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NUMERICAL RADIUS OF PRODUCTS OF SPECIAL MATRICES

MOHAMMAD ALAKHRASS

(Communicated by M. Krni¢)

Abstract. The purpose of this note is to present upper bounds estimations for the numerical ra-
dius of a products and Hadamard products of special matrices, including sectorial and accretive-
dissipative matrices.

1. Introduction

Let M), be the algebra of all n x n complex matrices. If X = [x; ;],Y = [y ;] € M,
then their Hadamard product X oY is the matrix [x; ;y; ;]. The cartesian decomposition
of X € M, is presented as

X =A+iB, (1)

where A and B are the Hermitian matrices A = Re (X) = XJFZ—X* and B=1Im(X) =
Xaf.(* . A matrix X 1is said to be accretive (resp. dissipative) if in its cartesian de-
composition (1) the matrix A (resp. B) is positive definite. If both A and B, in the
decomposition (1), are positive definite, X is called accretive-dissipative.

The numerical range of X € M, is the compact convex subset of the complex

plane defined as follows:

W(X)={(Xx,x) :x e C",||x|]| =1},

where (-, -) is the standard inner product on C" and ||- || is the Euclidean norm on C".
A very important result is that
o(X) CW(X),

where ¢(X) is the spectrum of X .
For o € [0,7/2), let Sy be the sector defined in the complex plane by

Sa={z€C:Re(z) >0,|Im(z)| <tan(cr)Re(z)}.

A matrix X is called sectorial if W(X) C S,. The smallest possible such « is called
the index of sectoriality.

For a € [0,7/2), let M , be the class of all n x n matrices X with W(zX) C Sq
for some complex number z with |z| = 1.
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It is clear that X is accretive-dissipative if and only if W (e ™/4X) C S, /4> and
hence X € I\\/Jlfw with o0 = %. For more study of sectorial matrices see [1, 2, 3, 4, 10,
11, 12, 13] and the references therein.

A norm N on M, is said to be unitarily invariant if it satisfies the property
N(UXV)=N(X) forall X € M, and all unitaries U,V € M, and it is said to be multi-

plicative if N(AB) < N(A)N(B) for all A, B € M],. Examples of such unitarily invariant
P
multiplicative norms are the Schatten p-norm defined by ||X||, = <Z;?:1 sf (X )) >

1. When p = oo, this last norm is just the usual operator norm defined by || X|| =
sup|y 1 |1 Xx]|.
Associated with numerical range, the numerical radius of X is defined by

o(X)=sup{|z|:zeW(X)}.

It is well known that ®(-) defines a norm on M, which is equivalent to the usual
operator norm || - ||. In fact we have

1
SIX < o) < X[ ¥X € M, @)

Moreover, if X € M, is normal then ®(X) = ||X||. Therefore, the inequalities in (2)
are sharp.

Obviously, o(-) defines a weakly unitarily invariant norm on M, ; that is it satis-
fies the property @(UXU) = w(X) for all X € M, and all unitary U € M.

EXAMPLE 1.1. Let X = (83) and Y = <(2)8) . Then o(X)=w(Y) =1 and
o(XY)=4

Example 1.1 shows that (-) is not a multiplicative norm. However, the inequal-
ities in (2) implies that 4(-) is a multiplicative norm. That is for all X,¥Y € M,
4o(XY) < (4o(X)) (4o(Y)). Equivalently,

o(XY) <40(X)o(Y); VXY €M,. 3)

Obviously, Example 1.1 shows that the inequality (3) is sharp and the constant 4
is the best possible in (3).
The Hadamard product version of (3) can be written as

o(XoY)<20(X)o(Y). 4)

That is, 2o(+) is a multiplicative norm over the Hadamard product. See [7, p. 73].
The following example shows that the constant 2 is the best possible in (4).

02

EXAMPLE 1.2. Let X =Y = (0 0

) Then o(X)=o(Y)=1 and o(XoY)=2.
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By considering special matrices X and Y, it is possible to obtain better estimations
than those in (3) and (4).
If XY =YX, then
o(XY) <20(X)o(Y). Q)

See [8, Theorem 2.5-2].
If X or Y is normal such that XY =YX, then

o(XY)<oX)o(Y). (6)

See [8, Corollary 2.5-6].
If X or Y is normal. Then

o(XoY)<oX)w(). @)

See [7, Corollary 4.2.17].
If A,B €M, and A = [q;;] is positive semidefinite, then

w(AoB) < (maxajj) o(B). (8)
J

See [5, Corollary 4] and [9, Proposition 4.1].

The purpose of this short note is to add more inequalities to the above list. More
precisely, we give estimations of the numerical radius of products or Hadamard prod-
ucts of sectorial matrices and related matrices such as accretive and dissipative matrices.

2. Main results
We start this section by the following two observations.

LEMMA 2.1. Let X e M. If W(X) C Sq, then
X < sec(a)|[Re (X)]|.

The above Lemma can be found in [1], [3], [2] and [13].

REMARK 2.1. 1. We recall that o(-) defines a self-adjoint norm on M,,, that
is it is a norm satisfies the properties @ (X*) = @(X) for all X € M,,. Therefore,
X+ X*
2

o (Re (X)) :a)(

(@ (X +X7))

N

(@(X) + (X))

(@(X) + o (X))

S NI— =) —

X
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2. Let X € M, and let X = A +iB be its cartesian decomposition. If W(X) C S,
then for any v € C" with ||v||=1 (Av, v),(Bx, x) € R and

(Xv,v)=(Av,v)+i(Bv, V) € Sq.

Therefore,
|(Bv, v)| < tan(ot)(Av , v).

Taking the supremum over all such v’s gives

o(B) < tan(o)w(A).
Now we are ready to state the first result.

THEOREM 2.1. Let X € M}, , and Y € M, ,,, where 0,0 € [0,7/2). Then

n,0p

0(XY) < sec(ay)sec(on)o(X)w(Y).

Proof. Since X € M}, ,, and Y € M , , there are two complex numbers z,w € C
with |z| = |w| =1 such that W (zX) C Sg, and W(wY) C Sq, .
Notice that

o(XY) <[|XY[| (by(2)))
<[IXIHIYI
= |lX][| [wY]
<sec(oq)sec(ap)||Re (z2X) | |||Re (WY) || (by Lemma 2.1)
= sec(ay ) sec(on) @ (Re (2X)) @ (Re (wY))
(since Re (zX)) and Re (wY) are Hermitian )
sec(oy)sec(op)w (zX) w(wY) (by Remark 2.1)

=sec(ay)sec(op)w(X) o(Y). O

N

We remark that if X,Y € M, ,, Theorem 2.1 implies that
o(XY) <sec?(a)o(X)w(Y). )

The inequality (9) presents a refinement of the inequality (3) when 0 < < Z. A
particular case is when X and Y are accretive-dissipative as in the following result.

COROLLARY 2.1. If X,Y € M, are accretive-dissipative, then

o(XY) <20(X)o(Y).

Proof. The result follows from Theorem 2.1 and the fact that if X,Y € M, are
accretive-dissipative then X,Y € Mj; , with a =x/4. [
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REMARK 2.2. 1. If X € M, is accretive, i.e. Re(X) > 0, then X is sectorial
with sectorial index

ox = tan~ (|4 ((ReX)_llm (x))|) = ||(ReX) ™" (ImX) (Rex)"/||. (10)
See [4]. Therefor X € M, , with oo = ay .

2. If X € M, is dissipative, i.e. Im(X) > 0, then iX is accretive and hence X €
M, o with o = ay .

COROLLARY 2.2. If X,Y € M, are accretive (or dissipative), then
o(XY) < (1+d)oX)o(Y),
where
a = max{|, ((Rex)*lzmx) 1A ((Rey)*lzmy) .
Proof. Since X,Y € M, are accretive (or dissipative), we have X € M, , and
Y e Mfwy, where oy and oy are as in (10). By Theorem 2.1, we have
o(XY) < sec(oy)sec(oy)o(X)w(Y).

Now the result follows by noting that

sec(oy) = sec(tan~ (| ((Re (X)) im (x))\)) - \/1 + ()Ll ((ReX)_llmX>>2,

and

2

sec(oy) = sec(tan~! (|1 ((ReY)*lsz)\)) - \/1 + (/11 ((ReY)*lzmy)) O

Same proof method used to prove Theorem 2.1 can be used to prove the following
more general result.

THEOREM 2.2. Let X; € M), j=1,2,3,...,m. Then

n,o;’

0] ( - Xj) < lm_[SGC(OCj)CO(Xj).
i1 =1

Jj=

Consequently,

COROLLARY 2.3. If X1,X2,...,.X;n € M, are accretive-dissipative, then

® (ﬁx,) < 2m/2ﬁm(xj).
j=1 =1

J
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COROLLARY 2.4. If X1,X,..., X,y € M, are accretive (or dissipative), then

(Hx) (1+a%) ’“/2j]j[1w

where
a= max{Ml ((Rex,)*llmxa = IZm}

In what follows, we present upper bounds for the numerical ranges of hadamard
products of special matrices. The following lemma is important in our analysis. It can
be found in [1, 2, 3].

LEMMA 2.2. Let T € M,. If W(T) C S¢ for some o. € [0,7/2). Then

(Re(T) T
(Sec P sec(a)Re(T)) >0.

Now we estimate the numerical range for a Hadamard product of sectorial matri-
ces.

THEOREM 2.3. Let X € M

n,o

and Y € M?

n,0n "

Then
(X oY) <sec(og)sec(on)o(X)w(Y).
Proof. Since X € M, , and Y € M}, , , there are two complex numbers z,w € C

with |z] = [y| = 1 such that W (zX) C Salr and W(wY) C So,. Therefore, by Lemma
2.2, the following two block matrices

( sec(a)Re (zX) X ) ( sec(0p)Re (WY) wY )
X" sec(a)Re (2X) )’ wy* sec(op)Re (WY)

are positive semidefinite. Hence

sec(oy) sec(0n)Re (zX) o Re (wY) w(XoY)
w(XoY)" sec(oy ) sec(an)Re (zX) o Re (wY)
is also positive semidefinite. Since ||-|| is a Lieb function, we have

[|Xo¥||=|lzw(XoY)|| <sec(oy)sec(on)||Re(zX) o Re(wY)]].

Recall that a Lieb function L is a continuous function defined on M, , which is increas-
ing on the cone of positive matrices. It satisfies the property that for any matrices A and
B in M, the inequality |L(A*B)|> < L(A*A)L(B*B) holds. For more details, please
refer to page 270 in [6].
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Now, observe that

o(XoY) < || XY

<
< sec(oq)sec(on

(
(zX))o(Re(wY))  (by (7)) (11)
)

REMARK 2.3. L. If X,Y € M, then
o(XoY) <sec?(a)o(X)w(Y). (12)

It is clear that inequality (12) presents a refinement of inequality (4) for 0 < o <
%. In particular if X and Y are accretive-dissipative, then both (12) and (4) give
the same estimation.

2. If X,Y € M, are accretive (or dissipative), then (12) implies that
oXoY)<(1+d)oX)o(Y),

where
a = max{|A; ((Rex)*llmx) A ((ReY)*lle) .

The argument used to prove Theorem 2.3 can be easily modified to prove the
following more general result.

THEOREM 2.4. Let Xj € M;, ,,, j=1,2,...,m. Then

o(Xjo...0Xy) < []sec(o) o(X;).
=1

~

Consequently,

COROLLARY 2.5. If X1,X2,...,X;n € M, are accretive-dissipative, then

m
o(Xio...0X,) <2"* T o(X;).
j=1

COROLLARY 2.6. If X1,X2,.... X,y € M, are accretive (or dissipative), then
o(Xi0...0X,) < (1 +a*)"*T] 0(X;),
j=1

where
a= max{Ml <(Rer)_llij> l,j= 1,2,...,m} .
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In the following result we give an estimation for @(X oY) in terms of the diagonal
entries of X and Y.

THEOREM 2.5. Let X = [x;;] € M, and Y = [y;;] € M}, .. Then
o(XoY) < sec(al)sec(az)min{max lxj;j| o(Y), max|yj;| a)(X)}.
j j

Proof. Since X € M, ,, and Y € M , , the inequality before (11) implies that
o(X oY) <sec(oy)sec(on)w(Re(zX) o Re (wY)),

for some z,w € C with |z| = |w| = 1. Since Re (zX) is positive semidefinite, (8) implies

e o(Re(zX)oRe (wY)) <mjglxRe(zxjj)w(Re(wY)).

Now, we have

N
wn
I}
o

K
wn
I}
o

&

~ B ~

3
>

&

B
=

=

Hence,
o(X oY) <sec(oy)sec(op)max |xjj|@(Y). (13)
J

Similarly, we have
o(XoY) < sec(al)sec(az)mjax lyjjlo(X). (14)
The result follows by combining (13) and (14). O
COROLLARY 2.7. If X = [x;|,Y = [yij] € M, are accretive-dissipative, then
o(XoY) < 2min{mjax x5 a)(Y),m?x lyjjl o(X)}.
COROLLARY 2.8. If X,Y € M, are accretive (or dissipative), then
o(XoY) < (1 +a2)min{m?x x5 a)(Y),m?x [yl a)(X)} ,

e a = max{|, ((Rex)—lzmx) LI ((ReY)_lle> .
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Another upper bound for the numerical radius of a Hadamard product of two sec-
torial matrices can be obtained as follows.

THEOREM 2.6. Let X € Ml ,, and Y € M, . Then
o(XoY)<min{(1+tancy)o(Re X)o(Y),(l +tanon)w(X)w(ReY)}.

Consequently,
o(XoY) < (l+tana)o(X)w(Y),

where oo = max{ay, 0 }.

Proof. The second inequality follows from the the first one and fact that @(ReX) <
o(X)VX € M,. To prove the first inequality, let X = A +iB be the cartesian decompo-
sition of X . Then

o(XoY)=w((A+iB)oY)

(
=w(AoY+iBoY)
<w(AoY)+w(BoY)
<o@o)+oB)oY) by ()
<w(A)o(Y)+tan(o;) w(A)o(Y) (by part 2 of Remark 2.1)
< (I+tanog)w(A)o(Y)

(1+tanoy )@ (Re (X))o ().

Hence,
o(XoY) < (1+tanoy)w(ReX)w(Y). (15)

Similarly, one can show that
0(XoY) < (l+tanop)w(ReY)w(X). (16)
The result follows by combining (15) and (16). O
COROLLARY 2.9. Let X,Y € M . Then
o(XoY) < (I +tana) min{(w(ReX)w(Y),0(X)w(ReY)}.

Consequently,
o(XoY) < (l+tana)o(X)w(Y). (17)

Finally, we remark that inequality (17) presents an improvement to (4) for 0 <
a<i.
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