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Abstract. We obtain several results for the generalized Riemann-Liouville fractional integrals
whose orders are variable. We prove Chebyshev-type inequalities and consider the log-convexity
of a function whose variable is the order of the generalized Riemann-Liouville fractional integral.
Obtained results are applied to some special kinds of fractional integrals.

1. Introduction

From the early days of the discovery of fractional integrals until today, this topic
has attracted a lot of attention. Various properties of fractional integrals and their use
in many mathematical disciplines are considered. Our attention has been devoted to
establishing inequalities involving fractional integrals.

The main subject of this study is the generalized Riemann-Liouville fractional
integral with respect to an increasing function which is defined as the following, ([4, p.
99], [7, p. 325]):

DEFINITION 1. Let Λ : [u,v] → R be an increasing function having a continuous
derivative on (u,v) and let f : [u,v] → R be an integrable function. The left-sided
generalized Riemann-Liouville fractional integral of a function f with respect to a
function Λ of order α > 0 is defined by

Iα
u+;Λ f (x) =

1
Γ(α)

∫ x

u
Λ′(t)

(
Λ(x)−Λ(t)

)α−1
f (t)dt, x > u.

The right-sided generalized Riemann-Liouville fractional integral of a function f with
respect to a function Λ of order α > 0 is defined by

Iα
v−;Λ f (x) =

1
Γ(α)

∫ v

x
Λ′(t)

(
Λ(t)−Λ(x)

)α−1
f (t)dt, x < v.
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Sometimes the above-defined integrals are shortly named as Λ-Riemann-Liouville
fractional integrals.

Let us highlight two particular cases of the above-defined fractional integrals which
have been intensively studied. The first of them is the Riemann-Liouville fractional in-
tegral.

DEFINITION 2. Let α > 0 and f be integrable on [u,v] . The left-sided Riemann-
Liouville fractional integral of a function f of order α is defined by:

Iα
u+ f (x) :=

1
Γ(α)

∫ x

u
(x− t)α−1 f (t)dt, x > u.

The right-sided Riemann-Liouville fractional integral of a function f of order α is
defined by:

Iα
v− f (x) :=

1
Γ(α)

∫ v

x
(t − x)α−1 f (t)dt, x < v.

The second of them is the Hadamard fractional integral.

DEFINITION 3. Let α > 0 and let f be integrable on [u,v] ⊆ (0,∞) . The left-
sided and the right-sided Hadamard fractional integrals of a function f of order α are
defined by:

HJα
u+ f (x) :=

1
Γ(α)

∫ x

u

(
log

x
t

)α−1 f (t)
t

dt, u < x,

HJα
v− f (x) :=

1
Γ(α)

∫ v

x

(
log

t
x

)α−1 f (t)
t

dt, x < v,

respectively.

As is known, in the literature one can find many results for fractional integrals
related to the Chebyshev, Gruss, and other inequalities, see [1], [2], [3], [5], [8] and
references therein.

For example, the Chebyshev inequality for the left-sided Riemann-Liouville frac-
tional integral operator states: If f and g are two similarly ordered functions, p is a
non-negative weight function, α,β > 0 , then

Iα
0+p(t)Iβ

0+p f g(t)+ Iα
0+p f g(t)Iβ

0+p(t) � Iα
0+p f (t)Iβ

0+pg(t)+ Iα
0+pg(t)Iβ

0+p f (t).

Since every fractional integral can be understood as a positive linear functional, the
study of similar Chebyshev inequalities in which different fractional integrals appear
was completed in [5], where the following general result was obtained.

Let A and B be two positive linear functionals on L, let p,q ∈ L be non-negative
functions and f ,g∈ L be two functions such that p f , pg, p f g,q f ,qg,q f g∈ L. If f and
g are two similarly ordered functions, then

A(p f g)B(q)+A(p)B(q f g) � A(p f )B(qg)+A(pg)B(q f ).
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If f and g are two oppositely ordered functions, then the reversed inequality holds.

In all articles published so far, the function on which the integral acts was consid-
ered as a variable. Now we will look at integrals where the order of that integral acts as
a variable.

The structure of the paper is the following: after this introductory section we
proved the main result, i.e. the Chebyshev-type inequality and its consequences. The
third section is devoted to the log-convexity of the function whose variable is the or-
der of the generalized Riemann-Liouville fractional integrals. Finally, we apply the
obtained results to various types of fractional integrals.

2. Main results

The following theorem gives Chebyshev-type inequalities for the generalized Rie-
mann-Liouville fractional integrals with respect to an increasing function.

THEOREM 1. Let α,β ,γ be positive numbers. Let Λ be an increasing function,
having a continuous derivative on [u,v] and let f1, f2 : [u,v] → [0,∞) be functions
monotone in the same direction.

(i) If f1 and f2 are increasing, then

Iγ
u+;Λ f1(x)I

α+β+γ
u+;Λ f2(x)+ Iα+β+γ

u+;Λ f1(x)I
γ
u+;Λ f2(x) (1)

� Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

×

×
(
Iα+γ
u+;Λ f1(x)I

β+γ
u+;Λ f2(x)+ Iβ+γ

u+;Λ f1(x)I
α+γ
u+;Λ f2(x)

)
, x > u

and

Iγ
v−;Λ f1(x)I

α+β+γ
v−;Λ f2(x)+ Iα+β+γ

v−;Λ f1(x)I
γ
v−;Λ f2(x) (2)

� Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

×

×
(
Iα+γ
v−;Λ f1(x)I

β+γ
v−;Λ f2(x)+ Iβ+γ

v−;Λ f1(x)I
α+γ
v−;Λ f2(x)

)
, x < v,

provided all integrals exist.
(ii) If f1 and f2 are decreasing, then the reverse inequality in (1) and (2) holds.

Proof. Without loss of generality we may suppose that fi(x) �= fi(u) , i = 1,2.
(i) Firstly, we prove the statement of the theorem for the left-sided generalized

Riemann-Liouville fractional integrals in which increasing functions f1 and f2 appear.
The following abbreviations are used:

l(t) := Λ(x)−Λ(t), L := Λ(x)−Λ(u).

Also, we often use
∫

gd f instead of
∫ x
u g(t)d f (t) .



1354 S. VAROŠANEC

Using integration by parts, we get

Γ(α +1)Iα
u+;Λ fi(x) = α

∫ x

u
Λ′(t)(Λ(x)−Λ(t))α−1 fi(t)dt

= fi(u)(Λ(x)−Λ(u))α +
∫ x

u
(Λ(x)−Λ(t))αd fi(t)

= fi(u)Lα +
∫ x

u
lα(t)d fi(t), (3)

where we use the above-described abbreviations.
Let us consider a difference D between the left-hand side and the right-hand side

of (1) multiplied by the denominator Γ(γ + 1)Γ(α + β + γ + 1) . Using formula (3),
after some calculations we get the following expressions:

D =
(

Lγ f1(u)+
∫

lγ d f1

)(
Lα+β+γ f2(u)+

∫
lα+β+γ d f2

)

+
(

Lα+β+γ f1(u)+
∫

lα+β+γ d f1

)(
Lγ f2(u)+

∫
lγ d f2

)

−
(

Lα+γ f1(u)+
∫

lα+γ d f1

)(
Lβ+γ f2(u)+

∫
lβ+γ d f2

)

−
(

Lβ+γ f1(u)+
∫

lβ+γ d f1

)(
Lα+γ f2(u)+

∫
lα+γ d f2

)

= f1(u)Lγ
∫

lγ (lα −Lα)(lβ −Lβ )d f2 + f2(u)Lγ
∫

lγ(lα −Lα)(lβ −Lβ )d f1

+
∫ ∫

lγ (t)lγ (s)(lα (s)− lα(t))(lβ (s)− lβ (t))d f1(t)d f2(s).

Since products (lα −Lα)(lβ −Lβ ) and (lα(s)− lα (t))(lβ (s)− lβ (t)) are non-negative,
f1 and f2 are non-negative increasing and l is non-negative, it follows that D � 0 and
the proof for this case is complete.

(ii) Suppose that f1 and f2 are decreasing. Using notations: f i := − fi , Fi :=
fi(u)

fi(u)− fi(x)
, i = 1,2, the integral Γ(α +1)Iα

u+;Λ fi(x) becomes

Γ(α +1)Iα
u+;Λ fi(x) = fi(u)Lα −

∫ x

u
lα(t)d f i(t) =

∫ x

u

(
FiL

α − lα(t)
)

d f i(t).

Then the difference between the left-hand side and the right-hand side of (1) mul-
tiplied by Γ(γ +1)Γ(α + β + γ +1) becomes:

D =
∫ (

LγF1− lγ
)

d f 1

∫ (
Lα+β+γF2 − lα+β+γ

)
d f 2

+
∫ (

Lα+β+γF1 − lα+β+γ
)

d f 1

∫ (
LγF2− lγ

)
d f 2

−
∫ (

Lα+γF1 − lα+γ
)

d f 1

∫ (
Lβ+γF2− lβ+γ

)
d f 2

−
∫ (

Lβ+γF1− lβ+γ
)

d f 1

∫ (
Lα+γF2 − lα+γ

)
d f 2
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= −
∫ ∫

LγF2l
γ (t)(lα (t)−Lα)(lβ (t)−Lβ )d f 1(t)d f 2(s)

−
∫ ∫

LγF1l
γ(s)(lα (s)−Lα)(lβ (s)−Lβ )d f 1(t)d f 2(s)

+
∫ ∫

lγ (t)lγ (s)(lα (s)− lα(t))(lβ (s)− lβ (t))d f 1(t)d f 2(s).

Taking into account that
∫ (

LγF1− lγ(t)
)

d f 1(t) � 0, multiplying it with a non-nega-

tive expression lγ(s)(lα (s)−Lα)(lβ (s)−Lβ ) and integrating over [u,x] , we get
∫ ∫

lγ (s)(lα (s)−Lα)(lβ (s)−Lβ )
(
LγF1 − lγ(t)

)
d f 1(t)d f 2(s) � 0.

From that inequality, we arrive at the relation:
∫ ∫

LγF1l
γ (s)(lα (s)−Lα)(lβ (s)−Lβ )d f 1(t)d f 2(s)

�
∫ ∫

lγ (t)lγ (s)(lα (s)−Lα)(lβ (s)−Lβ )d f 1(t)d f 2(s). (4)

Similarly, we get:
∫ ∫

LγF2l
γ (t)(lα (t)−Lα)(lβ (t)−Lβ )d f 1(t)d f 2(s)

�
∫ ∫

lγ (t)lγ(s)(lα (t)−Lα)(lβ (t)−Lβ )d f 1(t)d f 2(s). (5)

Taking into account (4) and (5), a term D is estimated as follows:

D � −
∫ ∫

lγ (t)lγ (s)
[
(lα(s)−Lα)(lβ (s)−Lβ )+ (lα(t)−Lα)(lβ (t)−Lβ )

− (lα(s)− lα(t))(lβ (s)− lβ (t))
]
d f 1(t)d f 2(s)

= −
∫ ∫

lγ (t)lγ (s)
[
(lα(s)−Lα)(lβ (t)−Lβ )

+ (lα(t)−Lα)(lβ (s)−Lβ )
]
d f 1(t)d f 2(s).

Since products (lα (s)− Lα)(lβ (t)− Lβ ) , (lα (t)− Lα)(lβ (s)− Lβ ) are non-negative,
f 1 and f 2 are increasing and l is non-negative, we have D � 0. The proof is complete
for the left-sided generalized Riemann-Liouville fractional integrals.

The statement for the right-sided generalized Riemann-Liouville fractional inte-
grals is proved in a similar way. �

The result of the following corollary is the reason why inequalities in this section
are called Chebyshev-type inequalities.

COROLLARY 1. Let α,β ,γ be positive numbers. Let Λ be an increasing function
having a continuous derivative on [u,v] .
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(i) If f : [u,v] → [0,∞) is increasing, then

Iγ
u+;Λ f (x)Iα+β+γ

u+;Λ f (x) � Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

Iα+γ
u+;Λ f (x) Iβ+γ

u+;Λ(x) (6)

and

Iγ
v−;Λ f (x)Iα+β+γ

v−;Λ f (x) � Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

Iα+γ
v−;Λ f (x) Iβ+γ

v−;Λ f (x), (7)

provided all integrals exist.
(ii) If f is decreasing, then inequalities (6) and (7) are reversed.

Proof. Putting in Theorem 1 f1 = f2 = f , we obtain (6), (7) and its reversed
versions. �

Inequalities from the previous corollary can be considered as multiplicative-type
inequalities. The following corollary gives additive-type inequalities.

COROLLARY 2. Let α,β ,γ be positive numbers. Let Λ be an increasing function
having a continuous derivative on [u,v] .

(i) If f : [u,v] → [0,∞) is increasing, then

Lα+β Γ(γ +1)Iγ
u+;Λ f (x)+ Γ(α + β + γ +1)Iα+β+γ

u+;Λ f (x) (8)

� Lβ Γ(α + γ +1)Iα+γ
u+;Λ f (x)+Lα Γ(β + γ +1)Iβ+γ

u+;Λ f (x)

and

L̃
α+β

Γ(γ +1)Iγ;Λ
v− f (x)+ Γ(α + β + γ +1)Iα+β+γ;Λ

v− f (x) (9)

� L̃
β

Γ(α + γ +1)Iα+γ;Λ
v− f (x)+ L̃

α
Γ(β + γ +1)Iβ+γ;Λ

v− f (x),

where L := Λ(x)−Λ(u) , L̃ := Λ(v)−Λ(x) , provided all integrals exist.
(ii) If f is decreasing, then inequalities (8) and (9) are reversed.

Proof. Putting in Theorem 1 f1 = f and f2 = 1, we get the statement of this
corollary. �

3. Log-convexity

THEOREM 2. Let Λ be a strictly increasing function, having a continuous deriva-
tive on [u,v] and let f1, f2 : [u,v] → [0,∞) be positive functions.

(i) If a function f is increasing, then a function

ϕ(α) := Γ(α +1)Iα
u+;Λ f (x)
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is log-convex. If f is decreasing, then ϕ is log-concave.
(ii) If a function f is increasing, then a function

ψ(α) := Γ(α +1)Iα
v−;Λ f (x)

is log-concave. If f is decreasing, then ψ is log-convex.

Proof. From assumptions, we conclude that ϕ(α) and ψ(α) are positive numbers
for α > 0.

(i) Let us suppose that f is increasing. Let α,β > 0 and r,s ∈ [0,1] such that
r+ s = 1. Using the same notations as in Theorem 1, we get

ϕr(α)ϕs(β ) =
(
Γ(α +1)Iα

u+;Λ f (x)
)r

(
Γ(β +1)Iβ

u+;Λ f (x)
)s

=
(

Lα f (u)+
∫ x

u
lα (t)d f (t)

)r (
Lβ f (u)+

∫ x

u
lβ (t)d f (t)

)s

� f (u)Lrα Lsβ +
(∫ x

u
lα(t)d f (t)

)r (∫ x

u
lβ (t)d f (t)

)s

� f (u)Lrα+sβ +
∫ x

u
lrα+sβ (t)d f (t)

= Γ(rα + sβ +1)Irα+sβ
u+;Λ f (x) = ϕ(rα + sβ ),

where the second inequality follows from the Hölder inequality for integrals and the
first inequality follows from the following discrete Hölder inequality for non-negative
numbers a1,a2,b1,b2,w1 and w2 :

w1a1b1 +w2a2b2 �
(
w1a

1/r
1 +w2a

1/r
2

)r (
w1b

1/s
1 +w2b

1/s
2

)s

with substitutions

w1 = f (u), w2 = 1, a1 = Lrα , b1 = Lsβ ,

a2 =
(∫ x

u
lα(t)d f (t)

)r

, b2 =
(∫ x

u
lβ (t)d f (t)

)s

.

So, we conclude that a function ϕ is log-convex if f is increasing.
If f is decreasing, then a procedure is very similar. Namely, we have the following

ϕr(α)ϕs(β ) =
(

Lα f (u)−
∫ x

u
lα (t)d f (t)

)r (
Lβ f (u)−

∫ x

u
lβ (t)d f (t)

)s

� f (u)Lrα Lsβ −
(∫ x

u
lα (t)d f (t)

)r (∫ x

u
lβ (t)d f (t)

)s

� f (u)Lrα+sβ −
∫ x

u
lrα+sβ (t)d f (t)

= Γ(rα + sβ +1)Irα+sβ
u+;Λ f (x) = ϕ(rα + sβ ),
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where the second inequality follows from the Hölder inequality for integrals and the
first inequality follows from the following discrete Popoviciu inequality for ai,bi � 0,
wi > 0, i = 1,2, ([6, p. 125]):

w1a1b1−w2a2b2 �
(
w1a

1/r
1 −w2a

1/r
2

)r (
w1b

1/s
1 −w2b

1/s
2

)s

with substitutions

w1 = f (u), w2 = 1, a1 = Lrα , b1 = Lsβ ,

a2 =
(∫ x

u
lα(t)d f (t)

)r

, b2 =
(∫ x

u
lβ (t)d f (t)

)s

.

So, we conclude that a function ϕ is log-concave if f is decreasing.
(ii) This case is done in a similar way. �
As a simple consequence of log-convexity or log-concavity of the above-conside-

red functions, we have the following Lyapunov-type inequalities.

COROLLARY 3. Let functions Λ and f satisfy assumptions of Theorem 2.

(i) If a function f is increasing, then for p > q > r > 0 the following holds:
(
I p
u+;Λ f (x)

)q−r(
Ir
u+;Λ f (x)

)p−q � Γp−r(q+1)
Γq−r(p+1)Γp−q(r+1)

(
Iq
u+;Λ f (x)

)p−r
. (10)

If f is decreasing, then inequality (10) is reversed.
(ii) If a function f is increasing, then for p > q > r > 0 the following holds:

(
I p
v−;Λ f (x)

)q−r(
Ir
v−;Λ f (x)

)p−q � Γp−r(q+1)
Γq−r(p+1)Γp−q(r+1)

(
Iq
v−;Λ f (x)

)p−r
. (11)

If f is decreasing, then inequality (11) is reversed.

Proof. (i) Let us suppose that f is increasing and p > q > r > 0. Since a function
ϕ , defined in Theorem 2, is log-convex, then for α,β > 0 and r,s ∈ [0,1] , r + s = 1
we get:

ϕ(rα + sβ ) � ϕr(α)ϕs(β ). (12)

Putting in (12)

r =
q− r
p− r

, s =
p−q
p− r

, α = p, β = r,

we get:

ϕ(q) � ϕ
q−r
p−r (p)ϕ

p−q
p−r (r).

Taking the (p− r) th power of the above inequality we have:

ϕ p−r(q) � ϕq−r(p)ϕ p−q(r)

and after using a definition of a function ϕ , we obtain inequality (10).
Other cases are done in a similar way. �
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4. Applications on the Hadamard and Riemann-Liouville fractional integrals

In this section, we present results for the most common kinds of the generalized
Riemann-Liouville fractional integrals with respect to a function. Namely, results for
the Riemann-Liouville fractional integral and Hadamard fractional integral are given.

THEOREM 3. Let α,β ,γ be positive numbers. Let f1, f2 : [u,v]→ [0,∞) be func-
tions monotone in the same direction.

(i) If f1 and f2 are increasing, then

Iγ
u+ f1(x)I

α+β+γ
u+ f2(x)+ Iα+β+γ

u+ f1(x)I
γ
u+ f2(x)

� Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

(
Iα+γ
u+ f1(x)I

β+γ
u+ f2(x)+ Iβ+γ

u+ f1(x)I
α+γ
u+ f2(x)

)
, (13)

and

Iγ
v− f1(x)I

α+β+γ
v− f2(x)+ Iα+β+γ

v− f1(x)I
γ
v− f2(x)

� Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

(
Iα+γ
v− f1(x)I

β+γ
v− f2(x)+ Iβ+γ

v− f1(x)I
α+γ
v− f2(x)

)
. (14)

(ii) If f1 and f2 are decreasing, then the reverse signs of inequalities in (13) and
(14) are valid.

Proof. If Λ(t) = t , then the generalized Riemann-Liouville fractional integral
Iα
u+;Λ collapses to the classical Riemann-Liouville fractional integral. Applying Theo-
rem 1, we get statements of this theorem. �

COROLLARY 4. Let α,β ,γ be positive numbers.
(i) If f : [u,v] → [0,∞) is increasing, then

Iγ
u+ f (x)Iα+β+γ

u+ f (x) � Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

Iα+γ
u+ f (x) Iβ+γ

u+ f (x),

(x−u)α+β Γ(γ +1)Iγ
u+ f (x)+ Γ(α + β + γ +1)Iα+β+γ

u+ f (x)

� (x−u)β Γ(α + γ +1)Iα+γ
u+ f (x)+ (x−u)αΓ(β + γ +1)Iβ+γ

u+ f (x),

Iγ
v− f (x)Iα+β+γ

v− f (x) � Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

Iα+γ
v− f (x) Iβ+γ

v− f (x),

and

(v− x)α+β Γ(γ +1)Iγ
v− f (x)+ Γ(α + β + γ +1)Iα+β+γ

v− f (x)

� (v− x)β Γ(α + γ +1)Iα+γ
v− f (x)+ (v− x)αΓ(β + γ +1)Iβ+γ

v− f (x),

provided all integrals exist.
(ii) If f is decreasing, then inequalities in (i) are reversed.
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Proof. It is a consequence of Corollaries 1 and 2 for Λ(t) = t . �

The following statements hold for the left-sided Hadamard fractional integral. The
corresponding results for the right-sided Hadamard fractional integral can be stated and
proved in a similar way.

THEOREM 4. Let α,β ,γ be positive numbers. Let f1, f2 be non-negative func-
tions monotone in the same direction on [u,v] ⊆ (0,∞) .

If f1 and f2 are increasing, then

HJγ
u+ f1(x)HJα+β+γ

u+ f2(x)+H Jα+β+γ
u+ f1(x)HJγ

u+ f2(x) (15)

� Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1)

×

×
(

HJα+γ
u+ f1(x)HJβ+γ

u+ f2(x)+ HJβ+γ
u+ f1(x)HJα+γ

u+ f2(x)
)

, x > u.

If f1 and f2 are decreasing, then the reverse inequality in (15) holds.

Proof. If Λ(t) = logt , then the generalized Riemann-Liouville fractional integral
Iα
u+;Λ becomes the Hadamard fractional integral. Applying Theorem 1, we get inequal-
ity (15). �

COROLLARY 5. Let α,β ,γ be positive numbers and let f be a non-negative func-
tion on [u,v] ⊆ (0,∞) .

(i) If f is increasing, then for x > u we get

HJγ
u+ f (x)HJα+β+γ

u+ f (x) � Γ(α + γ +1)Γ(β + γ +1)
Γ(γ +1)Γ(α + β + γ +1) HJα+γ

u+ f (x)HJβ+γ
u+ (x)

and

(
log

x
u

)α+β
Γ(γ +1)HJγ

u+ f (x)+ Γ(α + β + γ +1)HJα+β+γ
u+ f (x)

�
(

log
x
u

)β
Γ(α + γ +1)HJα+γ

u+ f (x)

+
(

log
x
u

)α
Γ(β + γ +1)HJβ+γ

u+ f (x).

(ii) If f is decreasing, then inequalities from (i) are reversed.

Proof. Putting in Corollaries 1 and 2 Λ(t) = logt , we get statements of this corol-
lary. �
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