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PARAMETERIZED MORE ACCURATE

HARDY–HILBERT–TYPE INEQUALITIES AND APPLICATIONS

YONG HONG, YANRU ZHONG ∗ AND BICHENG YANG

(Communicated by M. Krnić)

Abstract. By means of the weight coefficients, the idea of introduced parameters and Hermite-
Hadamard’s inequality, a more accurate Hardy-Hilbert-type inequality with the general homo-
geneous kernel and the discrete intermediate variables is given. The equivalent form and a few
equivalent statements of the best possible constant factor related to some parameters are ob-
tained. As applications, the operator expressions, a few particular cases and some examples are
considered.

1. Introduction

Assuming that p > 1, 1
p + 1

q = 1, am,bn � 0, 0 <
m=1 ap

m < and 0<
n=1 bq

n <
, we have a more accurate Hardy-Hilbert’s inequality with the best possible constant
factor 

sin(/p) as follows (cf. [3], Theorem 323):




m=1




n=1

ambn

m+n−1
<


sin(/p)

(



m=1

ap
m

) 1
p
(




n=1

bq
n

) 1
q

. (1)

Since 1
m+n < 1

m+n−1 (m,n ∈ N ={1,2, · · ·}), inequality (1) reduces to the following
well knownHardy-Hilbert’s inequality with the sane best possible constant factor 

sin(/p)
(cf. [3], Theorem 315):




m=1




n=1

ambn

m+n
<


sin(/p)

(



m=1

ap
m

) 1
p
(




n=1

bq
n

) 1
q

. (2)

Stting i,i > 0 (i, j ∈ N) and

Um :=
m


i=1

i,Vn :=
n


j=1

 j (m,n ∈ N), (3)
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we still obtain the following Hardy-Hilbert-type inequality (cf. [1], Theorem 320):




m=1




n=1

ambn

Um +Vn
<


sin(/p)

(



m=1

ap
m

 p−1
m

) 1
p
(




n=1

bq
n

q−1
n j

) 1
q

. (4)

For i = i = 1 (i, j ∈ N), inequality (4) reduces to (2).
If f (x),g(y) � 0, 0 <

∫ 
0 f p(x)dx < and 0 <

∫ 
0 gq(y)dy <, then we have the

following Hardy-Hilbert’s integral inequality:

∫ 

0

∫ 

0

f (x)g(y)
x+ y

dxdy <


sin(/p)

(∫ 

0
f p(x)dx

) 1
p
(∫ 

0
gq(y)dy

) 1
q

, (5)

with the best constant factor 
sin(/p) (cf. [3], Theorem 316). In 1998, by introducing an

independent parameter  > 0, Yang [23, 24] gave an extension of (2) (for p = q = 2)
with the best possible constant factor B(2 , 2 ) as follows:∫ 

0

∫ 

0

f (x)g(y)
(x+ y)

dxdy

< B(

2

,

2

)
(∫ 

0
x1− f 2(x)dx

∫ 

0
y1−g2(y)dy

) 1
2

, (6)

where, B(u,v) :=
∫ 
0

tu−1

(1+t)u+v dt (u,v > 0) is the beta function.
Inequalities (1), (2) and (4)–(6) with their extensions are important in analysis and

its applications (cf. [1, 2, 4, 5, 12, 15, 19–21, 25, 26, 30]).
The following half-discrete Hilbert-type inequality was provided (cf. [3], Theo-

rem 351): if K(x) (x > 0) is a decreasing function, p > 1, 1
p + 1

q = 1, 0 < (s) =∫ 
0 K(t)ts−1dt <  , then for an � 0, 0 < 

n=1 ap
n <  ,

∫ 

0
xp−2

(



n=1

K(nx)an

)p

dx <  p(
1
q
)




n=1

ap
n . (7)

Some new extensions of (7) with their applications were provided by [6, 16–18, 27,
28].

In 2016, by the use of the technique of real analysis, Hong et al. [7] considered
some equivalent statements of the extensions of (2) with the best possible constant
factor related to a few parameters. The other similar works about the extensions of (5)
and (6) were given by [8–11, 22].

In this paper, according to the way of [7], by means of the weight functions, the
idea of introduced parameters and Hermite-Hadamard’s inequality, a more accurate
Hardy-Hilbert-type inequality with the general homogeneous kernel and the discrete
intermediate variables is given, which is a more accurate extension of (4). The equiv-
alent form and the equivalent statements of the best possible constant factor related
to some parameters are considered. As applications, the operator expressions, a few
particular cases and some examples are obtained.
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2. Some lemmas

In what follows, we suppose that p > 1, 1
p + 1

q = 1, 0 < , � 1,  ∈ R+ =
(0,) , 2 ,  − 1 � 1

 , 1,  − 2 � 1
 , both {m}m=1 and {n}n=1 are positive

decreasing sequences, with ̂ ∈ [0, 1
2 ] and ̂ ∈ [0, 1

2 ], k (x,y) is a positive homo-
geneous function of degree − , satisfying for any u,x,y > 0,

k (ux,uy) = u− k (x,y).

Also, k (x,y) is a strictly decreasing and strictly convex function with respect to x,y >
0, such that

(−1)i 
xi k (x,y) > 0, (−1)i 

yi k (x,y) > 0 (i = 1,2),

and for  = 1,  −2 ,

k () :=
∫ 

0
k (u,1)u−1du ∈ R+. (8)

Using the expressions (3), we still assume that am,bn � 0, such that

0 <



m=1

(Um − ̂)p[1−( −2p + 1
q )]−1 ap

m

 p−1
m+1

<

and

0 <



n=1

(Vn− ̂)q[1− ( −1q + 2
p )]−1 bq

n

q−1
n+1

< .

We set (t) := m , t ∈ (m−1,m], (t) := n , t ∈ (n−1,n] (m,n ∈ N),and

U(x) :=
∫ x

0
(t)dt, V (y) :=

∫ y

0
(t)dt (x,y � 0).

It follows that U(m) = Um , V (n) = Vn, U( 1
2 ) = 1

2 ,V ( 1
2) = 1

2 and

U ′(x) = : (x) = m, x ∈ (m−1,m],
V ′(y) = : (y) = n, y ∈ (n−1,n] (m,n ∈ N).

LEMMA 1. For fixed m ∈ N , the following continuous function

fm(y) := k ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)2−1

is strictly decreasing and strictly convex with respect to y ∈ (n− 1
2 ,n+ 1

2 ) (n ∈ N) .
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Proof. For y ∈ (n− 1
2 ,n) , 0 <  � 1, 2 −1 � 0, we find

f ′m(y) = [k′ ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−1

+(2 −1)k ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−1]

×(V (y)− ̂)2−1n < 0.

Replacing n by n+1 in the above expression, we have f ′m(y) < 0 (y ∈ (n,n + 1
2 )) .

In view of fm(y) is continuous in (n− 1
2 ,n + 1

2) , it follows that fm(y) is a strictly
decreasing function with respect to (n− 1

2 ,n+ 1
2 ) (n ∈ N) .

For y ∈ (n− 1
2 ,n) , we find

f ′′m(y) = [ 2k′′ ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)2−2

+ ( −1)k′ ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−2

+(2 −1)k′ ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−2

+(1−2 )k ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−2]

×(V (y)− ̂)2−12
n +[k′ ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−1

+(2 −1)k ((Um − ̂) ,(V (y)− ̂) )(V (y)− ̂)−1]

×(V (y)− ̂)2−22
n > 0.

Replacing n by n+1 in the above expression, it follows that f ′′m(y)> 0 (y∈ (n,n+ 1
2).

For n ∈N , since n � n+1 > 0, we find that f ′m(n−0) � f ′m(n+0), in the above
expressions. In view of f ′′m(y) > 0 (y∈ (n− 1

2 ,n+ 1
2)) , it follows that f ′m(y) is a strictly

increasing function in (n− 1
2 ,n+ 1

2) , and then fm(y) is a strictly convex function with
respect to y ∈ (n− 1

2 ,n+ 1
2) (n ∈ N) .

The lemma is proved. �

DEFINITION 1. The following weight coefficients are defined: for m,n ∈ N,

(2,m) :=



n=1

k ((Um − ̂) ,(V (n)− ̂) )
(V (n)− ̂)2−1n+1

(Um − ̂)(2− ) . (9)

(1,n) :=



m=1

k ((Um − ̂) ,(V (n)− ̂) )
(Um − ̂)1−1m+1

(V (n)− ̂) (1− ) . (10)

LEMMA 2. The following inequalities are valid:

(2,m) <
1


k ( −2) (m ∈ N), (11)

(1,n) <
1


k (1) (n ∈ N). (12)
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Proof. According to Lemma 1, by Hermite-Hadamard’s inequality (cf. [13]), we
find

(2,m) �



n=1

∫ n+ 1
2

n− 1
2

k ((Um − ̂) ,(Vn− ̂) )
(Vn − ̂)2−1V ′(y)
(Um − ̂)(2− ) dy

�



n=1

∫ n+ 1
2

n− 1
2

k ((Um − ̂) ,(V (y)− ̂) )
(V (y)− ̂)2−1V ′(y)

(Um − ̂)(2− ) dy

=
∫ 

1
2

k ((Um − ̂) ,(V (y)− ̂) )
(V (y)− ̂)2−1

(Um − ̂)(2− ) d(V (y)− ̂).

Setting t = (Um−̂)

(V (y)−̂)
, since ̂ ∈ [0, 1

2 ], we find

(2,m) <
1


∫ (Um−̂)

V( 1
2 )−̂)

(Um−̂)

V()−̂)
k (t,1)t(−2)−1dt

� 1


∫ 

0
k (t,1)t(−2)−1dt =

1


k ( −2).

Hence, we have (11).

In view of Lemma 1 and in the same way, for fixed n ∈ N and 0 <  � 1, 1 −
1 � 0, we can conclude that the following continuous function

gn(x) := k ((U(x)− ̂) ,(Vn− ̂) )(U(x)− ̂)1−1

is also a strictly decreasing and strictly convex function with respect to x ∈ (m− 1
2 ,m+

1
2) (m ∈ N) . Setting, u = (U(x)−̂)

(Vn−̂)
, sine ̂ ∈ [0, 1

2 ], we find

(1,n) �



m=1

∫ m+ 1
2

m− 1
2

k ((Um − ̂) ,(Vn− ̂) )
(Um − ̂)1−1U ′(x)

(Vn− ̂) (1− ) dx

<



m=1

∫ m+ 1
2

m− 1
2

k ((U(x)− ̂) ,(Vn− ̂) )
(U(x)− ̂)1−1U ′(x)

(Vn− ̂) (1− ) dx

=
∫ 

1
2

k ((U(x)− ̂) ,(Vn − ̂) )
(U(x)− ̂)1−1

(Vn− ̂) (1− ) d(U(x)− ̂)

=
1


∫ (Ux)−̂)

(Vn−̂)

(U( 1
2 )−̂)

(Vn−̂)

k (u,1)u1−1du � 1


∫ 

0
k (u,1)u1−1du =

1


k (1).

Hence, we have (12).

The lemma is proved. �
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LEMMA 3. The following inequality is valid:

I :=



n=1




m=1

k ((Um − ̂) ,(Vn− ̂) )ambn

<
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)

{



m=1

(Um − ̂)p[1−( −2p + 1
q )]−1 ap

m

 p−1
m+1

} 1
p

×
{




n=1

(Vn− ̂)q[1− ( −1q + 2
p )]−1 bq

n

q−1
n+1

} 1
q

. (13)

Proof. By Hölder’s inequality with weight (cf. [13]), we obtain

I =



n=1




m=1

k ((Um − ̂) ,(Vn − ̂) )

[
(Vn− ̂)(2−1}/p1/p

n+1am

(Um − ̂)(1−1)/q1/q
m+1

]

×
[

(Um − ̂)(1−1)/q1/q
m+1bn

(Vn− ̂)(2−1}/p1/p
n+1

]

�
[




m=1




n=1

k ((Um − ̂) ,(Vn− ̂) )
(Vn− ̂)(2−1}n+1a

p
m

(Um − ̂)(1−1)(p−1) p−1
m+1

] 1
p

×
[




n=1




m=1

k ((Um − ̂) ,(Vn− ̂) )
(Um − ̂)(1−1)m+1b

q
n

(Vn− ̂)(2−1}(q−1)q−1
n+1

] 1
q

=

{



m=1

(2,m)(Um − ̂)p[1−( −2p + 1
q )]−1 ap

m

 p−1
m+1

} 1
p

×
{




n=1

(1,n)(Vn− ̂)q[1− ( −1q + 2
p )]−1 bq

n

q−1
n+1

} 1
q

.

Then, using (11) and (12), we obtain (13).
The lemma is proved. �

REMARK 1. By (13) with the assumption, for 1 +2 =  , we find

0 <



m=1

(Um − ̂)p(1−1)−1 ap
m

 p−1
m+1

< ,

0 <



n=1

(Vn− ̂)q(1−2)−1 bq
n

q−1
n+1

< ,
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and the following inequality:




n=1




m=1

k ((Um − ̂) ,(Vn − ̂) )ambn

<
k (1)
 1/p1/q

[



m=1

(Um − ̂)p(1−1)−1 ap
m

 p−1
m+1

] 1
p

×
[




n=1

(Vn− ̂)q(1−2)−1 bq
n

q−1
n+1

] 1
q

(14)

In particular, for ̂ = ̂ = 0, we have




n=1




m=1

k (U
m ,V 

n )ambn

<
k (1)
 1/p1/q

[



m=1

U p(1−1)−1
m

ap
m

 p−1
m+1

] 1
p
[




n=1

Vq(1−2)−1
n

bq
n

q−1
n+1

] 1
q

(15)

Hence, inequality (14) is a more accurate extension of (15).

For  =  =  = 1, k1(x,y) = 1
x+y , 1 = 1

q , 2 = 1
p , inequality (14) reduces to

the following more accurate extension of (4) (replacing m+1 (n+1) by m (n)): for
̂ ∈ [0, 1+1 ], we have




m=1




n=1

ambn

Um +Vn− ̂
<


sin(/p)

(



m=1

ap
m

 p−1
m+1

) 1
p
(




n=1

bq
n

q−1
n+1

) 1
q

. (16)

In particular, for m = n = ̂ = 1, inequality (16) reduces to (1).

LEMMA 4. If U() =V () = , then the constant factor k (1)
 1/p1/q in (14) is the

best possible.

Proof. For any  > 0, we set

ãm := Um
(1− 

p )−1m+1, b̃n := Vn
 (2− 

q )−1n+1 (m,n ∈ N).

If there exists a constant M (� k (1)
 1/p1/q ), such that (14) is valid when we replace

k (1)
 1/p1/q by M . Then in particular, for ̂ = ̂ = 0, we have

Ĩ :=



n=1




m=1

k (U
m ,V 

n )ãmb̃n

< M

[



m=1

U p(1−1)−1
m

ãp
m

 p−1
m+1

] 1
p
[




n=1

Vq(1−2)−1
n

b̃q
n

q−1
n+1

] 1
q

.



1248 Y. HONG, Y. ZHONG AND B. YANG

We obtain

Ĩ < M

⎡⎣ 


m=1

U p(1−1)−1
m

U
p(1− 

p )−p
m  p

m+1

 p−1
m+1

⎤⎦
1
p
⎡⎣ 


n=1

Vq(1−2)−1
n

V
q (2− 

q )−q
n q

n+1

q−1
n+1

⎤⎦
1
q

� M

(
−−1

1 2 +



m=2

U−−1
m m

) 1
p
(
−−1

1 2 +



n=2

V−−1
n n

) 1
q

= M

[
1

−−12 +



m=2

∫ m

m−1
Um

−−1U ′(x)dx

] 1
p

×
[
(1

−−12 +



n=2

∫ n

n−1
Vn

−−1V ′(y)dy

] 1
q

< M

[
1

−−12 +



m=2

∫ m

m−1
U−−1(x)dU(x)

] 1
p

×
[
1

−−12 +



n=2

∫ n

n−1
V−−1(y)dV (y)

] 1
q

= M

(
1

−−12 +
∫ 

1
U−−1(x)dU(x)

) 1
p

×
(
1

−−12 +
∫ 

1
V−−1(y)dV (y)

) 1
q

=
1

M

(
−−1

1 2 +
1

−

1

) 1
p
(
−−1

1 2 +
1

−

1

) 1
q

.

By the decreasingness property of series and Fubini theorem (cf. [14]), in view of
U() = V () =  , we find

Ĩ =



n=1




m=1

k (U
m ,V 

n )
U1−1

m m+1

U/p
m

V 2−1
n n+1

V /q
n

=



n=1




m=1

∫ n+1

n

∫ m+1

m
k (U

m ,V 
n )

U1−1
m

U/p
m

V 2−1
n

V /q
n

U ′(x)V ′(y)dxdy

�



n=1




m=1

∫ n+1

n

[∫ m+1

m
k (U(x),V  (y))

U1−1(x)
U/p(x)

U ′(x)dx

]
V 2−1(y)
V /q(y)

V ′(y)dy

=
∫ 

1

[∫ 

1
k (U(x),V  (y))

U1−1(x)
U/p(x)

U ′(x)dx

]
V 2−1(y)
V /q(y)

V ′(y)dy.



HARDY-HILBERT-TYPE INEQUALITIES 1249

Setting u = U (x)
V (y)

, we have

Ĩ =
1


∫ 

1

⎛⎝∫ 

U (1)
V (y)

k (u,1)u1− 
p−1du

⎞⎠V 2−1(y)
V /q(y)

V ′(y)dy

=
1


∫ 

1

(∫ 

1
t

k (u,1)u1− 
p−1du

)
t−−1dt

=
1


⎡⎢⎣∫ 

1

⎛⎜⎝∫
1
1

1
t

k (u,1)u1− 
p−1du

⎞⎟⎠ t−−1dt

+
∫ 

1

⎛⎝∫ 

1
1

k (u,1)u1− 
p−1du

⎞⎠t−−1dt

⎤⎦
=

1


⎡⎣∫ 1
1

0

(∫ 

1
u

t−−1dt

)
k (u,1)u1− 

p−1du+
1

1

∫ 

1
1

k (u,1)u1− 
p−1du

⎤⎦
=

1


⎡⎣ 1


1

∫ 1
1

0
k (u,1)u1+ 

q−1du+
1

1

∫ 

1
1

k (u,1)u1− 
p−1du

⎤⎦ .

Then we obtain

1


⎡⎣ 1


1

∫ 1
1

0
k (u,1)u1+ 

q−1du+
1

1

∫ 

1
1

k (u,1)u1− 
p−1du

⎤⎦
�  Ĩ � M

(
−−1

1 2 +
1

−

1

) 1
p
(
−−1

1 2 +
1

−

1

) 1
q

.

For  → 0+ , by Fatou lemma (cf. [14]), we find

1


k (1) =
1


⎡⎣ lim
→0+

1


1

∫ 1
1

0
lim
→0+

k (u,1)u1+ 
q−1du

+ lim
→0+

1

1

∫ 

1
1

lim
→0+

k (u,1)u1− 
p−1du

⎤⎦
� 1


lim
→0+

⎡⎣ 1


1

∫ 1
1

0
k (u,1)u1+ 

q−1du

+
1

1

∫ 

1
1

k (u,1)u1− 
p−1du

⎤⎦� M

(
1


) 1
p
(

1


) 1
q

,
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namely, 1
 1/p1/q k (1) � M . Hence, M = 1

 1/p1/q k (1) is the best possible constant

factor of (14).
The lemma is proved. �

REMARK 2. Setting ̂1 := −2
p + 1

q , ̂2 := −1
q + 2

p , we find

̂1 + ̂2 =
 −2

p
+
1

q
+
 −1

q
+
2

p
=  ,

̂1 � 1
p

+
1

q
=

1


, ̂2 � 1
q

+
1
p

=
1


,

and by Hölder’s inequality (cf. [13]), we obtain

0 < k ( − ̂2) = k (̂1) = k

(
 −2

p
+
1

q

)
=
∫ 

0
k (u,1)u

−2
p + 1

q −1du =
∫ 

0
k (u,1)(u

−2−1
p )(u

1−1
q )du

�
(∫ 

0
k (u,1)u−2−1du

) 1
p
(∫ 

0
k (u,1)u1−1du

) 1
q

= (k ( −2))
1
p (k (1))

1
q < . (17)

We can reduce (13) as follows:

I <
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)

[



m=1

(Um − ̂)p(1−̂1)−1 ap
m

 p−1
m+1

] 1
p

×
[




n=1

(Vn− ̂)q(1− ̂2)−1 bq
n

q−1
n+1

] 1
q

, (18)

LEMMA 5. If the constant factor
k

1
p
 (−2)
 1/p1/q k

1
q

 (1) in (13) is the best possible,

then. 1 +2 =  .

Proof. If the constant factor
k

1
p
 (−2)
 1/p1/q k

1
q

 (1) in (13) is the best possible, then by

(18) and (14) (for 1 = ̂1,2 = ̂2 ), we have the following inequality:

k
1
p

 ( −2)
 1/p1/q

k
1
q

 (1) � k (̂1)
 1/p1/q

,

namely, k
1
p

 ( −2)k
1
q

 (1) � k (̂1).We observe that inequality (17) keeps the form of
equality if and only if there exist constants A and B , such that they are not both zero
and (cf. [13]) Au−2−1 = Bu1−1 a.e. in R+.Assuming that A �= 0, it follows that
u−1−2 = B/A a.e. in R+ , and then  −1−2 = 0, namely, 1 +2 =  .

The lemma is proved. �
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3. Main results and some particular cases

THEOREM 1. Inequality (18) (or (13)) is equivalent to the following inequality:

J :=

{



n=1

(Vn− ̂)p ̂2−1n+1

[



m=1

k ((Um − ̂) ,(Vn− ̂) )am

]p} 1
p

<
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)

[



m=1

(Um − ̂)p(1−̂1)−1 ap
m

 p−1
m+1

] 1
p

. (19)

If the constant factor in (18) is the best possible, then, so is the constant factor in (19) .

Proof. Assuming that (19) is valid, by Hölder’s inequality (cf. [13]), we find

I =



n=1

⎡⎣(Vn− ̂)
−1
p + ̂2

−1/p
n+1




m=1

k ((Um − ̂) ,(Vn− ̂) )am

⎤⎦
×
[
(Vn− ̂)

1
p− ̂2

bn

1/p
n+1

]

� J

[



n=1

(Vn− ̂)q(1− ̂2)−1 bq
n

q−1
n+1

] 1
q

. (20)

Then by (19), we obtain (18).
On the other hand, assuming that (18) is valid, we set

bn := (Vn− ̂)p ̂2−1n+1

[



m=1

k ((Um − ̂) ,(Vn − ̂) )am

]p−1

, n ∈ N.

If J = 0, then (19) is naturally valid; if J =  , then it is impossible that to make (19)
valid, namely, J <  . Suppose that 0 < J <  . By (18), it follows that




n=1

(Vn − ̂)q(1− ̂2)−1 bq
n

q−1
n+1

= Jp = I <
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)

[



m=1

(Um − ̂)p(1−̂1)−1 ap
m

 p−1
m+1

] 1
p

×
[




n=1

(Vn− ̂)q(1− ̂2)−1 bq
n

q−1
n+1

] 1
q

,
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J =

[



n=1

(Vn− ̂)q(1− ̂2)−1 bq
n

q−1
n+1

] 1
p

<
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)

[



m=1

(Um − ̂)p(1−̂1)−1 ap
m

 p−1
m+1

] 1
p

,

namely, (19) follows, which is equivalent to (18).
If the constant factor in (18) is the best possible, then so is constant factor in (19) .

Otherwise, by (20) (for 1 +2 =  ), we would reach a contradiction that the constant
factor in (14) is not the best possible.

The theorem is proved. �

THEOREM 2. If U() = V () = , then the following statements (i), (ii), (iii),
(iv) and (v) are equivalent:

(i) Both k
1
p

 ( −2)k
1
q

 (1) and k
(
−2

p + 1
q

)
are independent of p,q ;

(ii) We have the following inequality:

k
1
p

 ( −2)k
1
q

 (1) � k

(
 −2

p
+
1

q

)
;

(iii) 1 +2 =  ;

(iv) the constant factor
k

1
p
 (−2)
 1/p1/q k

1
q

 (1) in (18) (resp. (19)) is the best possible.

If the statement (iii) follows, namely, 1 + 2 =  , then we have the following
inequality equivalent to (14) with the best possible constant factor k (1)

 1/p1/q :

{



n=1

(Vn− ̂)p2−1n+1

[



m=1

k ((Um − ̂) ,(Vn− ̂) )am

]p} 1
p

<
k (1)
 1/p1/q

[



m=1

(Um − ̂)p(1−1)−1 ap
m

 p−1
m+1

] 1
p

. (21)

Proof. (i)⇒ (ii) . Since both k
1
p

 ( −2)k
1
q

 (1) and k (−2
p + 1

q ) are indepen-
dent of p,q , we find

k
1
p

 ( −2)k
1
q

 (1) = lim
p→

lim
q→1+

k
1
p

 ( −2)k
1
q

 (1) = k (1),

and by Fatou lemma (cf. [14]), we have the following inequality:

k

(
 −2

p
+
1

q

)
= lim

p→
lim

q→1+
k

(
 −2

p
+
1

q

)
� k (1) = k

1
p

 ( −2)k
1
q

 (1).
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(ii) ⇒ (iii) . If k
1
p

 ( −2)k
1
q

 (1) � k (−2
p + 1

q ), then (17) keeps the form of
equality. Based on the proof of Lemma 5, it follows that 1 +2 =  .

(iii) ⇒ (i) . If 1 +2 =  , then we have

k
1
p

 ( −2)k
1
q

 (1) = k

(
 −2

p
+
1

q

)
= k (1).

Both k
1
p

 ( −2)k
1
q

 (1) and k (−2
p + 1

q ) are independent of p,q .
Hence, it follows that (i) ⇔ (ii) ⇔ (iii) .
(iii) ⇒ (iv) . By Lemm 4 and Theorem 1, we obtain the conclusions.
(iv) ⇒ (iii) . By Theorem 1 and Lemma 5, we obtain 1 +2 =  .
Therefore, the statements (i), (ii), (iii), (iv) and (v) are equivalent.
The theorem is proved. �

REMARK 3. (i) For  =  =  = 1,1 = 1
q ,1 = 1

p in (14) and (21), we have the
following equivalent inequalities with the best possible constant factor:




n=1




m=1

k1(Um − ̂,Vn− ̂)ambn < k1

(
1
q

)( 


m=1

ap
m

 p−1
m+1

) 1
p
(




n=1

bq
n

q−1
n+1

) 1
q

, (22)

[



n=1

n+1

(



m=1

k1(Um − ̂,Vn− ̂)am

)p] 1
p

< k1(
1
q
)

(



m=1

ap
m

 p−1
m+1

) 1
p

. (23)

(ii) For  =  =  = 1, 1 = 1
p , 1 = 1

q in (14) and (21), we have the following
equivalent dual forms of (22) and (23) with the best possible constant factor:




n=1




m=1

k1(Um − ̂,Vn− ̂)ambn

< k1

(
1
p

)[ 


m=1

(Um − ̂)p−2 ap
m

 p−1
m+1

] 1
p
[




n=1

(Vn− ̂)q−2 bq
n

q−1
n+1

] 1
q

, (24)

[



n=1

(Vn− ̂)p−2n+1

(



m=1

k1(Um − ̂,Vn− ̂)am

)p] 1
p

< k1

(
1
p

)[ 


m=1

(Um − ̂)p−2 ap
m

 p−1
m+1

] 1
p

. (25)

(iii) For p = q = 2, both (22) and (24) reduce to




n=1




m=1

k1(Um − ̂,Vn− ̂)ambn < k1

(
1
2

)( 


m=1

a2
m

m+1




n=1

b2
n

n+1

) 1
2

, (26)



1254 Y. HONG, Y. ZHONG AND B. YANG

and both (23) and (25) reduce to the equivalent form of (26) as follows:⎡⎣ 


n=1

n+1

(



m=1

k1(Um − ̂,Vn− ̂)am

)2
⎤⎦ 1

2

< k1

(
1
2

)( 


m=1

a2
m

m+1

) 1
2

. (27)

4. Operator expressions and some particular inequalities

We set functions

(m) := (Um − ̂)p(1−̂1)−1 1

 p−1
m+1

, (n) := (Vn− ̂)q(1− ̂2)−1 1

q−1
n+1

,

wherefrom,

1−p(n) = (Vn− ̂)p ̂2−1n+1 (m,n ∈ N).

Define the following real normed spaces:

lp, :=

⎧⎨⎩a = {am}m=1; ||a||p, :=

(



m=1

(m)|am|p
) 1

p

< 

⎫⎬⎭ ,

lq, :=

⎧⎨⎩b = {bn}n=1; ||b||q, :=

(



n=1

(n)|bn|q
) 1

q

< 

⎫⎬⎭ ,

lp,1−p :=

⎧⎨⎩c = {cn}n=1; ||c||p,1−p :=

(



n=1

1−p(n)|cn|p
) 1

p

< 

⎫⎬⎭ .

Assuming that a ∈ lp, , setting

c = {cn}n=1,cn :=



m=1

k ((Um − ̂) ,(Vn− ̂) )am, n ∈ N,

we can rewrite (19) as follows:

||c||p,1−p <
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)||a||p, < ,

namely, c ∈ lp,1−p .

DEFINITION 2. Define a more accurate Hilbert-type operator T : lp, → lp,1−p

as follows: For any a ∈ lp, , there exists a unique representation Ta = c ∈ lp,1−p ,
satisfying for any n ∈ N,Ta(n) = cn. Define the formal inner product of Ta and b ∈
lq, , and the norm of T as follows:

(Ta,b) :=



n=1

(



m=1

k ((Um − ̂) ,(Vn− ̂) )am

)
bn = I,
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||T || := sup
a( �=0)∈lp,

||Ta||p,1−p

||a||p,
.

By Theorem 1 and Theorem 2, we have

THEOREM 3. If a ∈ lp, , b ∈ lq, , ||a||p, , ||b||q, > 0, then we have the follow-
ing equivalent inequalities:

(Ta,b) <
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)||a||p, ||b||q, , (28)

||Ta||p,1−p <
k

1
p

 ( −2)
 1/p1/q

k
1
q

 (1)||a||p, . (29)

Moreover, if U() = V () = , then, 1 +2 =  if and only if the constant factor

k
1
p
 (−2)
 1/p1/q k

1
q

 (1) in (28) (resp. (29)) is the best possible, namely,

||T || = k (1)
 1/p1/q

. (30)

EXAMPLE 1. We set k (x,y) = 1
(cx+y)

(c, > 0; x,y > 0) . Then we find

k ((Um − ̂) ,(Vn,−̂) ) =
1

[c(Um − ̂) +(Vn− ̂) ]
.

For 0 < , � 1, 0 < 1 ,  − 2 � 1
 , 0 < 2 ,  − 1 � 1

 , k (x,y) is a positive
homogeneous function of degree − such that k (x,y) is a strictly decreasing and
strictly convex function with respect to x,y > 0, and for  = 1 ,  −2

k () =
∫ 

0

u−1

(cu+1)
du =

1
c

B(, − ) ∈ R+.

In view of Theorem 3, it follows that if U() = V () = , then, 1 +2 =  if
and only if

||T || = k (1)
 1/p1/q

=
1

 1/p1/q

1
c

B(1,2).

EXAMPLE 2. We set k (x,y) = ln(cx/y)
(cx)−y

(c > 0, 0 <  � 1; x,y > 0) . Then we

find

k ((Um − ̂) ,(Vn,−̂) ) =
ln[c(Um − ̂)/(Vn− ̂) ]

[c(Um− ̂) ] − [(Vn− ̂) ]
.

For 0 < , � 1, 0 < 1 ,  − 2 � 1
 , 0 < 2 ,  − 1 � 1

 , k (x,y) is a positive
homogeneous function of degree − such that k (x,y) is a strictly decreasing and
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strictly convex function with respect to x,y > 0 (cf. [25], Example 2.2.1), and for
 = 1 ,  −2

k () =
∫ 

0

ln(cu)
(cu) −1

u−1du =
1
c

[


sin(/ )

]2

∈ R+.

In view of Theorem 3, it follows that if U() = V () = , then, 1 +2 =  if
and only if

||T || = k (1)
 1/p1/q

=
1

 1/p1/q

1
c

[


sin(/ )

]2

.

EXAMPLE 3. For s ∈ N, we set k (x,y) = 1
s


k=1
(x/s+cky/s)

(0 < c1 � · · · � cs ,

0 <  � 1; x,y > 0) . Then we find

k ((Um − ̂) ,(Vn,−̂) ) =
1

s

k=1

[(Um − ̂)/s + ck(Vn− ̂)/s]
.

For 0 < , � 1, 0 < 1 ,  − 2 � 1
 ,0 < 2, − 1 � 1

 , k (x,y) is a positive
homogeneous function of degree − such that k (x,y) is a strictly decreasing and
strictly convex function with respect to x,y > 0, and for  = 1 ,  −2, by Example
1 of [29], it follows that

k(s)
 () =

∫ 

0

u−1

s

k=1

(u/s + ck)
du

=
s

 sin(s
 )

s


k=1

c
s
 −1
k

s


j=1( j �=k)

1
c j − ck

∈ R+.

In view of Theorem 3, it follows that if U() = V () = , then, 1 +2 =  if
and only if

||T || = k(s)
 (1)

 1/p1/q
=

1

 1/p1/q

s

 sin(s1
 )

s


k=1

c
s1
 −1

k

s


j=1( j �=k)

1
c j − ck

.

In particular, for c1 = · · · = cs = c , we have k (x,y) = 1
(x/s+cy/s)s

and

k(s)
 () =

∫ 

0

t−1

(t/s + c)s
dt =

s

c2s/
B

(
s1


,
s2



)
.

If s = 1, then we have k (x,y) = 1
x+cy

,

k ((Um − ̂) ,(Vn,−̂) ) =
1

(Um − ̂) + c(Vn− ̂)
.
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and

||T || = k(s)
 (1)

 1/p1/q
=

1

 1/p1/q


c2/ sin(1

 )
.

5. Conclusions

In this paper, by means of the weight coefficients, the idea of introduced parame-
ters and Hermite-Hadamard’s inequality, a more accurate Hardy-Hilbert-type inequal-
ity with the general homogeneous kernel and the discrete intermediate variables is ob-
tained, which is a more accurate extension of inequality (4). The equivalent forms are
given in Theorem 1. The equivalent statements of the best possible constant factor re-
lated to some parameters are considered in Theorem 2. Some particular cases are given
in Remark 3. As applications, the operator expressions and some examples are given in
Theorem 3 and Example 1–3. The lemmas and theorems provide an extensive account
of this type of inequalities.
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