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MONOTONICITY, CONVEXITY, AND INEQUALITIES
FOR FUNCTIONS INVOLVING GAMMA FUNCTION

PEIPEI DU AND GENDI WANG*

(Communicated by L. Mihokovic)

Abstract. In this paper, we study some properties such as the monotonicity, logarithmically
complete monotonicity, logarithmic convexity, and geometric convexity, of the combinations
of gamma function and power function. The obtained results generalize some related known
results for parameters with specific values.

1. Introduction

The gamma function defined by
T(x) = / Fle s (Rex > 0)
0

is one of the most important functions in analysis and its applications.
The psi (digamma) function, the logarithmic derivative of the gamma function, and
the polygamma functions can be expressed as

v =t =y [

el — o
1—e

dr

and

V) = (-1 Y

far (x_|_k)n+l

no]
for Rex >0,n=1,2,---, where y= lim (2 z —logn) =0.57721--- is the Euler-
k=1

n—oo
Mascheroni constant.
Let I C (0,0) be an interval and f : I — (0,e0) be a continuous function. We say
that f is geometrically convex (geometrically concave) on I if the following is true:

F(Vxixa) < (Z2)V/ f(x1) f(x2)
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for all x;,x, €1, see [10, 11].

Let I C R be an interval and f : I — (0,e0) be a continuous function. We say
that f is logarithmically convex (logarithmically concave), log-convex (log-concave)
for abbreviation, if

1(557) < i)

forall x,yel,see[l1].
A function f is called to be logarithmically completely monotonic (LCM ) on an
interval / C R if its logarithm log f satisfies

(—1)" (log f(x))™” >0 (1.1)
forall x € [ and n=1,2,---. Moreover, the function f is said to be strictly LCM on [
if the inequality (1.1) is strict, see [3, 12]. Clearly, the function f is decreasing and log-
convex if f is LCM on I. The analytical properties for the gamma function and related
special functions have been extensively studied recently, see [8, 20, 21, 15, 16, 4, 19].

Fora> 0, c€R,let x € (—a,)\ {0} and

xC

r 1\ Tl
fa7c7:|:l(x> = <M> :

The functions fio 1 and fi 141 are decreasing on (0,e0). In addition, it is also
proved that f1 1 is decreasing on (1,00), see [9]. As a further study, the function
fio—1 is LCM on (—1,e0) [14, Theorem 1] and fi 1 is geometrically convex on
(0,00) [5, Theorem 1]. Moreover, the conditions for fj .+ to be LCM on (0,e) are
shown in [14, Theorem 3, Theorem 4]. It is showed that fi .1 (fic+1) is strictly
decreasing on (0,0) if and only if ¢ <O (¢ > 1) [17, Theorem 4(b)].

Fora>0, ceR,let x € (—a,~)\ {0} and
(x+a)c

Fata)t )"
gaﬁcﬁﬂ(@E(M) |

In [13], Theorem 1 shows that g; 1 1 is strictly decreasing and strictly log-convex
on (0,%0), and Theorem 2 shows that g, 1 is strictly decreasing and strictly log-

convex on (0,e0). As a generalization, the conditions for g; . 1) tobe LCM on (—1,co)
are found [14, Theorem 2]. Theorem 2 in [17] displays that gi . +1 (g1,c,—1) is strictly

decreasing on (0,ce) if and only if ¢ > 1 (c < ’f—;) ,and g1 .11 (g1,,—1)1s log-convex

on (0,00 if and only if ¢ > 1 (¢ < ¢o), where 0.77797 - = BEEBT) _ 55 < o
18 (3 —vy—logm — %) = 0.79837---. In addition, the conditions for g,.+1 to be

LCM on (0,c0) have been discussed [2, Theorem 1.2, Remark 2.1].
The purpose of the present paper is to further study the analytical properties of
the gamma function. Specifically, motivated by [14, Theorem 1] which says fi 9 1
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is LCM on (—1,0), we study the monotonicity property of f, i forall a € R and
find the necessary and sufficient conditions for f, o i to be LCM either on (0,0) or
on (—a,e) in Theorem 1. In Theorem 2, we also show the monotonicity, logarithmic
convexity and geometric convexity properties of f, . 1 for certain values (a,c), which
is a generalization about the specific parameters in some corresponding results in [5, 14,
17]. Similarly, in Theorem 3 we investigate the monotonicity and geometric convexity
properties of g, . 41 for certain values (a,c¢) and obtain a generalization of some results
in [14, 17] and an improvement of the result in [2].

Before presenting the main results, we give some ranges of parameters, which are
needed in describing the corollaries, as follows.

Let
DlZ{(a,C) %<a<1,C€R}7 Dy ={(a,c)|la >2,c e R},
D3 ={(a,0)|l <a<2,c>0}, Dy = {(a,c)|1 <a<2,c<0},
D5={(a,c)%<a<l,c>l}7 D¢ = {(a,c)la>2,c> 1},
D7 ={(a,c)la=1,c <0}, Dg = {(a,c)|la=2,c <0},
o= {W) %<“< 17C<0}’ Do ={(a,¢)|a>2,c <0},

2
Dy = {(a,c))azZ,cg K_l}'

Let a € R, we define the function

- -
gl(x) —fa707—l(x) (r(xﬁ—a))% 5
where x € (—a,) for a <0; x € (—a, )\ {0} for a > 0.

Since

_ o, O<a<lora>?2, . 0, O<a<lora>?2,
g1(07) = g1(07) =
0, l<a<?2, oo, l<a<?2,

we only define g;(0) as follows

THEOREM 1. (1) The function g is strictly increasing on (—a,xy) and strictly
decreasing on (xg,°) if and only if a < 0; gy is strictly decreasing on (—a,x;) and
(x2,00), and strictly increasing on (x1,0) and (0,x) ifandonlyif 0 <a <1 ora>2;
and gy is strictly decreasing on (—a,0) and (0,00) if and only if 1 < a <2, where x;
satisfies xiy(x;+a) =logT(x;+a), i=0,1,2 and x; <0 < x3.

(2) The function gy is strictly LCM on (0,00) if and only if 1 <a <?2; and g is
strictly LCM on (—a,~°) ifand only if a=1 or a =2.
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REMARK 1. The sufficient condition of the LCM property for g; on (0,c0) in
Theorem 1 (2) can also be obtained by taking ¢ = 0 in [2, Remark 2.1].

The following inequalities (1.2) and (1.3) can be easily derived from the mono-
tonicity and logarithmic convexity properties of g; in Theorem 1 (2).

COROLLARY 1. (1) For 0 < x <y, the inequality
<1 (1.2)

holds for 1 < a < 2.
(2) For x,y > 0, the inequality

(5 +a) ™

VTGt a) T+ a)?

holds for 1 < a < 2. The equality is true if and only if x =y.

>1 (1.3)

= —

THEOREM 2. For a>0, c € R, let x € (0,%) and

g2(x) Efu,c,Jrl(x) = (r(xxcﬂ

1
(1) The function g, is strictly decreasing on (0,0) if and only if ¢ > 1 for 7S <a<

L ora>=2; g is strictly increasing on (0,e0) if and only if ¢ <0 fora=1 ora=2;
and g is strictly increasing on (0,00) if and only if ¢ < hy(x3) for 1 < a <2, where
x3 satisfies X3y’ (x3 +a) +1ogT(x3 +a) = x3w/(x3 +a) and hy(x3) = x39'(x3 +a).

(2) The function gy is strictly log-convex on (0,e0) if and only lfC >1fora>2;
and gy is strictly log-concave on (0,e0) if and only if ¢ <0 for a =

(3) The function g, is geometrically convex on (0,00) if and only if (a,c) € D1 U
D, ; and g, is geometrically concave on (0,x3) and geometrically convex on (x3,0) if
and only if (a,c) € D3 UDjy.

REMARK 2. It is clear that Theorem 2 (3) is a generalization of [5, Theorem 1]
which says that fj o+ is geometrically convex on (0,00).

Theorem 2 leads to the following corollary.

COROLLARY 2. (1) For 0 < x <y, the inequality

(l"(x—|—a))% x\ ¢
—_— - (1.4)
o)t G)
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holds for (a,c) € DsUDg; and inequality (1.4) is reversed for (a,c) € D7UDg.
(2) For x,y > 0, the inequality

(1.5)

(FEE+a)™ ()
Ve ra)t Cora)t NV

holds for (a,c) € D¢, and inequality (1.5) is reversed for (a,c) € Dg. The equalities
are true if and only if x =y.
(3) For x,y > 0, the inequalities

yy(y+a)—log'(y+a)

(;‘C M %g (E) (1.6)

xy(xta)—logl(x+a)
X

hold for (a,c) € Dy UD,. The equalities are true if and only if x =y.
THEOREM 3. For a>0, c € R, let x € (0,00) and

1
(Tlx+a))x
X) = gac41(X) = —————.
g3( ) 8a, ,+1( ) (x—|—a)‘
(1) The function g3 is strictly decreasing on (0,00) if and only if ¢ > 1 for a >2;
2
g3 is strictly increasing on (0,%) if and only if ¢ < % —1 for a=2; and g3 is
3+v159
12
x4 satisfies x5(xs+a)y' (x4 +a) + (x4 +2a)logT (x4 + a) = x4 (x4 +2a)y(x4 +a) and
ha(rg) = (x4 +a)y(xs+a)— (xs+a)logl(xs +a)

5 .
X
4
(2) The function g3 is geometrically convex on (0,00) for (a,c) € Dg\UDyg; and
g3 is geometrically concave on (0,x3) for (a,c) € D3 and geometrically convex on
(x3,00) for (a,c) € Da, where x3 is the same as in Theorem 2 (1).

strictly increasing on (0,00) if and only if ¢ < ha(xs) for < a <2, where

REMARK 3. The sufficient condition of the decreasing property for g3 in Theo-
rem 3 (1) can also be obtained by [2, Theorem 1.2].

The following corollary can be directly derived by Theorem 3.

COROLLARY 3. (1) For 0 < x <y, the inequality

(F(x-l—a))i . (x—f—a)c 0

y+a

holds for (a,c) € D¢, and inequality (1.7) is reversed for (a,c) € Dy .
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(2) For x,y > 0, the inequalities

Yw(+a)—logT(y+a) ¢y . 1
(x) v via (x—!—a) (T(x+a))~ (x)
— < : < —
y yra) (et W

hold for (a,c) € DgUDyg. The equalities are true if and only if x =y.

xy(xta)—logl(x+a)  ex c
X x+a X _|_ a
y+a

(1.8)

2. Lemmas
In this section, we show some lemmas which are needed in the proofs of the main

results. The following formulas will be frequently used in the proofs of lemmas [1, 18].
Leibniz’s Theorem for differentiation of the product of two functions:

= 5 (1) 4® ()
(u(x)v(x)V" = kg{) (k) u'™(x)v (x). (2.1)
Recurrence formulas of T', y:

1
Mt 1) =200, ik )= i)+
Special values of T, y, ' :

7.[2
=1 y)=-y. ¥(@)=—%-1

Asymptotic formulas of logT, v, v/, w”: for x — oo with |argx| < 7,

1 1 1 1
logT(x) ~ (x— = | logx —x+ = 1og(27) + —— — = +---
ogl(x) < 2) ogx x+2 og(2m)+ 2 3605 +-

(x) ~ 1o x—i—L-i-;—
i T o 122 120
111

/
v () X + 2x2 0 6x3 30x° Tt
1 1 1
1
() x2 ¥ 2 +

For x € (0,), the following inequalities of the polygamma functions hold [7,
Theorem 3]:

(n—1)! n!

n n n—1)! n!
< (Y < L2

B xn+l ?

=1,2,-.  (2.2)

xn

Moreover, there holds the identity for y” [6]:

V() =—5-—5-53+ % 0<6<L (2.3)
X
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LEMMA 1. [11, Proposition 4.3] [5, Theorem C] Let I C (0,00) be an interval. If
S i1 — (0,00) is a differentiable function, then the following assertions are equivalent:
(1) The function f is geometrically convex (geometrically concave) on I;
. xf'(x)
(2) The function g(x) =
f(x)

(3) The function f satisfies the inequalities

is increasing (decreasing) on I;

o

f o)r ! (x)

()" <o (D e

LEMMA 2. For n=1,2,---, there hold

A O
(n) - n+ 1 ) )

n+1

)

Proof. We first consider the case for a = 1.
When n=1,

(loggi1(0)) = lim loggi(x) —logg1(0)

x—0 x—0
_ _ /
— lim logF(x;r D—xy_ v(1)
x—0 X 2

We assume that (2.4) holds when n =k (k€ Z,k > 1).
Then by L’Hopital Rule, we get

(1og1 () ¥ — (logg1(0) ¥

(log g1 (0)*1) = lim

x—0 x—0
(k)
i CDMRIE() + Y
x—0 )Ck+2
_ k+1) (k+1)
i ) )
x—0 k+2 k+2
where o
(~1)ix!

8 (x) = —logl(x+a)— YU D (x+a).

=

By induction, (2.4) holds for n =1,2,--- when a = 1.

In a similar way, we can prove that (2.4) holds for n =1,2,--- when a =2.
The proof is complete. []

LEMMA 3. For a € R, let x € (—a, ) and

hi(x) = —xy(x+a) +logT(x +a).
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(1) The function hy is strictly decreasing from (—a,eo) onto (—oo,00) if and only
ifa<0.

(2) The function hy is strictly increasing on (—a,0] and strictly decreasing on
[0,00) with hy(x) € (—oo,logT(a)] if and only if a > 0. Moreover, hi(x) <0 on
(—a,x1) U (x2,00), hi(x) >0 on (x1,x2) for 0 <a<1 ora>2;and hi(x) <0 on
(—a,0)U(0,00) for 1 < a< 2, where xi,x, are the same as in Theorem 1 (1).

Proof. Let t =x+a. Then
hi(x) =h (1 —a) = hi(t) = —(t —a)y(t) +1ogl(t), 1€ (0,00).

It suffices to study the monotonicity property and the range of h 1.
We first prove the monotonicity property of /.
Differentiation yields

Ry (0) = ~(t - a)y ().

Therefore h; is strictly decreasing on (0,0) if and only if a < 0; and h; is strictly
increasing on (0,a| and strictly decreasing on [a, ) if and only if a > 0.

Then we calculate the range of /.

By the asymptotic formulas of logI" and v, we get

.~ . 1 1 1
tlgghl(t) = tll_)le)lo (—(t —a) (logt 5 +0 <t_2)> + (t - E) log?

1 1
. 1\ logt t—a 1 1
=1 — | = -1 — 4+ —log(2 -
ILIg(t((a 2) ; >+ n +20g( n)—l—O(Z))
=—oc, a€R.

)

By the recurrence formulas of I and vy, we get

lim 7, () = lim (—(t—a)l[/(t—i—l)—!—logl"(t)—i—t_Ta) =oco, a<0

t—0t t—0t

and

~ 1
lim 2(r) = lim — (¢(—(r—a)y(t+1)+1logl'(t+1)) —rlogt +t—a) = —oo, a>0.

t—07t t—0t I
The limiting value }im%l (t) =logT'(a) is clear for a > 0.
—a
Therefore h (1) € (—oo,00) for a < 0;and h(r) € (—oo,logI'(a)] for a > 0. More-
over, for 0 <a <1 or a > 2, there exist 71,7, such that /1(t) <0 on (0,11) U(t2,)
and hy(¢) > 0 on (f1,12); and for 1 < a <2, hi(r) <0 on (0,a)U (a,=), where f;

satisfies (t; —a)y(t;) =logl(f;),i=1,2 and r; < a <t,.
The proof is complete. []
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LEMMA 4. For a >0, let x € (0,00) and

xy(x+a)—logl'(x+a)

ha(x)

X
1
(1) The function hy is strictly increasing on (0,0) if and only if 3 <a<lor

1
a > 2. Moreover, hy(x) € (—oo,1) for 3 <a<1ora>2;and hy(x) € (0,1) for
a=1ora=2.
(2) The function hy is strictly decreasing on (0,x3] and strictly increasing on
[x3,00) with hy(x) € [ha(x3),°0) if and only if 1 < a < 2, where x3 is the same as in
Theorem 2 (1).

Proof. Let t =x+a. Then

ho(x) = ha(t — @) = n(t) = —’:1_(27 1 € (a,00),

where /1, (1) is the same as in the proof of Lemma 3. It suffices to study the monotonic-
ity property and the range of Zz . ~

We first prove the monotonicity property of /.

Differentiation gives

hzl(t)
(t—a)*’

%&(I) =
where
hoi (1) = (1 — a)*y' (1) — (1 — @)y (1) +logT' (7).
It is easy to obtain
oy (t) = (t = a)((t —a)y" (1) + Y/(1)).
By the inequality (2.2) of ' and the identity (2.3) of y”, we get

t—a)y" )+ (1) > (t—a) <_t_2___ _> +;+217
1
=35 ((2a—1)*+(2a—1)t+a).

Since (2a—1)t>+ (2a — 1)t +a > 0 on (a,) if and only if a > =, we have that

N —

. . . . 1
hyy is strictly increasing on (a,eo) for a > 3 and hence

hzl(l‘) > liII‘l+ hzl(l‘) = logF(a).
—a

1
Thus h1(1) > 0 on (a,) for 3 <a<lora>2.
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For 0 <a< 3 the limiting value l1m+ hy1(t) = logT'(a) > 0 is clear. By the
t—a
asymptotic formulas of logT", v, and v/, we get

lim hzl(t)

{—>o0

Z}iﬂ,((“ e <1+2_12+0<1>)_(,_a)<1ogt_l+0<tlz)>
s oo (2)

-2 2 1 —a)? - 1
:1im<#+a+<a—§)logt+(tztg) +t_a+_1 g(27t)+0< ))

5m 2

— —o09o,

For 1 <a <2, we have lim+ hy1(t) =logT'(a) < 0 and tlim hai () = eo.
t—a e

Therefore Ay (¢) > 0 on (a,e) and hence h; is strictly increasing on (a, ) if and
onlyifz <a<loraz=?2.

Since hy; is strictly increasing on (a,ee) for 1 < a < 2, there exists 73 € (a,o°)
such that hp;(t) < 0 on (a,73) and hy;(t) > 0 on (r3,%0), where 13 satisfies (t3 —
a)?y'(13) +1ogl(53) = (15 — @)y (13).

Therefore hy is strictly decreasing on (a,#3] and strictly increasing on [t3,00) if
andonly if 1 <a <2.

Then we calculate the range of Ez . ~
By the proof of Lemma 3, we have tlim hy(t) = —eo. Using L'Hopital Rule and

the asymptotic formula of ', we obtain

~ 1 1
lim 75 (¢) :}iﬂrg(t—a) <;+0<t—2)> =1, a>0.

t—oo

Calculation yields the limiting value

1
— oo, 5<a<10ra>2,
tgrﬁhz(f)z 0, a=lora=2,
oo, l<a<2

- 1 -
Therefore hy(t) € (—oo,1) for 3 <a<lora>2;h(t)e(0,1) fora=1 or

a=2;and hy(1) € [hy(t3),00) for 1 <a < 2.
The proof is complete. [
OPEN PROBLEM 1. What is the monotonicity property of hy on (0,%) for 0 <

<17
a< -
2
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LEMMA 5. For a >0, let x € (0,00) and

—x2y (x+a) +2xy(x+a) — 2logl(x+a)
x

h3(x)

Then the function hs is strictly increasing on (0,00) for a > 2. Moreover, h3(x) €
(—eo,1) for a>2; and h3(x) € (0,1) for a=2.

Proof. Let t =x+a. Then

h3(x) = h3(t —a) = hs(t)

3
| —l—aPY 0 2wl 2logTl)
t—a ' e

It suffices to study the monotonicity property and the range of 53 .
We first prove the monotonicity property of /3.
Differentiation gives

where
ai(1) = —( — @Y (1) + (t — @/ (1) — 20 — Q) y(e) + 2logT ().
It is easy to obtain
My (1) = —(t —a)* (1 = a)y" (1) + 2y (1))
By the inequalities (2.2) of w” and y"”’, we have
v <e-a(zrg) 2 (-x-5)
- }4(2(2 —a)i—6a).

Since 2(2—a)t—6a < 0 on (a,eo) if and only if a > 2, we have that &3 is strictly
increasing on (a,<) for a > 2 and hence

h31(t) > liH}rh31(l‘) :210gl"(a).
—a

Therefore /3, (¢) > 0 on (a,) and hence hj is strictly increasing on (a, o) for a > 2.
Then we calculate the range of 3.



1038 P. DU AND G. WANG

By the asymptotic formulas of logI", v, and v, we get

lim (—(r — )y (1) +2(t—a)y(r) — 2logI(1))

:;;:(_(t—a) (1 +%+0<1)> +2(t—a) <logt—2l+0<tlz>)
_2<<t_E)logt—t+zlog(2n)+0<;>)>

L’ Hopital Rule and the asymptotic formula of y” yield

lim h3(t) = lim <—(t—a)2 (—tlﬁo(t%))) =1.

[—o0

It is easy to obtain

li ’];l' () — %, a>27
m 1) =
’ 0, a=2.

t—at

Therefore 3 (1) € (—e, 1) for a > 2; and hs(z) € (0,1) fora=2. O

OPEN PROBLEM 2. What is the monotonicity property of h3 on (0,%0) for 0 <
a<2?

LEMMA 6. For a> 0, let x € (0,00) and

ha(x) = x(x+a)y(x+a) —xz(x +a)logl'(x+a) .

(1) The function hy is strictly increasing on (0,00) for a > 2. Moreover, hy(x) €
(—eo, 1) for a>2; and ha(x) € %2— 1,1 ) fora=2.
(2) The function hy is strictly decreasing on (0,x4] and strictly increasing on
[x4,00) with ha(x) € [ha(x4),00) for m a < 2, where x4 is the same as in

Theorem 3 (1).

Proof. Let t =x—+a. Then
t(t—a)y(t) —tlogI(r)

ha(x) = ha(t —a) = ha(t) = (P 1€ (a,).

b

It suffices to study the monotonicity property and the range of %4.
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We first prove the monotonicity property of ha.
Differentiation gives

where
hai (1) =1(t — a)*y/' (1) = (1 — @) (1) + (1 +a) log ().
It is easy to obtain
Hyy (1) = 10— a)*y"(0) +2(t — a)*y' (1) — (1 — @)y (1) +1ogT (1)
and
Hiy() = (1 —a) (e — @)y (0) + (5t = 3a)y” (1) + 39/ (1)) .
By the inequalities (2.2) of w' and y" and the identity (2.3) of y”, we get
1t —a)y" () + (5t =3a)y" (1) + 3y (1)
(2 2) s A L) (k)

(Za—l)t —51+3a).

T2
3+V159
Since (2a — 1)t> — 5t +3a >0 on (a,) if and only if a > +T ~ 1.3, we
3++159
have that 7}, is strictly increasing on (a,e) for a > +T and hence

Ry (1) > lim Wy, () = logT(a).
t—a

Moreover, i}, (t) > 0 and hence hy, is strictly increasing on (a,) for a > 2.
Then for a > 2, we have

hgy (t) > liII}r hyy (t) = 2a10gr(a).
t—a

Therefore h41(z) > 0 and hence ha is strictly increasing on (a,o) for a > 2.

3++/159

‘We consider the case for 1 < a < 2 in the following.

The limiting value lim hy, (1) =logT'(a) < 0 is clear.
—a
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By the asymptotic formulas of logI", v, v/, and y”, we get

lim (1)

:zli‘?o(’(t_“P(—tlz‘tlz*O(%))+2(f—a>2<%+217+0<})>
—(t—a) (logt—%—FO(tlz))+(t—%)logt—t+%10g(2n)—|—0<;)>

—2at + d? 1 t—a 1 1
= lim (| ———— —= )1 ——+-log(2m)+ 0| -
tl_)Ig( ; +<a 2) ogt + > +2 og(2m) + (t))

— oo,

Since K, is strictly increasing on (a,e) for a > , there exists 74 €

34159
8 12 L
(a,) such that k(1) <0 on (a,is) and hj,(t) > 0 on (f4,°0), where 74 satisfies
alfy — @y (i) + 207 — )Py () + log () = (74 — @) w(iy).

Hence hy; is strictly decreasing on (a,74] and strictly increasing on [f4,o0) for

3+V/159

12
The limit values lim A4 () = 2alogT’(a) < O is clear.

t—at

<a<?2.

By the asymptotic formulas of logT", v, and v/, we get

Tim /(1)
= lim (t(t—a)2 <%+2—i2+6%+0<ti5)> — (> —d%) (lOgt_ziz_%ﬂ
+0 <L)> +(t+a) ((l—l)logt—t+llog2n+i+0<i>)>
* 2 2 12¢ 3
= lim (t ((a— 1) logr + (az— ‘_‘) 1O—gt+1—|-llog(27'c) —3a)
100 2 2/ t 2

1 41* —3at + a* 1
+a <a+§10g(27t) - l) + T+0 (ﬁ))

By the monotonicity property of h4;, there exists #4 (> 71) such that hg (1) <
0 on (a,t4) and hgy(t) > 0 on (t4,%0), where t4 satisfies #4(t4 — a)?y'(ts) + (t4 +
a)logD(ts) = (1 — a®)y(ta).
Therefore hy is strictly decreasing on (a,#4] and strictly increasing on [t4,°) for
3+/159
- T <a
12 B
Then we calculate the range of 74 .
The following limiting values

— oo,

<2.

~ t ~
limhy(z) = lim —hy(t) =1, a>0,

[—00 t—oo f —
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and
V159
- o, VD <o,
lim hy(r) = 12
t—at
— oo, a>?2
are clear.

For a =2, by L’Hopital Rule, we get

lim hy(r) = W' (2) = — — 1.

t—2+

6
~ _ 2 ~
Therefore hy(t) € (—eo,1) for a>2; hy(t) € ( -1, 1) for a=2;and hy(r) €

~ 34159
[ (ta),o0) for +T <a<2.

The proof is complete. [

OPEN PROBLEM 3. What is the monotonicity property of hy on (0,00) for 0 <

3++159
<712 ?

3. Proofs of main results

Proof of Theorem 1. (1) Logarithmic differentiation gives

gi(x) _ )
gilx) — x% 7

where % (x) is the same as in Lemma 3.

By Lemma 3, we have that there exists xyp € (—a, o) such that g is strictly in-
creasing on (—a,xg) and strictly decreasing on (xg,c) if and only if a < 0, where xg
satisfies xoy/(xo +a) = logI'(xo +a); g1 is strictly decreasing on (—a,x), (x2,0),
and strictly increasing on (x1,0), (0,x2) if and only if 0 <a < 1 or a > 2, where x;
satisfies x;y(x; +a) =logT'(x; +a), i = 1,2; and g; is strictly decreasing on (—a,0)
and (0,c0) if and only if 1 <a < 2.

(2) By (1), we have that g; is not LCM on (—a,) or (0,) fora <0,0<a<1
or a > 2. Therefore we only need to consider the LCM property of g; for 1 <a < 2.

For x € (—a,)\ {0}, by the formula (2.1), we get

(—1)"(loggy (x))™ = (—1)"+! <( x1> -logT(x+a)+ i vxnnk-]:l"lf(k 1)(x+a)>

n!
= xn+l

On(x),

n (1 Yeyk
where 6, (x) = —logl'(x+a) — 2 U ) y =D (x +a) is the same as in the proof

of Lemma 2.
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By differentiation, we get

n

_1)n+1xn oo X
&' (x) = DX ) -y
(%) P (x+a) kga(k—i—x—i-a)’”l
and hence
<0, x¢€(—a,0), if n is odd,
5(x)8 >0, x€(0,), if nis odd,

>0, xé€(—a,~)\{0}, if nis even.
For n is odd and x € (—a, )\ {0}, we have
On(x) > lil‘I(l) Ou(x) = —logT'(a).
Then §,(x) > 0 and hence (—1)"(logg;(x))"™ >0 on (—a,e)\ {0} if and only if

1<a<?2.
For n is even and x € (—a,0), we have

8,(x) < lim 3,(x) = —logI'(a).

Then §,(x) < 0 and hence (—1)"(logg;(x))"™ >0 on (—a,0) ifand only if 0 < a < 1
ora=?2.
For n is even and x € (0, ), we have

O (x) > lin(l) On(x) = —logI'(a).
Then &,(x) > 0 and hence (—1)"(logg(x))™ >0 on (0,e) if and only if 1 < a < 2.

Therefore g; is strictly LCM on (0,0) if and only if 1 < a < 2.
(2) By Lemma 2, we get

b azl?
—1)"(logg (0))® = n+tl
(1 ozsi ) =1 T
b a:27
n+1

which are clearly positive.

Together with the proof in (1), we have that g is strictly LCM on (—a, ) if and
onlyifa=1ora=2.

The proof is complete. []

Proof of Theorem 2. (1) Logarithmic differentiation leads to

§(x) ) —c
g2(x) x

, 3.1)
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where h;(x) is the same as in Lemma 4.
By Lemma 4, we have that g; is strictly decreasing on (0,°) if and only if ¢ > 1

1
for 3 <a<1oraz>2; g is strictly increasing on (0,c) if and only if ¢ < 0 for
a=1or a=2; and g is strictly increasing on (0,) if and only if ¢ < hy(x3) for
1 <a <2, where x3 satisfies X3y (x3 +a) +logl'(x3 +a) = x3y(x3 +a).

(2) Differentiation gives

¢ — h3(x)

(logg2(x))" = <3

where h3(x) is the same as in Lemma 5.

By Lemma 5, we have that g, is strictly log-convex on (0,e0) if and only if ¢ > 1
for a > 2; and g, is strictly log-concave on (0,e°) if and only if ¢ < 0 for a = 2.

(3) By (3.1), it is easy to obtain

By Lemma | and Lemma 4, we have that g, is geometrically convex on (0,o0) if
and only if (a,c) € DyUD;; and g is geometrically concave on (0,x3) and geometri-
cally convex on (x3,e°) if and only if (a,c) € D3UDjy.

The proof is complete. [

Proof of Theorem 3. (1) Logarithmic differentiation gives

85(x) _ ha(x) —c
gx)  x+a ’ (3-2)

where f4(x) is the same as in Lemma 6.
By Lemma 6, we have that g3 is strictly decreasing on (0,0) if and only if ¢ > 1
2

T
for a >2; g3 is strictly increasing on (0,°) if and only if ¢ < Y 1 fora=2;and g3

3+V159
is strictly increasing on (0,e°) if and only if ¢ < h4(x4) for SEVIP

x4 satisfies x5 (x4 +a) W' (x4 +a) + (xa +2a)logT(xq +a) = x4(x4 +2a)y(xs +a).
(2) By (3.2), it is easy to obtain

<a<2,where

N
Q
o

g5 (x

x -, (3.3)
a

where h;(x) is the same as in Lemma 4.

By Lemma 1 and Lemma 4, we have that g3 is geometrically convex on (0, )
for (a,c) € DgUDjp; and g3 is geometrically concave on (0,x3) for (a,c) € D3 and
geometrically convex on (x3,o°) for (a,c) € Dy.

The proof is complete. [
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4. Comparison of inequalities

In this section, we compare the inequalities appeared in the corollaries in Section

REMARK 4. For ¢ <0 and x,y > 0, there holds

c
xX+y <1
2,\/xy
Thus the inequality (1.3) is better than the reversed one of inequality (1.5) for
(a,c) € Dg.

REMARK 5. By Lemma 4 (1), for 0 <x <y, we have

xy(x+a)—log'(x+a)

6 ()

ywyta)-logl(y+a)

G <G
—_ < —_

y y

for (a,c) € DsUDg.

Thus the right side of the inequalities (1.6) is better than the inequality (1.2) and the
reversed one of inequality (1.4) for (a,c) € D7UDg; and the left side of the inequalities
(1.6) is better than the inequality (1.4) for (a,c¢) € Ds U Dg.

for (a,c) € D7 UDg; and

REMARK 6. By (3.3) and Lemma 4 (1), it is easy to obtain

/ /
im 2™ 0 and imaSY o

=0+ g3(x) xoe g3(x)
and hence for 0 < x <y, there holds

xy(xta)—logl(x+a)  ex

X x+a
(f) <1
y
for (a,c) € Dg.

Thus the right side of the inequalities (1.8) is better than the reversed one of in-
equality (1.7) for (a,c) € Dg.
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