(r) = sup ay(r), (3.1)
neN

tends to O as whenever the gap r between indices of the initial time series in the past
and the future terms goes to infinity.

PROPOSITION 3.1. [47, Eq (1.11c)] Let X,Y be a R-valued random variable
with E(Y) = 0. Then, we have

oY)
[Cov (X,Y)| < 2/0 Ox (u)Qy (u)du < 20 (A Y )P X Y |5,

where Qx| is the generalized inverse of X defined for any u € [0,1] by
Ox(u) = inf{x e R: P(|X| > x) < u}

and p,q and s are strictly positive reals satisfy p~' +q ' +s ' = 1. If X and Y are
almost surely bounded, the upper bound holds for p = 1,(q,s = ).

In the following proposition, we extract a covariance upper bound involving the
coefficient of & that will be used in the sequel.

PROPOSITION 3.2. Let (Q,.%,P) be a probability space.
Denote X; 4, := (Xj,,...,X; dl) an R random vector adapted # a o -algebra of
. Note Xj 4, := (Xj,,... ,dez) an R% -valued process distributed as X; and inde-
pendent of M , where |ji —iq | > 0 and satisfies ||X;||2 < eo. If Q is rich enough, for
a bounded function g(-), and Lipschitz function g,(-), the o -dependence coefficient

provides the covariance bounds as

lcov (g1 (Xiay) 82 (Xja2))| < Cllgt (Xi)[|Lip(g2)d2&2 (), (3.2)
where C =4 || X||2.

The proof of Proposition 3.2 is given in Section 7.
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REMARK 3.1. The last relation shows that a property of weak dependence follows
in the sense that the covariance of functions belonging to some regular spaces” tends to
zero as the time gap between the two blocks of observations increases. The ¢ -weakly
dependent in this setting satisfies the dependence notion of [26] > for

‘P(dl 7d27gl7g2) = CHgl H‘X’Llp(gz)dz

By choosing the dependence coefficient

=

0(r)=az2(r).

This includes the 0 -weak dependence (see [19]) which is the causal counterpart of
coefficients defined in [27]. The Proposition 3.2 assumptions can be verified for a large
class of Markov chains.

3.1.1. Examples of weakly dependent processes

The general concept of weak dependence has been shown to efficiently treat the
dependence structure of large classes of non-mixing models. To conclude this section
we give examples of Bernoulli shifts and Markov chains models for which the concept
of & -dependence holds, we refer to [25] and [ 19, Chapter 3], for detailed examples. Let
us introduce the following notions that will be used in the sequel. For some p € [0,9],
we define a non increasing sequence &; , such

1X: — X[ p < Sip, (3.3)
or |
(ENX; — X [[7) 7 < 6ip, (3.4)

for X is a random variable (or vector) distributed as X; and independent of .#, the
o -algebra generated by X;.

3.1.1.a. Causal Bernoulli shifts

Let u be a probability distribution on a measurable space (E,&’). Consider an

iid. sequence (&,),c; with marginal law u. Let v = u®% be the law of (&,),cy,

2The space of real-valued and Lipschitz functions.
3 Let Z be aclass of real-valued functions, such that for each L(-) € .# there exists an integer n > 1
such that L(-) is defined on R”".

DEFINITION 3.2. ([26]) The sequence (X,),cy of r.v.sis called (0,.7,y)-weak dependent, if there
exists a class .7 of real-valued functions, a sequence 6 = (6(r)),cy decreasing to zero at infinity, and a
function y with arguments (h,k,d;,d») € .F* x N? such that for any d; -tuple (ih...,idl) and any d -
tuple (jl,...,jdz) with iy <+ <@y <ig, +7r < jI <+ < ja, , One has

(Cov (n (Xiys o Xy, ) ok (XX, ) )| < Wl )0 (),

for all functions h,k € .Z that are defined respectively on R% and R% .
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on the space (EZ,éZ'@Z) . Then LP(E?) is the space of measurable functions v -a.s
defined on EZ and such that

E[H ((&)pez)|” < o

Analogously, we let v = u®N for the law of (&,),cy on the space (EN,&%N) A
Bernoulli shift is an L? -stationary process defined as

Xi=H ((é,;j)jez> ., forsome H e LP(EYN).

A causal Bernoulli shift is associated with H € L” (EN ) . To obtain a bound for the
coefficients, we introduce some regularity conditions on function H(-). In the follow-
ing, we consider two special cases of causal Bernoulli shifts. When the innovations &;
are assumed to be independent and identically distributed, we refer to the causal shifts

with independent inputs. Suppose that (3.3) satisfied with X" = H < )€ Z) , such
g =& if j>0and § = ¢; for j <O for an independent copy <§;> - of (&)
: i) je

and .#y = o (X;,j <0). If Xy has continuous distribution function, with modulus of
uniform continuity @(-), then the Bernoulli shifts X; are & -dependent with

Op.i
%(r) <2r | —2=— | p,
(gpl(5p,i)>

where g,(y) = y(w(y))"/?, for p € [0,o0[. Furthermore Assume that X, has a con-
tinuous distribution function, with a modulus of uniform continuity @(-). Then, we
have

jez>

éci(r) <ro (5007,').
The same results are verified, for causal shifts with dependent inputs, by taking the
bound (3.4).
3.1.1.b. Markov sequences

Let (X;),>1_4 be a sequence of random variables with values in a Banach space
(R, ]| -|). Assume that X,, satisfies the recurrence equation

Xn:H(Xn—lr"?and;&n)a (35)

where H(-) is a measurable function with values in B, the sequence (&,),. is i.i.d.
and (&,),-o is independent of (X,...,X;_1). Note that if X, satisfies (3.5) then
the random variable Y, = (X,,...,X,—q4+1) defines a Markov chain such that Y, =
M (Yn-1;&,) with

M(X17...,Xd;§) = (H(xla'"7xd;5)7x17'”7xd—1)'

Assume that (X;),,_; is a stationary solution to (3.5). Let Yo = (Xo,...,X14), and
let Y = (Xg s X d) be and independent vectors with the same law as Y (that
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is a distribution invariant by M(-)). Let then X = F (X} |,.... X} ;;&,). Clearly,

for n > 0, X, is distributed as X,, and independent of .Z, = G(X”l d<i<0).
Assume the bound (3.4), then the same results for Bernoulli shift are verified with same
assumptions on distribution functions. Suppose

| d

d
(E||H (x;&1) — H (v: €))7 < Zalllxz vill, Yai<l. (3.6)
i=1

If (3.6) is verified for p = 1 and the distribution function Fx(-) of X, satisfies
|Fx (x) — Fx (y)| < K|x—y|", fory €]0,1],
then,for p € [0, 1], we have the upper bound

a(r) < 2nk Y/ DY/ pry/ (v 1)
If the condition (3.6) holds for p = o, then

a(r) < nKC*p".

3.2. Linear wavelets regression estimators

Let {X;,Y;} be jointly stationary processes and @(-) be a Borel measurable func-
tion on the real line. This paper aims to give the result of the asymptotic normality of
the regression function estimator of

m(x,p) =E[p(11) | X1 =x],

for x € Rd, whenever it exists, i.e.,

E(leM)]) <

Our model includes some special cases of regression models (1.1) depending on the
choice the function @(-), in particular the following ones

o ¢o(Y)=1{Y <y} gives the conditional distribution of ¥; given X; =x.
e ¢(Y) = Y* gives the conditional moments of ¥; given X; = x.

For more details and motivation one can see the work of [5] and [11]. In the following,
we suppose that

Ello(11)|P] <<, p =3, (3.7)

and we take in addition, an n-observations {X;,Y;} ; random variables from (X,Y)
that is supposed to be stationary and weakly dependent. Similar to the setup in previous
works, our estimator of m(@,x) will be obtained by taking the ratio of wavelet estima-
tors of g(¢@,x) =m(x,9)fx(x) and fx(x), with fx(x) is an unknown density function
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of X. Firstly, from (2.2), the linear wavelet estimator of fx(x) € L?(R?) is introduced
by
X)= Y Grkfrk(x) (3.8)

kezd

or, equivalently, as

||M2

Z ajokq)Jo k(X Z

2 uk‘lfw k(x (3.9)
kezd c7d
with @ jok and Z,- Jjk are the unbiased empirical estimates of the coefficients {ank} and
{bijx} respectively, that is,

=N 1& ~ 1 &
k=~ Y 0:x(Xi), and by = - Y wijk(Xi) (3.10)
i=1 i=1

and for any fixed jy < 7, where 7 = 7(n) expresses the resolution level as a strictly
positive integer depending only on n, tends to infinity at a rate specified below. Remark
that the regularity and the compact support conditions on ¢(-) and y(-) ensure that the
previous summations are finite for any fixed x, which is important in practice. Note
that in this case the support of ¢(-) and y;(-) is a monotonically increasing function of
their degree of differentiability [17]. Now, notice that g(¢@,-) € L?(R9). It follows that
g(@,-) can be represented on a wavelet basis and its linear estimate can be obtained by

X)= Y, drydrk(x), G.11)
kezd
or, equivalently, as
T N
2 a}okq)JOv 2 2 2 zjklIIl,J k (312)
kezd j=Jjoi=1kezd
The coefficients estimators are given respectively by
1 n
dry = . 2 O ()0 i (Xi), (3.13)
i=1
and
bl = 2 (Y i jx(Xi), (3.14)

for any jo < 7. From the practical point of view, the multiresolution properties of the
wavelets provide an implementation of an estimation algorithm convenient in compu-
tation, with an important saving of memory. Indeed, the bandwidth for this strategy is
essential, minimized to the form 2/ for j easy to be selected and only a small number
of values of j (say three or four) need to be considered in practice, [34].
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4. Assumptions and main results

In this section, we state our results on the asymptotic normality of the wavelets
regression estimator with weak-dependent data. Below, we introduce general forms of
the Nadaraya-Watson kernel estimator of m(-, @) ([42] and [55]), and of the Akaike-
Parzen-Rosenblatt kernel density estimator of fx(-) ([1], [49] and [44]). Let the kernel
K(-) be any function satisfying some regularity conditions and (4,),>1 be a sequence
of positive constants converging to zero and

nh? — oo as n — oo,

The kernel-type estimator of the density function fx(-) of X is given, for x € R?, by

1 & (x—Xi
Sy (X) 1= o YK (X ; ) : (4.1)
n j=1 n

[44] has shown, under some assumptions on K(-), that f, ; (-) is an asymptotically
unbiased and consistent estimator for fx(-) whenever h, — 0, nh¢ — o and x is
a continuity point of fx(-). Under some additional assumptions on fx(-) and h,,
he obtained an asymptotic normality result, too. The general kernel-type estimator of
m(-, @) is given, for x € RY, by

P(Y)K((x—Xi)/hn)
nen, (%, @) 1= = : (4.2)
S K((x—X0) /)

i=1

M=

By setting ¢(y) =y (or @(y) = y* ) into (4.2), we get the classical Nadaraya-Watson
kernel regression function estimator of m(x) := E(Y | X = x) given by

YiK((x = Xi)/hn)

M=| L=

~ 1

M, (X) =

, (4.3)

K((x=Xi)/hn)

i=1

or
n

> Y K((x—Xi)/hn)
e, (X) i = == . (4.4)
;K((X —Xi)/hn)

[42] established similar results to those of [44] for 7, (X) as an estimator for E(Y |
X =x). By setting ¢ (y) = 1[y <1], for t € R, into (4.2), we obtain the kernel estimator
of the conditional distribution function F(¢|x) :=P(Y <7 | X =x) given by

31 <OK((x—X0) /1)

~ i—1
Fn;hn (t ‘X) = :

(4.5)

n

Y K((x—Xi)/hn)

i=1
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These examples motivate the introduction of the function ¢(-) in our setting, we refer
to [5] for details. Return to our main concerns with the wavelet type estimators. For
u,v € RY, we define the kernel K(u,v) by

Kuv):= Y ¢(u—Kk)o(v—k). (4.6)
kezd
Using the fact that
Adi
[9(x)| < A+ x&

we infer that the kernel function K(-,-) defined in (4.6) converges uniformly in u,v €
R4, in the sense that

sup | Y, ¢(u—Kk)o(v—K)| <o,
u,veR? |kc7d
and satisfies, for any j > 1, ([41], page 33)
C.
K(v,u)| < e, 4.7)
(L+lv—ul)/
for some constant C;. From (4.8), it follows that
[, IK(v.w)lay < 6;(), (48)
R
where L(@)(+d(j— 1)
d(j— ‘
G,(d) =219/ / e
i F@/2)T((@-+ 1)) 4!
and T'(¢) is the Gamma function, that is,
I(r) == /O Y~ lexp(—y)dy.
Furthermore, we have with assumption given on ¢(-), for || =1, ([41], p. 33)
0K C
()] 2L i=1,...d 4.9)
du; (I+ [lu—v])

By combining (3.8), (3.10) and (4.6), we observe that the linear estimates of the regres-
sion function 71,(¢,x) can be written as an extended kernel estimator for

1 X; B
Kth(Xi) = th (hi’ h_> and h, =2 T("),
n n n

as follows

~

gl’l((p7x) — 7/7\12 n((p

)
- =

fx(x) mi (;‘

f), if fu(x) £0,
rﬁn((p,x) =

1 n
- 2 0(Y;), otherwise.
nis
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for
n
ZKhn:x(Xl)
mln((P,) m
z(p Khx
My, (@,x) = W

Our main result concerning the asymptotic normality of the wavelet regression estima-
tor is stated under the following assumptions:

(A.1) Let {X;,Yi};>1 be an R? x R-valued stationary and & -weakly dependent pro-
cess defined on a probability space (Q,.<,[P) such that the dependence coeffi-
cient satisfies .
Sitla
i=1

Nl—

(i) <oo.

(A.2) (i) The density function fx(-) of X; is continuous and, for all x € RY there
exists M a strictly positive constant such that

0< fx(x) <M.
(i) Let fx, x;() be the joint density function of the pair (X;,X;) satisfying

sup fX,-,Xj (va) =M < eo.
(x,y)e[-2L20]*

(A.3) The conditional variance o (x) = E((@(Y1) —m(¢,x))*|X;) exists and contin-

uous in some neighborhood of x € R? in the sense that

sup |02(u)—0(f,(x)}:0(1) as h—0.
{u:|Jx—ul|<n}

(A.4) The regression function m(-,) is continuous in some neighborhood of x € R¥,
that is

sup  |m(g,u)—m(g.x)| =o(1) as h—0.
{u]x—u[<h)

(A.5) Let p=p(n), g=q(n) be an integer valued sequences tending to e with n such

q is greater than p and satisfy p? +¢° = o(n). Put k:=k(n) = {ﬁ} — oo, such

that 1;_4 — 1 and
k

NG

(A.6) (i) The multiresolution analysis is r-regular.

&2 (p) — 0. (4.10)
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(ii) The density f € By 4 forsome 0 <s <71 < p,g <.
(iii) The function g € By, 4, for some 0 < s <r,1 < p,q < oo

Comments on the assumptions: The assumption (A.1) involves the stationary
and the relaxed condition of & -weakly dependent for the process (X;,Y;). The condi-
tion on the coefficient & is equivalent to the standard assumption of the Riemaniann
decay &(r) = O(r ),A >4+ % Note that for an exponential decay assumption on
the coefficient &(r) = O(exp(—Ar),A > 0, the condition is automatically satisfied. The
assumption (A.2) are mild conditions on the joint and marginal probability distribution
and the joint density function of the process (X;,Y;);cz, commonly used in the nonpara-
metric curves estimation literature. We mention that the smoothness conditions (A.3)
and (A.4) are similar to those in [5] and [12]. These later assumptions play an impor-
tant role in studying the asymptotic variance terms. The assumption (A.S) is linked to
Bernstein’s blocking approach that we need in the proof. If we take g =n? and p =nP,
for 0 < B <y and v €]0, %[, clearly we have p?>+¢*> = o(n) and k= O(n'™") — o
So, kn—q — 1. One can see that when @& has the geometric decay, the condition (4.10)
is fulfilled without any additional requirements. On the other hand, for the Riemanian
case, i.e., (0(j) =0 "), A >4+ %), if we take 2y+BA > 1 the condition (4.10) is
equivalent to

k.
—0a

1
= 0 —_— =0 1 .
22 0)=0(— ) o)
Hence the Theorem 4.1 conditions can be verified for a reasonably choice of the param-
eters ¥ and . We may take as example, 3 = %,y = % The assumption (A.6) is im-
portant to approximate the bias on the generalized space of Besov (B, ; for s > d/p).

Nl—

. 9 .

Below, we write Z — .4 (u,?) whenever the random variable Z follows a nor-
mal law with expectation u and variance 6. Our main result is summarized in the
following theorem.

THEOREM 4.1. Assume that
T=1, —o, Vn2-d+2B)T 0 as n— co.

If the Assumptions (A.1)—(A.6) are verified, then we have

V24 (i, (@,%) — m(@,x)) 2 A (0,%5),

where — means the convergence in distribution and

> 2
3o =35 (x) 1= 0,(x) /Rd ( D ¢(0+k)¢(v+k)> dv,

Sx(x) kezd

where 0'3, (x) is given in (A.3).

An application of the Slutsky theorem gives the following corollary.
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COROLLARY 4.1. Assume that
T=1, —o0, V02 d+2B)T 0 as n — oo,
If the Assumptions (A.1)—(A.6) are verified, then we have
V2=, 71y (@,%) — m(,x)) % A (0,1)

where f% is given in (4.12).

From Theorem 4.1 and using the same reasoning of [5], we have the following
corollary.

COROLLARY 4.2. Assume that
T="1, =00, Vn2 d+2B)T 0 as n — oo.
If the Assumptions (A.1)—(A.6) are verified, then we have
V2 I (fe(x) = fx(x) % A (0.57),
where

2
2= 32(x) := fx(x) /Rd ( D ¢(0+k)¢(v+k)> dv.

kezd

REMARK 4.1. The conclusion of Theorem 4.1 is similar to the result of [27], for
the uni-dimensional Parzen-Rosenblatt kernel density estimator defined in the Holder
space, under the notion of W¥-weak dependence of y := cLipfLipg, (resp. ¥ :=
min (Lipf,Lipg)) with an arithmetic decay of the dependence coefficients 6(r) =
O(r~(12+9)) (resp. O(r) = O(r~*+9))), for some strictly positive constant & .

REMARK 4.2. For some constants § >0 and p > 2, if E|X;|” < e, we have, by

Markov inequality
Ex|P  /C\PT®
Pix> < B < (€)™,
ep €

—1
implies that Qx (u) < Cur+3 | and for any positive constant 0 and 7 € [0, 1], we have

1—

i T p S -, .
/ Qf((u) <C/ u piédu: %Ctl E= :C;_at pﬁS. 4.11)
0 0 ’
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4.1. Confidence interval

The asymptotic variance Z%p in the central limit theorem depends on the unknown
functions (of the conditional variance of ¥ given X and the density function fx(-) of
X)) should be estimated in practice. The estimation requires a choice of some bounded
compactly supported family of discrete wavelets founded from literature (such as the
commonly used [17] wavelets) for multiresolution level 7, large enough and an adap-
tive initial level jo. We select the unknown parameters through the wavelet methods
and plug-in approach. Using the estimators (3.8) we establish Z%p a consistent estimate

of the variance X, given by

o 02x) ’
z, ::A—/d Y 0(0+k)p(v+k) | dv, 4.12)
fx(x) /R kezd
where 83, (x) is the plug-in estimate of the condition variance 0'(% from the observed

data, that is

82 (X) o ﬁl"((p?;()

@ r?zhn(x ’
where N
i3 (@, X) = Zdaj/ok(ijk(X)"' Z 21 Zdb;/jku/i,ﬁk(x)' (4.13)
KeZ! j=joi=1kezZ

The considered coefficients estimators are given respectively, for any jo < 7, by

n

=3 {om) —ﬁzn(cp,x>}2¢f,k(x,->,

niz

and
~ 1 N 2
k= D {(P(Yi) —mn((P,X)} Vi ik (Xi).
i=1
Furthermore, from (3.11) and (4), the approximate confidence intervals of m(¢,x) can
be obtained as

nhd

n

_ )
m((p,x) € [mn(max) + Ca—¢]
where ¢, denotes the (1 — % )-quantile of the standard normal condition.

REMARK 4.3. In this paper, we have considered the confidence interval appli-
cation. Since main the result is focused on the pointwise asymptotic normality, the re-
sulting confidence interval is pointwise too. However, construction of confidence bands
tends to be challenging, especially for complex nonparametric models (we refer to [54],
[33], [31] as general references on confidence bands in nonparametric statistical mod-
els). Despite the rich literature on consistent estimation of nonparametric regression,
the literature on uniform confidence bands for nonparametric regression by the wavelet
methods is limited. [30] have investigated a linear wavelet estimator and proved strong
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consistency when the level of smoothing, i.e., the level of approximation of L?(R?)
by such multiscales, is allowed to range in some interval depending on n. To obtain a
uniform limit theorem with respect to such parameters, the authors make use of modern
empirical process theory. As a statistical application, [30] proved that essentially the
same limit theorems can be obtained for the hard thresholding wavelet estimator intro-
duced by [24]. In a similar spirit, [56] presented the rates of uniform strong consistency
of wavelet estimation for nonparametric function in sup-norm loss by introducing an
empirical process approach. [29] provided new uniform rate results for kernel estima-
tors of absolutely regular stationary processes that are uniform in the bandwidth and in
infinite-dimensional classes of dependent variables and regressors. It will be of interest
to extend the last findings to our framework. The proof of such a statement, however,
should require a different methodology than that used in the present paper, and we leave
this problem open for future research.

5. Concluding remarks

The present work is mainly concerned with the convergence in distribution to
Gaussian processes as well as the construction of confidence intervals of the multi-
variate wavelets regression estimators from a stationary dependent R? -process. The
dependence assumption on the sequence of random variables is relaxed by using the
concept of weak dependence condition given by [26], which takes advantage of cov-
ering large classes of interesting models used in econometrics that classical mixing
properties can fail to hold as Bernoulli shifts, Markov processes, among many others.
It is well known that wavelet estimators outperform kernel ones in representing discon-
tinuities. However, for inhomogeneous curves (i.e., case when 1 < p < 2) or that with
unknown regularity, the linear smoother methods present some drawbacks to reach the
optimal minimax rate of convergence. To circumvent these problems, one can use the
nonlinear wavelets of soft or hard thresholding estimators, which requires nontrivial
mathematical development and we leave this problem open for forthcoming research.
It will be of interest to consider the problem of the conditional U -statistics, investigated
by [10], [9], [8], [13], using the wavelet estimation.

6. Mathematical development

This section is devoted to the proofs of our results. The previously presented
notation continues to be used in the following.

Proof of Theorem 4.1

Keeping in mind that the setting of Section 2, the kernel K(-,-) is compactly sup-
ported satisfiying

K(u,v) =0 as |u;—v;| >2L, fori=1,....d,
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and
/ K(x,x+u):/ K(0,u)du = 1. ©.1)
Rd [-L.1)¢

We have, by assumption (A.2)(i) and equation (6.1), for n large enough, we have

Efy (x) = EKp, x(X1) =/ K (hi’ hi —l—u) f(x+uhy)du

[—2L20)?
=f(x)+o(1) > 0. (6.2)
Define
S Kp, x(Xi) —~
My p(X) = Zi : S ()

" nEK;, x(X1)  EKj (X))’

y i x(Xi
i;(P(Y)Khn, (Xi) an(o.x)

l’lEKhmx (Xl) B EKh X(X,‘) '

ns

ﬁ2,n ((P,X) =
We consider the following decomposition

ﬁln((p7X) - m(q)7x) = ;ﬁn((p7x) - Efr\ln((p7x) +Eﬁln((pvx) —m((p,x)
_ Qn(;;)l +(;J;(X) +By(x),

where
0u(X) = 2, (X) ~ Btz n(X) = 11(9, %) 11 (X) — B (X)),
Un(X) = B (%) (B (%) = 1 ().
(B2 (x) = 8(x)) = m(x) (E£, (x) = (x) )
B, (x) = — .
Ef(x)

In what follows, we obtain our main result of Theorem 4.1 from some lemmas estab-
lishing respectively, the asymptotic convergence in probability (noted op(1)) of the
term 7 ,(X), asymptotic convergence in probability of the bias term and the asymp-
totic normality of Q,(x). Using the relation (6.2), we have the following lemma.

LEMMA 6.1. Under the assumption (A.6) and

d+2(s—4)

nhy, P70, as n—eo, s>d/p,

we have

4
nhiB,(x) = 0( it 20 ,,>> —o(1).
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Proof of Lemma 6.1. The study of B,(x) of the regression function m(¢,x) is
purely analytical and does not depend on the dependence properties of the sequences
(Xi)iez - Following [39, Lemma.2], the assumptions given in (A.6) satisfy, for s > d/p,
hn = 277(}1)7

sup [Ef (x) — £(x)| < CRS P00, (),

x€R4
sup [Eg(x) ~ 8(9)| < Cihi ™"y g s).
x€Rd
and sup |g(x)| < eo. Thus from (6.2) we deduce the following bound
x€R4
4091 < gy |90 800 s+ | £ sup [B 00— )
UEKth (X1)| XER‘] fX XER‘]
—0 (h,(f_d/ ”)) . (6.3)

The upper bound result in (6.3) with assumptions of Lemma 6.1, allow to obtain

\/nhdB,(x) = o(1).

Hence the proof is completed. [

REMARK 6.1. Note that for a choice of £, :=2"% =< n~? for some d+2(1s—4) <
P

o<l

7> We conclude that

d+2(s—4
Ty — 0, Vi 7Y) Z0 and i — oo

LEMMA 6.2. Under assumptions (A.1) and (A.2), we have
min(x) —1=op(1).

Proof of Lemma 6.2. We can see that E(/, ,(x)) = 1, then by Chebyshev’s in-
equality, it is sufficient to show that Var(7; ,(x)) — 0. Note that

Var(niy ,(x)) :var( "E(K;, (X)) Z’Kh’”‘ . )
1
B2 (K, (X1))
2
T PE (K, (X))

Var (Kh,,,x (Xl ))

> Cov (Ky, x(Xi), i, x(X)))
ij=1
i<j

=01+ 0s. (6.4)
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The right term Q; may be sub bounded as following

1 C 2 1
WVM (Khn,x (Xl)) - ;]E (Kh,,,x (X1>) — Z

:% [ K (hﬂu> x (hyu)du+o(1)

< %MGg(d) =o(1). (6.5)

Next, we evaluate the term Q» on the right side of (6.4). The stationary assumption on
X in combination with (6.2), we readily infer that

2

0= o (Kh X

2 n— j)Cov (K, x (X1), Ky, x(X;))
j=2
< W Z,z}COV (Kix (X1) K, (X)) |
S+ 3

j=2  j=cp+l1
=021+022, (6.6)

where ¢, be an integer sequence such that ¢, = o(n) tends to infinity. Notice that we
have

|Cov(Kp, x(X1), Kn, x(X;))]

Cov(Kh x(X1),Kn, x(X;))

T /Rd /Rd< )K< )fx1 x, (u,v)dudv
i (o (o) o)

= K|{—,— K hy n
/]Rd/]Rd (hn,hn+u> (h T +V)fX1X2(X+ u, X + i, v)dudv + o(1).

An application of Lebesgue dominated convergence theorem gives
/ / K<X X+u)K< —|—v>f (X + hyu, X + h,v)dudv
(—ororjd Jiarard \ hn By hy by X1, X2 n n

2
X X
- K(—,—~
Fra x5 (0, %) ' </[—2L72L]d (hn " hy, +u> du)

|C0V Kh, X(Xl) Ky, X(X ))’ <M/G2(d)

<M'G3(d).

Thus, we infer that

and

021 20(%> =o(1). (6.7)



502 S. ALLAOUI, S. BOUZEBDA AND J. LIU

The second term Q5 on the right hand of (6.6) is bounded using the weak dependence
condition. Recall that, forany j € Z, X; = (Xj,,...,Xjq) is an R?-valued process sat-
isfying the & -dependence. By stationary and the fact that kernel Kj,, x(X;) is bounded
and Lipschitz continuous function in RY — R, with

1
LlpKhn,X(X ) = 0 <W> y

also we have by (4.7),

Ky xlleo < 5 Cav1-

hd
Using the relation (3.2), we get the following bound

n

022= 7 3 1Cov (K, x(X1), K x(X) |

Jj=cn+1
C L C

2T 2 a2 (i) < R 2 i
n 1=cp i=cp

If we select ¢, = h,? = o(n), we have ¢/ "'h2?*1 =1 provided that v = 1+ 1. By
assumption (A.1), we get

022 =o0(1).
This when combined with the results (6.5) and (6.7), lead to

Var(7iy ,) — 0.

This permits to conclude that 71, (x) converges in quadratic mean to E(m;,) = 1.
This implies the probability convergence expressed in the Lemma 6.2 as n — oo. [

The above results given in Lemma 6.2 and Lemma 6.1 mean that B, (x) and U, (x)
are asymptotically negligible, as n — o=. Hence, to prove the result of the Theorem 4.1,
we should only consider the Lemma 6.3 for Q,,(x).
LEMMA 6.3. If the assumptions (A.1)—(A.5) are verified, we have, as n — oo
niQu(x) 5 N (0,25),
where Z(zp is defined in Theorem 4.1.

Proof of Lemma 6.3. Let us introduce the following notation

1=\ (0(1) — m(.%)) K, x(Xy),

and

nhi Qn(x) =

}’117

I M:

7
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where |

7 .= .
TR (Kh,,,x (Xz)) (éhml
The proof make use of the Bernstein’s big-blocks and small-block procedure. We divide
the set {1,...,n} into 2k+ 1 subsets that we note for m={1,...,k}, l,, = (m—1)(p+
q) and

—E&,,.).

sm=(m—1)(p+q)+q.

We define the following sequences:

k Im+q
S;: = 2 Cn,m: 2 < 2 Zn,i)a

m=1 m=1 \i=lp+1
k k Sm+p
", r
Sii= 2 bm=2 | X Zui)
m=1 m=1 \i=su+1

"n.__ =1 .
St=0l= Y Zui

Then, the sum S, := Y| Z,; can be splitted as
Sn=S8,+S,+S.

To prove (6.3), we should show that both of ﬁSﬁ[ and \}S;l” are asymptotically negli-
gible, which implies that

% [E(S))? +E(S))*] — 0, (6.8)

and S’ is asymptotically normal distributed as

k
2 H(0,52), (6.9)

Bl

We first write

2 k
B(s!)? (z cnm> :Var<z c,z,m)
m=1 m=1
=kVar(§r ) +2 Y Cov(y s G- (6.10)
1<m<m/<k

We have

Sm+p
Var( r/t,m) = Var 2 Zn,i

i=s;+1
= pVar(Z,1) +2 D Cov(ZnisZy j).

S L<i< j<sm+p
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Clearly Z,; is real valued centred random variable with

Var(Z, ;) ! ) Var(&,, i)-

; E2 (Khmx (Xl)
Conditioning on X; and using the assumptions (A.4) and (4.8) we deduce that

E*&,i = WIE? [(@(Y;) — m(9.x))Kp, x(X7)]
< sup  [m(u, @) —m(@,x)"E* (|K, x(X)|) = o(1).

u:||x—ul|<h,

Therefore
Var(&,:) =E&; | +o(1).

Denote

E&;, 1 = HE [(9(11) —m(9.x))’K, x(X1)]
= Wy [y, x(XDE((@(11) —m(9,%))*X1)] -

From the definition of the conditional variance, we have
E& = MiE [Kj, «(X1)Var(p(¥1)[X))]

+ hZE [Ki%nx(xl)(m(xl ’ (P) - m(q)7x))2]
=A|+A;.

Write

= hid/Rd(of,(u) —0g(x))K? (%;) fx(u)du

O'%(X) 5 X u
+ nd /RdK (E’E)fx(u)du

=A1+A.

Making use of the assumption (A.2)(i) and that on conditional variance given in (A.3),

we evaluate the term Ay ; as follows

A< sup |op(u)—op }/ (— ——i—v)fx(x—i-hnv)d
wl|x—ul|<hy, R4

= o(1)MG>(d) = o(1).

Thus we have

A = o‘é(x)/wl(2 (hi’hi+v> Sx(x+h,v)dv+o(1).

(6.11)
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Similarly, by using the assumption (A.4), we get

Ay = HE [(m(X1,9) — m(9,x))’K; (X))]

< sup |m(u,p)—m(gx)P [ K (57 = +v> Sx (X +hav)dy
w|[x—u||<hy Rd hy " hy
= 0(1)MG,(d) = o(1). (6.12)

On the other hand, from (6.2), we have
E2 K, x(X1) = (fx(x) +0(1))* = fZ(x).
By combining the last result with (6.11), (6.12) and (4.8), we deduce that, as n — oo,

2
Var(Zy.1) — ;;0((3 /RdK2 (%7:—n+v)dv<m. (6.13)

Thus
pVar(Z, 1) = O(p). (6.14)

Now, by stationary, we have for some ¢, = o(p) tends to o= with n, the following:

Sm+p )4
> Cov(ZiZuj) = D, (p—J)CoV(Zy13Zn )
i\ j=sm+1 =

i<j

Cn P
<p (z |COV(Zn,lazn7j)| + 2 COV(Zn,laZn7j)|> .

Jj=2 Jj=cn+1
An application of Cauchy Schwartz inequality gives
|Cov(Zy,1,Zn,j)| < Var(Z, 1),
and
i |CoV(Z,1,Znj)| < caVar(Zy,1). (6.15)
j=2

Recall that (Z,;)i>0 is sequence of stationary centred random variables with
E|Zyi|* = E|Z,1|* = Var(Z,,) < .

The Lemma 3.1 combined with inequality (4.11), for 6 = 2, in the Appendix give the
following result

aj—1) )
Cov(Zun,Za)| <2 [ 03, (u)du

(j—1). (6.16)

D=

=2C 0
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The assumption (A.1) and the fact that ¢, — o with n, clearly gives

D

2 ‘COV(Zn,I» n,j)
Jj=cn+1 i=cy

I\JI'—‘

41
tig

This when combined with (6.15), readily implies

p
2 [CoV(Z,1,Znj)| < caVar(Zy1) +o(1).
=1

We have

Sm+p
Var(C,'“m) = Var 2 Zni

i=sm+1
)4
= pVar(Z,1)+2p 2 |Cov(Zy,1,Zn,))]
j=1
< pVar(Zy1) +2p* (Var(Z,1) +o(1))
=0(p?).

=o(1).

(6.17)

(6.18)

Note that by setting m’ = m+ 1, we get s,y = s, + (p+¢). In a similar way as in

(6.16), by choosing ¢, = p, one may bound the right part of (6.10) by

2 COV( nmo )
1<m<m'<k
Sm+p Sm+p
2 COV 2 Zn’i7 2 Znaj+p+q
1<m<k i=sm+1 J=sm+1

(k=1)(p+q)+2q
< D |Cov(Zy,isZn,j)]

j=p+2p+1
lj=il>p

=

< Y |CoV(Zu,Znj)| = o(1).
j=p+1

Combining the results (6.18) and (6.19), we obtain
E(S3)* = 0(p?).
Notice that

Ckp+a)=(p+q) (ﬁ—k) <2

Following the similar steps of the proof of (6.18) for p := ¢, we get
E(S))* = Var{)l,,

= Y VarZ,i+2 D Cov(Zyi,Zy j)
i=k(p+q)+1 k(p+q)+1<i<j<n

(6.19)

(6.20)
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n—k(p+q)
VarZ,i+2 Y, Cov(Z,1,Zy)
=2

h q
VarZ,,7,-+2<2|Cov(Zn71,Zn7J-)|—|— 2 |Cov(Zn71,Zn7J-)|>]

j=1 j=cp+1
=0(q?). (6.21)

< (n—k(p+gq))

<2q

This when combined with (6.20) and (6.2), gives

2 2

P q
sy P +Bs7 =0 (2 + L) o,

1
nk (Kh,l,x (X ))

Now, the proof of the asymptotic normality of S’ in (6.9) is based on two steps. Let us
begin by checking the Lindeberg-Feller conditions. More precisely, we verify

k
I ) s
,}Eg,n]E (Khn,x(X ) mg Egmm Z(P’ (6.22)
and
1 }k: - (g2 ! ) 0 (6.23)
L ; |
nE (K, x(Xi)) /= nm | G| > €2 \/1

Recall that, when n — oo, % — 1. The similar calculus as that for the proof of (6.19)
for p :=q yield

k k
2 E rim = 2 Var(Cmm)

1
nm:l m=1

1 Xk In+q lntq I+
==y Z Var(Z,) +2 Y, Z Cov(ZnisZnj)
=1 | i=iy, i=ly+1j=1 1+1
o(1)
— Var(Z, ).

Put, for x € [-2L,2L]¢,

\ (D;;IJ PZA ) ,

where [x] denotes the integer part of x and [x] < x < [x] + 1. Thus, by the fact that

K(u,v) =K(u+k,v+k), fork € 24
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we deduce from (6.13) the following:

1 & 1 62(x) X X X X
lim- 3 B2, = lim - -2 /K2 X X _XNiy)a
”gg‘”m:l Crm = lim ~ ) Jra \n b tvav

_ 0y(x) 2

_fx(X)/ K= (0,v)dv
—O-(%(X) (0+k) k 2d
_fX(X)/R 2 90+k)9(u+k) | du

kezd

2
=32,

Making use of Holder (for &= %) and Markov (of order 2) inequalities, we get the
following bound

k
Z]E( n,m \gnm\>822 nEzK/m,x(Xl)>

3 =

m=1

nEth x

1 1

2
n]Eth X Xl (‘Cn,m‘ > £Z$\/ﬁ)i|

1
C—
nEthn’x (Xl)

2
3

3 | Elunl?)

3
m=1 (82%0 nEthn,x(Xl)>

T

(E2K),, (X1))? mci

On the other hand, recall that |x —y|* < (|x] + [y])¢ = Z Ck\x\ ly|“~*. Thus by the

definition of Z, ;, the equation (4.7), and if we take COIldlthIl (3.7), we obviously infer,
forany i € N, that

3 3
5 3
E|ZpiP < Y ChiE| (oY1) — m(9,x))K, x(X1)]
k=0
3
<31C3 M E|o())} < oo

The use of Lemma 7.1 in the Appendix, for the order p = 3 along with (4.11) gives the
following:

Im+q 3 3 1 q 3/2
BlGl =E| Y 7 <(60)? (Znu@m) 03, (u)du
i=ly+1 0 r=0

3 1
5 6q / 2(r+ l)zﬂu<ﬁc(r)Q%,,>_,-(u)du
=0
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<6q>ri0[r+1 [ 05, o]

(69)2 }q)(r+1)%a(r)1*3%s,

r=0

t\)|w [\)|w

The later result when combined with equation (6.2) and the fact that kn—q — 1, we have

k
Ethn’ (X1) 2E< n,m |€)1m|>822 n]Ethn‘X(Xl)>

m=1
3 q
q\ 2 1. O
<C<—> D2é(r)3+s.
DRI

r=0

Write, for ¢, < g

(9 S+ nbasti)

r=0
q % [cn] L5 q L5
:(-) Ser+nrassr+ Y (e 1)7ass () (6.24)
n r=0 r=[cn]+1
3 el 3
Put B, := (4)? ¥ (r+ 1)? < (£)2 (ca+ 1)3. Using Abel transformation process, we
r=0
may write
g\ 3 < e el e 5 5 5
(£)" Ye+niass)= ¥ a5 ()= a5 (r+1)| B+ Be, a7 ([e).
r=0 r=0

Since & (r) is a decreasing function with limit goes to 0 when r — oo, we have

y (65551 — 6055 (r+1)] <

r=0

[

By choosing ¢, :=¢g—1, we get B, < <§> =0(1) as n — oo. We deduce that

e $lg-1] r
(—) Z(r—l—l)féc5 (r)=o0(1) asn — oo,

n r=0

Now we control the right term of (6.24).

("—2)% S (et < (f)%afﬂqq—u):o(l) asn— e

" r=lam
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Thus (6.23) is verified. To complete our proof of (6.9), all what remains is to check that

k k
Eexp (itizm:l\/;"’m> — ElEexp <th"7;”) ‘ —0.

We set, for some y € R,
p(y) =exp (it%> ~

One can see that, for any variable x € R4, p(+) is an exponential holomorphic function,
which implies that’s Lipschitz function with

Lipexp (zt %) 7

and uniformly bounded by 1. We write

k k
H gnm H gnm
m=1 m=1
k k—1 k—
|EJT o (Gim) —Ep (Gin) ET] o (Gm)|+ H (Gam) HEP (Gam)
m=1 m=1 m=
k—1 k—1
= Cw(Hﬁ(Cn,m),p(Cn,k)) +E]p(Gum)— HEp (Grm)
=1 m=1

HM»

COV<Hp Cum) (Cn,k_m))‘.

We define, for any fixed s < k,

k— k—s Imt+q
8- (Cn.,l;---aCn,kfs) H Cnm = 2 2 .
m= m=1i=l,+1
Using the Proposition 3.2, for X; = ({u1,.-., Gug—s) and X; =, = fAJ;,:IHZ"“
get

|Cov (g(Xi) .0 (&ux))| < %a%()

where r:= |l + 1 — (lk—1 +¢)| = p+ 1. We deduce that

ﬁoﬁ(p)

k

k
H Cn m H Cn m
m=1

<4k

//\

3l

By that, the proof of Lemma 6.3 is completed, allowing us to conclude the result of the
main Theorem 4.1. [J
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7. Appendix

Proof of Proposition 3.2

For Q rich enough, we can define the random vectors X by X ;, = (X} ,... ,X;-‘dl )

independent of X; and distributed as X; 4 = (X ,....X; n ). By stationary and since

g2(+) is Lipschitz continuous function in RY — R, we get

|Cov(g1(Xi),82(X)))| = |E (1(Xi)(82(X}) — £2(X;))) |
< g1 ll-Lip(g2) E[ X — X

d;
= llg1ll-Lip(g2) X EIX}; — X;|
=1

< ”gl||°°Lip(g2)dllglli)§11E|X; —X;. (7.1)

Recall that X is a random vector of stationary integrable random variables and -
weak dependent defined on probability space (Q,.%,P). Let .# be a sub-sigma al-
gebra of .Z . For any 1 <1 <d;, X;, acomponent of X; is an ¢-weak dependence
random variable. An important result belonging to & -weak dependence for such spe-
cial case is proved in [45], by proceeding the coupling results of [36]’s quantile trans-
formation (we refer to the paper by [40] for more details on coupling techniques and
their applications). Define some Uj, ~ U|0, 1], that is independent of the o -algebras
generated by .# and X;,. The random variable Xj*], is measurable with respect to
AN o(X;,,Uj,). The Theorem 2 (c) of [45], gives the following result

« a('///jvle)
E|Xj] —Xj,| < 4/0 Q|le‘(u)du,
such ./, = o(X;,i < ji). Forany (i, j;) € A(1,l,r) we have .#; C .4, andif E[X|*> <

oo, the definition of & coefficient and an application of Holder and Jensen inequalities
yields to

1 12 1 1/2
Ex’f—x-<4/2 d /]l~d
1151)511(,-7,-)3%,;” X, — X ( A Ofx, (1) u) (0 u<a(rdu
~1
=4(|X[]2c2(r)
~ 1
=Caz2(r). (7.2)
Combining results in (7.1) and (7.2), we get the upper bound of (3.2). O

LEMMA 7.1. [19, Corollary 5.3] Let (X);cn be a sequence of centered and square-
integrable random variables and #; = o (X;,0 < j <1i). Define 0; = supO( My, Xitr).
r=0
Note

n

ai;l(u) = 2 Lu<a-
i=0
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For any random variable X such that Qx > supQx,. For p > 2, we have
r>1

n 1 14 1/17
Y Xi|| <+/2pn (/0 (e (u))? Qf(du) :
=],

REMARK 7.1. We highlight that

P n n

(6 (w) " = 26 ((r+ )% r§> Lyca < 26 (1 v g) (4 )3 .
= r=
Proof of the Remark 7.1

Recall that (&) r > 0 is a decreasing sequence of non negative numbers. For any
function 9(-), we may write

and if 9(0) =0 we have

Bt 1)= 3 0 +1)—90),
=0

we refer to [ 18, proof of Lemma 2]. Then the last assertion follows by choosing 9 (x) =
x% and by the fact that

P
2

(r+1) —r§<(1v§)(r+1)%—l. O
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