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ON SEVERAL INEQUALITIES RELATED TO CONVEX FUNCTIONS

NICUŞOR MINCULETE

(Communicated by M. Krnić)

Abstract. In this paper, for a function f : X → R , we introduce the following expression:
Δλ ( f )(x,y) := λ f (x)+(1−λ) f (y)− f (λx+(1−λ)y), where x,y ∈ X and λ ∈ R . The pur-
pose of this article is to characterize this expression, by finding various estimates of it. We also
give some characterizations of Δλ ( f )(x,y) when function f is convex, which prove refinements
of Young’s inequality. Finally, we give several inequalities in a normed space.

1. Introduction

In the literature related to the theory of inequalities, many of the published papers
contain studies of certain inequalities which used convexity (see e.g. [5], [14], [16],
[17]).

Let X be a convex subset of a real vector space and let f : X → R be a function
such that

f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y) (1)

for all x,y ∈ X and λ ∈ [0,1] . We say that function f is convex. For λ = 1
2 , we have

f

(
x+ y

2

)
� f (x)+ f (y)

2
(2)

for all x,y ∈ X . If f is concave, then the above inequalities should be reversed. If I
denote a nondegenerate interval of R and X = I , then inequality (1) generates a series
of inequalities, including Young’s inequality, thus, for f (t) = − logt , we obtain

λx+(1−λ )y � xλ y1−λ (3)

for every x,y > 0 and λ ∈ [0,1] . In many papers, improvements, generalizations or
reverse inequalities of Young’s inequality have been studied (see e.g. [4], [5], [7], [11],
[12], [13], [19], [20]).

Let f : X → R be a function. We introduce the following expression:

Δλ ( f )(x,y) := λ f (x)+ (1−λ ) f (y)− f (λx+(1−λ )y),
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where x,y ∈ X and λ ∈ R. If f is a convex function and λ ∈ [0,1] , then we obtain
that Δλ ( f )(x,y) � 0, for all x,y ∈ X . We find the following properties:

Δλ ( f )(x,x) = Δ0( f )(x,y) = Δ1( f )(x,y) = 0,

Δλ ( f )(x,y) = Δ1−λ ( f )(y,x)

and

Δ1/2( f )(λx+(1−λ )y,(1−λ )x+λy)+
1
2

(Δλ ( f )(x,y)+ Δλ ( f )(y,x)) = Δ1/2( f )(x,y)

for every x,y ∈ X .
In [13], we found a result which can be rewritten as

m
λ (1−λ )

2
(x− y)2 � Δλ ( f )(x,y) � M

λ (1−λ )
2

(x− y)2, (4)

where λ ∈ [0,1] and f : [x,y] → R is a twice differentiable function such that there
exist real constants m and M so that m � f ′′ � M . According to inequality (4) for
λ = 1

2 we obtain the following result, previously established in [3]:

m
8

(x− y)2 � Δ1/2( f )(x,y) � M
8

(x− y)2 (5)

for every x,y ∈ I , where I is a nondegenerate interval of R .
Let f : [x,y]→ R be a convex continuous function. Then, in terms of Δλ ( f )(x,y) ,

Hardy, Litlewood and Pólya [6] remark that

Δ1/2( f )(x,y) � Δ1/2( f )(z, t)

for every x � z � t � y .
In addition, some historical overview of studied problem are given below.
The Jensen inequality can be rewritten in the form of the corresponding functional,

i.e.

Jn( f ,x,p) :=
n

∑
i=1

pi f (xi)−Pn f
( 1

Pn

n

∑
i=1

pixi

)
, (6)

where the function f : I → R is convex on the interval I and x = (x1, . . . ,xn) ∈ In ,
p = (p1, . . . , pn) ∈ R

n
+ , Pn = ∑n

i=1 pi > 0. Dragomir et al. [2] noticed that the Jensen
functional is superadditive, that is,

Jn( f ,x,p+q) � Jn( f ,x,p)+Jn( f ,x,q), (7)

where p,q ∈ R
n
+ .

In the following years, this relation will become the starting point for improving
the Jensen–type inequalities since it implies the so called monotonicity of the Jensen
functional, i.e.

Jn( f ,x,p) � Jn( f ,x,q) � 0, (8)
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whenever p � q , i.e. pi � qi , i = 1, . . . ,n (see also [14], p.717). Note that ∑n
i=1 pi

need not be equal to 1, otherwise we would not be able to prove these relations.
By virtue of (8), Krnić et al. [8], established the mutual bounds for the Jensen

functional expressed in terms of the corresponding non–weighted functional. More
precisely, they proved that

n min
1�i�n

{pi}In( f ,x) � Jn( f ,x,p) � n max
1�i�n

{pi}In( f ,x), (9)

where In( f ,x) stands for the associated non–weighted functional, i.e.

In( f ,x) =
1
n

n

∑
i=1

f (xi)− f (
1
n

n

∑
i=1

xi).

Also inequality (9) was also proved by Dragomir [1] or by Mitroi [15].
The lower bound in (9) represents the refinement, while the upper one is the re-

verse of the Jensen inequality. Based on this property, numerous inequalities such the
Young inequality, the Hölder inequality, power mean inequalities, etc. have been re-
fined (see, e.g. [8, 9] and the references cited therein). These new results about the
Jensen inequality are collected in monograph [10]. For n = 2, in inequalities (6), (7),
(8) and (9), we obtain some characterizations of Δλ ( f )(x,y) when λ � 0.

The purpose of this article is to characterize expression Δλ ( f )(x,y) , by finding
various estimates of it. We also give some characterizations of Δλ ( f )(x,y) when func-
tion f is convex, which prove refinements of Young’s inequality. Finally, choosing a
particular case for a convex function f we give several inequalities in a normed space.

2. Main results

Next, we give some relations related to Δ·(·)(·, ·) , relations necessary to prove
some inequalities of the Young type. Let X be a convex subset of a real vector space.

LEMMA 1. Let f : X → R be a function and x,y ∈ X . If λ ∈ R , then the
following equalities hold:

Δλ ( f )(x,y) = Δ2λ ( f )
(

1
2
(x+ y),y

)
+2λ Δ1/2( f )(x,y) (10)

and

Δλ ( f )(x,y) = Δ2λ−1( f )
(

x,
1
2
(x+ y)

)
+2(1−λ )Δ1/2( f )(x,y). (11)

Proof. Using the definition of Δλ ( f )(x,y) , by regrouping the terms, we obtain

Δ2λ ( f )
(

1
2
(x+ y),y

)
= 2λ f

(
x+ y

2

)
+(1−2λ ) f (y)− f

(
2λ

x+ y
2

+(1−2λ )y
)

= λ f (x)+ (1−λ ) f (y)− f (λx+(1−λ )y)−λ
(

f (x)+ f (y)−2 f

(
x+ y

2

))
= Δλ ( f )(x,y)−2λ Δ1/2( f )(x,y),
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which implies the first relation of the statement. In the same way, we have

Δ2λ−1( f )
(

x,
1
2
(x+ y)

)
= (2λ −1) f (x)+ (2−2λ ) f

(
x+ y

2

)

− f

(
(2λ −1)x+(2−2λ )

x+ y
2

)

= λ f (x)+ (1−λ ) f (y)− f (λx+(1−λ )y)− (1−λ )
(

f (x)+ f (y)−2 f

(
x+ y

2

))
= Δλ ( f )(x,y)−2(1−λ )Δ1/2( f )(x,y),

which implies the second relation of the statement. �

If λ ∈ [0,1] and f : X → R is a convex function, then it is easy to see that
Δλ ( f )(x,y) � 0, for every x,y ∈ X . Next, we study de case when λ /∈ (0,1) .

LEMMA 2. Let f : X → R be a convex function. If λ ∈ R− (0,1) , then the
following inequality holds:

Δλ ( f )(x,y) � 0 (12)

for all x,y ∈ X .

Proof. We study two cases:
I) If λ � 0, then we obtain

Δλ ( f )(x,y) = λ f (x)+ (1−λ ) f (y)− f (λx+(1−λ )y)
= −(−λ f (x)+ f (λx+(1−λ )y))+ (1−λ ) f (y)

= −(1−λ )
( −λ

1−λ
f (x)+

1
1−λ

f (λx+(1−λ )y)− f (y)
)

� 0.

II) If λ � 1, then, using the triangle inequality, we deduce

Δλ ( f )(x,y) = λ f (x)+ (1−λ ) f (y)− f (λx+(1−λ )y)t
= −(−(1−λ ) f (y)+ f (λx+(1−λ )y)−λ f (x))

= −λ
(−(1−λ )

λ
f (y)+

1
λ

f (λx+(1−λ )y)− f (x)
)

� 0.

Therefore, the inequality of the statement is true. �

PROPOSITION 1. Let f : X → R be a convex function. If λ ∈ [0,1] , then the
following inequality holds:

2min{λ ,1−λ}Δ1/2( f )(x,y) � Δλ ( f )(x,y) � 2max{λ ,1−λ}Δ1/2( f )(x,y) (13)

for all x,y ∈ X .
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Proof. For λ ∈ [0, 1
2 ] , we have 2λ ∈ [0,1] and 2λ −1 ∈ [−1,0] , so, we show that

Δ2λ ( f )
( 1

2 (x+ y) ,y
)
� 0 and using Lemma 2 we have inequality Δ2λ−1( f )

(
x, 1

2 (x+ y)
)

� 0. From equalities (10) and (11), we obtain

2λ Δ1/2( f )(x,y) � Δλ ( f )(x,y) � 2(1−λ )Δ1/2( f )(x,y). (14)

For λ ∈ [ 1
2 ,1] , in the same way, we prove that

2(1−λ )Δ1/2( f )(x,y) � Δλ ( f )(x,y) � 2λ Δ1/2( f )(x,y). (15)

Consequently, combining inequalities (14) and (15) the inequality of the statement is
true. �

REMARK 1. Therefore, Proposition (1) in this paper is relation (9) for n = 2,
which has been established in [8]. But, the proof is different and we keep it as alterna-
tive proof.

In inequality (13) for the convex function f : [x,y] → R with f (t) = − logt , we
deduce the following inequality [12]:

1 �
(

x+ y
2
√

xy

)2min{λ ,1−λ}
� λx+(1−λ )y

xλ y1−λ �
(

x+ y
2
√

xy

)2max{λ ,1−λ}
(16)

for all x,y > 0 and λ ∈ [0,1] (see also [8]). This inequality represents a refinement of
Young’s inequality. Inequality (16) can be presented with Kantorovich constant, thus

Kmin{λ ,1−λ}(h,2)xλ y1−λ � λx+(1−λ )y � Kmax{λ ,1−λ}(h,2)xλ y1−λ , (17)

where x,y > 0, λ ∈ [0,1] , K(h,2) =
(h+1)2

4h
and h =

y
x

. Notice that the first inequal-

ity in (17) was obtained by Zou et al. in [20] while the second was obtained by Liao et
al. [11].

If λ ∈ (0,1) , then inequality (14) can be written, for a nondegenerate interval I ,
as

0 � Δλ ( f )(x,y)
2max{λ ,1−λ} � f (x)+ f (y)

2
− f

(
x+ y

2

)
� Δλ ( f )(x,y)

2min{λ ,1−λ} (18)

for all x,y ∈ I . For a convex function f : I → R+ , with λ = f (y)
f (x)+ f (y) , inequality (18)

becomes:

0 � min{ f (x), f (y)}
(

1− f (x)+ f (y)
2 f (x) f (y)

f

(
y f (x)+ x f (y)
f (x)+ f (y)

))

� f (x)+ f (y)
2

− f

(
x+ y

2

)

� max{ f (x), f (y)}
(

1− f (x)+ f (y)
2 f (x) f (y)

f

(
y f (x)+ x f (y)
f (x)+ f (y)

))
(19)



1080 N. MINCULETE

for all x,y ∈ I with f (x) �= 0 and f (y) �= 0.
Inequality (19) can be rewritten as

2 f

(
x+ y

2

)
−| f (x)− f (y)|

min{ f (x), f (y)}

� f (x)+ f (y)
f (x) f (y)

f

(
y f (x)+ x f (y)
f (x)+ f (y)

)
�

2 f

(
x+ y

2

)
+ | f (x)− f (y)|

max{ f (x), f (y)} (20)

for every x,y ∈ I with f (x) �= 0 and f (y) �= 0.

In general, for a,b > 0 and using relation (13), for λ =
a

a+b
, we find the follow-

ing inequality:

2min{a,b}
a+b

Δ1/2( f )(x,y) � Δ a
a+b

( f )(x,y) � 2max{a,b}
a+b

Δ1/2( f )(x,y) (21)

for all x,y ∈ X , which can be rewritten as

2min{a,b}
(

f (x)+ f (y)
2

− f

(
x+ y

2

))
� a f (x)+b f (y)− (a+b) f

(
ax+by
a+b

)

� 2max{a,b}
(

f (x)+ f (y)
2

− f

(
x+ y

2

))
(22)

for all numbers x and y in X and a,b ∈ R+ . In addition, (22) are also proved in [8].
Let I be a nondegenerate interval of R . For a+b = 1 and X = I , this inequality

is given by Mitroi [15], as a particular case of the Dragomir inequality [1].

Therefore, our interest is to refine inequality (22), which can be obtained from
inequality (13).

THEOREM 1. Suppose that f : X → R is a convex function. If λ ∈ [0, 1
2 ] , then

the following inequality holds:

2λ Δ1/2( f )(x,y)+2min{2λ ,1−2λ}Δ1/2( f )
(

1
2

(x+ y) ,y
)

� Δλ ( f )(x,y)

� 2λ Δ1/2( f )(x,y)+2max{2λ ,1−2λ}Δ1/2( f )
(

1
2

(x+ y) ,y
)

(23)

and if λ ∈ [ 1
2 ,1] , then the inequality

2(1−λ )Δ1/2( f )(x,y)+2min{2λ −1,2−2λ}Δ1/2( f )
(

x,
1
2

(x+ y)
)

� Δλ ( f )(x,y)

� 2(1−λ )Δ1/2( f )(x,y)+2max{2λ −1,2−2λ}Δ1/2( f )
(

x,
1
2

(x+ y)
)

(24)

holds.
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Proof. For λ ∈ [0, 1
2 ] , we have 2λ ∈ [0,1] and replacing x by 1

2 (x+ y) in in-
equality (13), we deduce

2min{2λ ,1−2λ}Δ1/2( f )
(

1
2

(x+ y) ,y
)

� Δ2λ ( f )
(

1
2

(x+ y) ,y
)

� 2max{2λ ,1−2λ}Δ1/2( f )
(

1
2

(x+ y) ,y
)

. (25)

Consequently, combining equality (10) with inequality (25), we show the first inequal-
ity of the statement. For λ ∈ [ 1

2 ,1] , we have 2λ −1∈ [0,1] and replacing y by 1
2 (x+ y)

in inequality (13), we deduce

2min{2λ −1,2−2λ}Δ1/2( f )
(

x,
1
2

(x+ y)
)

� Δ2λ−1( f )
(

x,
1
2

(x+ y)
)

� 2max{2λ −1,2−2λ}Δ1/2( f )
(

x,
1
2

(x+ y)
)

. (26)

Consequently, combining equality (11) with inequality (26) we prove the second in-
equality of the statement. �

REMARK 2. In inequality (23) for the convex function f : (0,∞)→R with f (t) =
t p , where p ∈ (−∞,0]∪ [1,∞) , we obtain the following inequality:

min{λ ,1−λ}(xp + yp−21−p (x+ y)p)� λxp +(1−λ )yp− (λx+(1−λ )y)p

� max{λ ,1−λ}(xp + yp−21−p (x+ y)p) (27)

for all x,y > 0 and λ ∈ [0,1] .
In inequality (23) for the convex function f : (0,∞) → R with f (t) = − logt , we

deduce the following inequality:

1 �
(

x+ y
2
√

xy

)2λ
(

x+3y

2
√

2y(x+ y)

)2min{2λ ,1−2λ}
� λx+(1−λ )y

xλ y1−λ

�
(

x+ y
2
√

xy

)2λ
(

x+3y

2
√

2y(x+ y)

)2max{2λ ,1−2λ}
(28)

for all x,y > 0 and λ ∈ [0, 1
2 ] . This inequality represents an improvement of Young’s

inequality, which refines inequality (16).
We are studying the problem of comparing the upper bound from inequality (13)

with the upper bounds from inequalities (23) and (24) to see which is better. For λ ∈
[0, 1

4 ] , by simple calculations, we prove the inequality

2λ Δ1/2( f )(x,y)+2max{2λ ,1−2λ}Δ1/2( f )
(

1
2

(x+ y) ,y
)

� 2(1−λ )Δ1/2( f )(x,y).

(29)
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Therefore, for λ ∈ [0, 1
4 ] the upper bound from inequality (23) is better. But, for λ ∈

[ 1
4 , 1

2 ] inequality (24) becomes

2(1−λ ) f

(
x+ y

2

)
+(4λ −1) f (y) � (1−2λ ) f (x)+4λ f

(
x+3y

4

)
,

which is true for x = −y and false for x = −3y , when 0 ∈ X and f (0) = 0. For
λ ∈ [ 3

4 ,1] , by simple calculations, we prove the inequality

2(1−λ )Δ1/2(x,y)+2max{2λ −1,2−2λ}Δ1/2

(
x,

1
2

(x+ y)
)

� 2λ Δ1/2(x,y). (30)

Consequently, for λ ∈ [ 3
4 ,1] the upper bound from inequality (24) is better. But, for

λ ∈ [ 1
2 , 3

4 ] inequality (30) becomes

2λ f

(
x+ y

2

)
+(3−4λ ) f (x) � (2λ −1) f (y)+4(1−λ ) f

(
3x+ y

4

)
,

which is true for y = −x and false for y = −3x , when 0 ∈ X and f (0) = 0.
We choose two real numbers a and b such that 0 < a � b , if we use relation (23),

for λ =
a

a+b
� 1

2 , then we obtain the following inequality:

2
a

a+b
Δ1/2( f )(x,y)+

2min{2a,b−a}
a+b

Δ1/2( f )
(

1
2

(x+ y) ,y
)

� Δ a
a+b

( f )(x,y)

� 2
a

a+b
Δ1/2( f )(x,y)+

2max{2a,b−a}
a+b

Δ1/2( f )
(

1
2

(x+ y) ,y
)

(31)

for all x,y ∈ X , which can be rewritten as

a

(
f (x)+ f (y)−2 f

(
x+ y

2

))
+min{2a,b−a}

(
f

(
x+ y

2

)
+ f (y)−2 f

(
x+3y

4

))

� a f (x)+b f (y)− (a+b) f

(
ax+by
a+b

)

� a

(
f (x)+ f (y)−2 f

(
x+ y

2

))

+max{2a,b−a}
(

f

(
x+ y

2

)
+ f (y)−2 f

(
x+3y

4

))
(32)

for every x and y in X and a,b ∈ R+ , a � b . This inequality refined the first part of
inequality (22).

A generalization of the equalities from Lemma 1 is given below:
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THEOREM 2. Let f : X → R be a function and the natural number n � 1 . If
λ ∈ R , then the following equalities hold:

Δλ ( f )(x,y) = λ
n

∑
k=1

2kΔ1/2( f )
(

1
2k−1 x+

(
1− 1

2k−1

)
y,y

)

+Δ2nλ ( f )
(

1
2n x+

(
1− 1

2n

)
y,y

)
(33)

and

Δλ ( f )(x,y) = (1−λ )
n

∑
k=1

2kΔ1/2( f )
(

x,

(
1− 1

2k−1

)
x+

1
2k−1 y

)

+Δ2nλ+1−2n( f )
(

x,

(
1− 1

2n

)
x+

1
2n y

)
(34)

for all x,y ∈ X .

Proof. Using Lemma 1 for λ ∈ R , we have

Δλ ( f )(x,y) = Δ2λ ( f )
(

1
2
(x+ y),y

)
+2λ Δ1/2( f )(x,y).

We replace λ by 2λ and x by 1
2 (x+ y) , in the above equality and we get

Δ2λ ( f )
(

1
2
(x+ y),y

)
= Δ22λ ( f )

(
1
2

(
1
2
(x+ y)+ y

)
,y

)

+22λ Δ1/2( f )
(

1
2
(x+ y),y

)
.

If we inductively repeat the above substitutions, for k � 1, then we have

Δ2k−1λ ( f )
(

1
2k−1 x+

(
1− 1

2k−1

)
y,y

)
= Δ2kλ ( f )

(
1
2k x+

(
1− 1

2k

)
y,y

)

+2kλ Δ1/2( f )
(

1
2k−1 x+

(
1− 1

2k−1

)
y,y

)
.

Therefore, summarizing the above relations for k ∈ {1, . . . ,n} , we obtain the relation
of the statement. Applying equality (33) and taking into account that Δλ ( f )(x,y) =
Δ1−λ ( f )(y,x) , we deduce equality (34). �

These equalities offer the possibility to refine inequalities (23) and (24), thus



1084 N. MINCULETE

THEOREM 3. Let f : X → R be a convex function and n a natural number,

n � 1 . If λ ∈
[
0,

1
2n

]
, then the following inequality holds:

λ
n

∑
k=1

2kΔ1/2( f )
(

1
2k−1 x+

(
1− 1

2k−1

)
y,y

)

+2min{2nλ ,1−2nλ}Δ1/2( f )
(

1
2n x+

(
1− 1

2n

)
y,y

)
� Δλ ( f )(x,y)

� λ
n

∑
k=1

2kΔ1/2( f )
(

1
2k−1 x+

(
1− 1

2k−1

)
y,y

)

+2max{2nλ ,1−2nλ}Δ1/2( f )
(

1
2n x+

(
1− 1

2n

)
y,y

)
(35)

and if λ ∈
[
1− 1

2n ,1

]
, then the following inequality holds:

(1−λ )
n

∑
k=1

2kΔ1/2( f )
(

x,

(
1− 1

2k−1

)
x+

1
2k−1 y

)

+2min{λ ′,1−λ ′}Δ1/2( f )
(

x,

(
1− 1

2n

)
x+

1
2n y

)
� Δλ ( f )(x,y)

� (1−λ )
n

∑
k=1

2kΔ1/2( f )
(

x,

(
1− 1

2k−1

)
x+

1
2k−1 y

)

+2max{λ ′,1−λ ′}Δ1/2( f )
(

x,

(
1− 1

2n

)
x+

1
2n y

)
, (36)

where λ ′ = 2nλ +1−2n and x,y ∈ X .

Proof. Using the inequalities from Proposition 1 and combining with equalities
(33) and (34), we deduce that the inequalities of the statement are true. �

For a real normed space X = (X ,‖ · ‖) , function f (x) = ‖x‖r (x ∈ X and
1 � r < ∞) is a convex function. Therefore, we obtain

Δλ ( f )(x,y) = λ‖x‖r +(1−λ )‖y‖r−‖λx+(1−λ )‖r,

where x,y ∈ X , r � 1 and 0 � λ � 1.
For r = 1 in the above equality, we find Δλ ( f )(x,y) = λ‖x‖+(1−λ )‖y‖−‖λx+

(1−λ )y‖ , where x,y ∈ X and 0 � λ � 1, which in fact is the expression of dλ (x,y)
from [18].

In inequality (23) for the convex function f (x)= ‖x‖r , where r∈ [1,∞) , we obtain
the following inequality:

min{λ ,1−λ}(‖x‖r +‖y‖r−21−r‖x+ y‖r)� λ‖x‖r +(1−λ )‖y‖r−‖λx+(1−λ )y‖r

� max{λ ,1−λ}(‖x‖r +‖y‖r−21−r‖x+ y‖r) (37)
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for all x,y ∈ X and λ ∈ [0,1] . If we replace y by −y in inequality (2) we find
inequality

min{λ ,1−λ}(‖x‖r +‖y‖r−21−r‖x− y‖r)� λ‖x‖r +(1−λ )‖y‖r−‖λx−(1−λ )y‖r

� max{λ ,1−λ}(‖x‖r +‖y‖r−21−r‖x− y‖r) (38)

for all x,y ∈ X and λ ∈ [0,1] .
Let p be a real number such that p > 0 and we take λ = ‖x‖p−1

‖x‖p−1+‖y‖p−1 in inequal-
ity (38), then we have the following inequality:

minp−1{‖x‖,‖y‖}(‖x‖r +‖y‖r−21−r‖x− y‖r)
� ‖x‖p+r−1 +‖y‖p+r−1− (‖x‖p−1 +‖y‖p−1)1−r ‖‖x‖p−1x−‖y‖p−1y‖r

� maxp−1{‖x‖,‖y‖}(‖x‖r +‖y‖r−21−r‖x− y‖r) (39)

for all nonzero vectors x,y ∈ X , r � 1 and p > 0.
By replacing parameter λ with various values or choosing various particular cases

of the convex function f , we obtain other applications for Δλ ( f )(x,y) , where x,y∈X .
It remains for the reader to find other estimates of the expression Δλ ( f )(x,y) , where
x,y ∈ X and λ ∈ R .
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