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SHARP INEQUALITIES FOR THE

ATOM–BOND (SUM) CONNECTIVITY INDEX
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AND MARJAN MATEJIĆ

(Communicated by N. Elezović)

Abstract. For a graph G , its atom-bond connectivity (ABC) index (respectively, atom-bond sum
connectivity (ABS) index) is defined as the addition of the numbers

√
di +dj −2(did j)−1/2

(respectively,
√

di +dj −2(di + dj)−1/2 ) over all unordered pairs of adjacent vertices {vi,v j}
of G , where di and dj denote the degrees of vi and v j , respectively. In this paper, sharp upper
bounds on the ABC and ABS indices are derived. All the graphs that attain the obtained bounds
are also completely characterized.

1. Introduction

Let G = (V,E) , V = {v1,v2, . . . ,vn} , E = {e1,e2, . . . ,em} , be a simple graph of
order n � 2 and size m without isolated vertices. Denote by Δ = d1 � d2 � · · · �
dn = δ > 0, di = d(vi) , a sequence of vertex degrees given in a non-increasing order.
Let e = {vi,v j} denote an edge incident to vertices vi and v j . Degree of an edge e is
defined to be d(e) = di +d j−2. Let Δe = d(e1)+2 � d(e2)+2 � · · ·� d(en)+2 = δe .
Denote by i ∼ j the edge connecting the vertices vi,v j ∈V (G) .

A topological index for a graph is a numerical quantity which is invariant under
isomorphism of the graph. The study of the mathematical aspects of the degree-based
topological indices is considered to be one of the very active research areas within the
field of chemical graph theory.

The general sum connectivity index, Hα(G) , is defined as [50]

Hα(G) = ∑
i∼ j

(di +d j)α =
m

∑
i=1

(d(ei)+2)α , H0(G) = m ,

where α is an arbitrary real number. Some special cases include:

— the first Zagreb index, M1(G) = H1(G) [19],
— the sum connectivity index SC(G) = H−1/2(G) [51],
— the harmonic index H(G) = 2H−1(G) [17].
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The general Randić index Rα of a graph G is a graph invariant defined as [7]

Rα(G) = ∑
i∼ j

(did j)α , R0(G) = m ,

where α is an arbitrary real number. When α = 1, then the second Zagreb index
M2(G) = R1(G) is obtained [20]; for α =−1/2 the Randić index R(G) = R−1/2(G) is
obtained [42]. For α = −1 the modified second Zagreb index, M∗

2(G) , defined in [38]
is obtained (see also [8]).

The arithmetic–geometric index was introduced in [45]. It is a modification of the
well–known geometric–arithmetic index. It is defined as

AG(G) = ∑
i∼ j

di +d j

2
√

did j
.

The atom-bond connectivity index, ABC index for short, is defined [3,16] (see for
example also [25]) as

ABC(G) = ∑
i∼ j

√
di +d j −2

did j
.

It was shown that ABC index can be used for modeling thermodynamic properties of
organic chemical compounds. Various papers on the mathematical properties of the
ABC index have been published as well (see the recent review [3]).

For a graph G , its atom-bond sum-connectivity (ABS) index (see [5,4]) is defined
as

ABS(G) = ∑
i∼ j

√
1− 2

di +d j
.

Some chemical applications of the ABS index can be found in [5,37]; these two papers
together with [39] also provide some mathematical aspects of the ABS index. In the
present paper, we investigate the relationship between ABC and ABS indices and some
other degree-based invariants. More precisely, we derive sharp upper bounds on the
ABC and ABS indices by using an inequality of real numbers.

2. Preliminaries

In order to obtain the main results, we need to establish some preliminary results.
To that end, in this section we recall some results for the atom-bond connectivity index
published in the literature that are of interest for this paper.

LEMMA 2.1. [23] Let G be a graph with n vertices and m edges. Then

ABC(G) �
√

m

(
n− 2m2

M2(G)

)
, (2.1)

with equality if and only if G is a regular or semiregular bipartite graph.
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Let us note that in the proof of Lemma 2.1 the inequality

ABC(G) �
√

m(n−2R−1(G)) , (2.2)

with equality if and only if G is a regular or semiregular bipartite graph, was proven.
Interestingly, the inequality (2.2) is stronger than (2.1).

The inequality (2.2) was also proved in [49]. It was proved that equality is attained
if and only if G is a regular or semiregular bipartite graph, or every edge is incident
with a vertex of degree two.

LEMMA 2.2. [6] If G is a connected graph of order n � 2 and size m, then

ABC(G) �
√

(n−1)(m−R−1(G)) , (2.3)

with equality if and only if G is either a complete graph or a star graph.

Note that the bounds on the ABC(G) given in (2.2) and (2.3), involve the same
parameters. However, these bounds are not comparable in general.

LEMMA 2.3. [49] Let G be a graph of size m. Then

ABC(G) �
√

(M1(G)−2m)R−1(G) , (2.4)

with equality if and only if either m = 0 , or every component of G is either a regular
graph of degree r for all such components (if exist), or semiregular bipartite graph with
the degree set {s, t} provided that st

s+t−2 is constant in all such components (if exist),
and st

s+t−2 = r2(2r−2) if there exist both types of the components.

Let us note that (2.4) was obtained as a corollary of more general results proved
in [11, 13]. In [12] the inequality (2.4) was proven for the graphs with tree structure.

3. Main results

Our starting point is the inequality reported in [41] for the real number sequences.

LEMMA 3.1. [41] Let x = (xi) , i = 1,2, . . . ,n, be a sequence of non-negative
real numbers, and a = (ai) , i = 1,2, . . . ,n, a sequence of positive real numbers. Then,
for any r � 0 , holds

n

∑
i=1

xr+1
i

ar
i

� (∑n
i=1 xi)r+1

(∑n
i=1 ai)

r . (3.1)

Equality holds if and only if r = 0 , or x1
a1

= x2
a2

= · · · = xn
an

.

REMARK 3.1. The result in Lemma 3.1 is given in its original form. However, let
us note that the inequality (3.1) is valid both if r � −1 or r � 0. When −1 � r � 0,
the opposite inequality is valid. Equality in (3.1) is also valid when r = −1.
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In the next theorem we establish a relationship ABC(G) and harmonic index,
H(G) .

THEOREM 3.1. Let G be a graph of order n and size m without isolated vertices.
Then

ABC(G) �
√

n(m−H(G)). (3.2)

Equality holds if and only if G is a regular or semiregular bipartite graph.

Proof. The following identities are valid

m = ∑
i∼ j

1 = ∑
i∼ j

di +d j

di +d j
= ∑

i∼ j

2
di +d j

+ ∑
i∼ j

di +d j −2
di +d j

= H(G)+ ∑
i∼ j

di +d j −2
di +d j

.

(3.3)

On the other hand, after replacing r := 1, xi :=
√

di+d j−2
did j

, ai :=
di+d j
did j

and summation

over all pairs of adjacent vertices vi,v j in G , the inequality (3.1) transforms into

∑
i∼ j

(√
di+d j−2

did j

)2

di+d j
did j

�

(
∑i∼ j

√
di+d j−2

did j

)2

∑i∼ j
di+d j
did j

,

that is

∑
i∼ j

di +d j −2
di +d j

� ABC(G)2

n
, (3.4)

because ∑i∼ j
di+d j
did j

= n (see Lemma 1 in [15]). The inequality (3.2) is obtained from
(3.3) and (3.4).

By Lemma 3.1, the equality in (3.4) holds if and only if

√
(di +d j −2)did j

di +d j
is

constant for every pair of adjacent vertices in G . Suppose that vertices v j and vk are
both adjacent to vi . Then, the equation√

(di +d j −2)did j

di +d j
=

√
(di +dk −2)didk

di +dk
,

holds if and only if d j = dk , which implies that the equality in (3.4) holds if and only if
G is either regular or semiregular bipartite graph. �

REMARK 3.2. The harmonic index, H(G) , is well elaborated in the literature (see
for example [1,9,33,43]). From the known lower bounds on H(G) and inequality (3.2)
it is possible to derive a number of upper bounds for the ABC index. In the following
corollaries of Theorem 3.1 we illustrate this fact.
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In [26] it was proven that

H(G) � 2m2

M1(G)
, (3.5)

where the equality holds if and only if G is either regular or semiregular bipartite graph.
From (3.2) and (3.5) we obtain the following result.

COROLLARY 3.1. Let G be a graph of order n and size m without isolated ver-
tices. Then

ABC(G) �
√

nm

(
1− 2m

M1(G)

)
, (3.6)

with equality if and only if G is regular or semiregular bipartite graph.

In [33] it was proven that

H(G) � 2m2

M1(G)
+

(
√

Δe −
√

δe)2

Δeδe
,

where the equality holds if and only if G is either regular or semiregular bipartite graph.
The above inequality is stronger than (3.5). Now we have the following corollary of
Theorem 3.1.

COROLLARY 3.2. Let G be a graph of order n � 3 and size m without isolated
vertices. Then

ABC(G) �

√√√√n

(
m− 2m2

M1(G)
−
(√

Δe −
√

δe
)2

Δeδe

)
.

Equality holds if and only if G is regular or semiregular bipartite graph.

In [47] the following lower bound for the harmonic index was obtained

H(G) � 2m2

2m(Δ + δ )−nδΔ
,

where the equality holds if and only if one end-vertex is of degree Δ and the other one
is of degree δ for every edge of G . From the above inequality and (3.2) we obtain the
next result.

COROLLARY 3.3. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

nm

(
1− 2m

2m(Δ + δ )−nδΔ

)
. (3.7)

Equality holds if and only if G is regular or semiregular bipartite graph.
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REMARK 3.3. In [10] (see also [24, 30, 31]) the following inequality was proven

M1(G) � 2m(Δ + δ )−nδΔ . (3.8)

The inequality (3.7) can be also obtained from (3.6) and (3.8).

Based on the arithmetic–geometricmean inequality (see for example [36]) we have
that

2
√

nδΔM1(G) � M1(G)+nδΔ � 2m(Δ + δ ) ,

that is

M1(G) � m2(Δ + δ )2

nδΔ
,

which was proven in [27]. Now we obtain the following result:

COROLLARY 3.4. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

n

(
m− 2nδΔ

(Δ + δ )2

)
.

Equality holds if and only if G is regular or semiregular bipartite graph.

In [44] it was proven that

H(G) � 2nΔ
(Δ +1)2 .

So we have the following result:

COROLLARY 3.5. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

n

(
m− 2nΔ

(Δ +1)2

)
.

Equality holds if and only if G ∼= K1,n−1 .

In [48] it was proven that

H(G) � 2(n−1)
n

.

From the above and inequality (3.2) we obtain the next two results.

COROLLARY 3.6. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

nm−2(n−1).

Equality holds if and only if G ∼= K1,n−1 .



SHARP INEQUALITIES FOR THE ATOM-BOND (SUM) CONNECTIVITY INDEX 1417

COROLLARY 3.7. Let T be a tree with n � 2 vertices. Then

ABC(T ) �
√

n(n−1−H(T)) �
√

(n−2)(n−1). (3.9)

Equality holds if and only if T ∼= K1,n−1 .

REMARK 3.4. The second inequality in (3.9) was proven in [18].

In [33] it was proven that

H(G) � 2SC(G)2

m
.

From the above and (3.2) we obtain the following result.

COROLLARY 3.8. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

n

(
m− 2SC(G)2

m

)
.

Equality holds if and only if G is regular or semiregular bipartite graph.

In [46] it was proven that

H(G) � m
n− r(G)

,

where r(G) is rank of G . Now we have the following corollary of Theorem 3.1.

COROLLARY 3.9. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABC(G) �
√

mn

(
1− 1

n− r(G)

)
.

Equality holds if and only if G ∼= Kn .

In [14] it was proven that

H(G) � χ(G)− n
2

,

where χ(G) is the chromatic number of G . Now we have that the following result is
valid.

COROLLARY 3.10. Let G be a connected graph with n � 2 vertices and m edges
with chromatic number χ(G) . Then

ABC(G) �
√

n
(
m− χ(G)+

n
2

)
.

Equality holds if and only if G ∼= Kn .
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In the next theorem we determine a relationship between ABC(G) , AG(G) and
R(G) .

THEOREM 3.2. Let G be a graph without isolated vertices. Then

ABC(G) �
√

2R(G)(AG(G)−R(G)) . (3.10)

Equality holds if and only if G is regular or semiregular bipartite graph.

Proof. The following identities are valid

AG(G) = ∑
i∼ j

di +d j

2
√

did j
=

1
2 ∑

i∼ j

di +d j −2√
did j

+ ∑
i∼ j

1√
did j

= R(G)+
1
2 ∑

i∼ j

di +d j −2√
did j

.

(3.11)

On the other hand, for r := 1, xi :=
√

di+d j−2
did j

, ai := 1√
did j

and summation performed

over all pairs of adjacent vertices vi and v j in G , the inequality (3.1) transforms into

∑
i∼ j

di +d j −2√
did j

= ∑
i∼ j

(√
di+d j−2

did j

)2

1√
did j

�

(
∑i∼ j

√
di+d j−2

did j

)2

∑i∼ j
1√
did j

,

that is

∑
i∼ j

di +d j −2√
did j

� ABC(G)2

R(G)
. (3.12)

The inequality (3.10) immediately follows from (3.11) and (3.12).
By Lemma 3.1, the equality in (3.12) holds if and only if di + d j is constant for

every pair of adjacent vertices vi and v j in G , which implies that equality in (3.10)
holds if and only if G is a regular or semiregular bipartite graph. �

The following upper bound for the arithmetic–geometric index was proven in [34]

AG(G) � nm
2R(G)

+
1
8

(√
Δe −

√
δe

)2
,

with equality if and only if G is regular or semiregular bipartite graph. From the above
and inequality (3.10) we have the following corollary of Theorem 3.2.

COROLLARY 3.11. Let G be a connected graph of order n � 2 and size m. Then
we have

ABC(G) �
√

mn+
(

1
4

(√
Δe −

√
δe

)2−2R(G)
)

R(G) .

Equality holds if and only if G is a regular or a semiregular bipartite graph.
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Since

AG(G) = ∑
i∼ j

di +d j

2
√

did j
� ΔeR(G)

2
,

with equality if and only if G is a regular or a semiregular bipartite graph, we have
another corollary of Theorem 3.2.

COROLLARY 3.12. Let G be a connected graph. Then

ABC(G) � R(G)
√

Δe −2 .

Equality holds if and only if G is a regular or a semiregular bipartite graph.

Since Δe � 2Δ and R(G) � m
δ , the following results are valid.

COROLLARY 3.13. Let G be a connected graph. Then

ABC(G) �
√

2(Δ−1)R(G) . (3.13)

Equality holds if and only if G is a regular graph.

COROLLARY 3.14. Let G be a connected graph of order m. Then

ABC(G) � m
√

2(Δ−1)
δ

. (3.14)

Equality holds if and only if G is a regular graph.

Let us note that inequalities (3.13) and (3.14) were proven in [12, 22].
The reciprocal sum–connectivity index, denoted by RSC(G) , is defined as [2]

RSC(G) = ∑
i∼ j

√
di +d j.

Later, in [28], this index is defined under the name Nirmala index (see also [21, 29]).
The proof of the next result is fully analogous to that of Theorem 3.2 and thence it

is omitted.

THEOREM 3.3. Let G be a graph without isolated vertices. Then

ABS(G) �
√

SC(G)(RSC(G)−2 ·SC(G)). (3.15)

Equality holds if and only if G is regular or semiregular bipartite graph.

THEOREM 3.4. Let G be a graph of size m without isolated vertices. Then

ABS(G) �
√

(M1(G)−2m)H(G)
2

. (3.16)

Equality holds if and only if G is a regular or semiregular bipartite graph.
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Proof. The following identity is valid

M1(G)−2m = ∑
i∼ j

(di +d j −2) = ∑
i∼ j

di +d j −2
di +d j

(di +d j) = ∑
i∼ j

di+d j−2
di+d j

1
di+d j

. (3.17)

On the other hand, for r = 1, xi :=
√

di+d j−2
di+d j

, ai := 1
di+d j

, with summation performed

over all adjacent vertices, the inequality (3.1) becomes

∑
i∼ j

di+d j−2
di+d j

1
di+d j

�

(
∑i∼ j

√
di+d j−2
di+d j

)2

∑i∼ j
1

di+d j

, (3.18)

that is

∑
i∼ j

di+d j−2
di+d j

1
di+d j

� ABS(G)2

1
2H(G)

.

From the above and equality (3.17) we arrive at (3.16).
Equality in (3.18) holds if and only if

√
(di +d j −2)(di +d j) is constant for every

pair of adjacent vertices in G . Suppose that vertices v j and vk are both adjacent to vi .
Then the equation√

(di +d j −2)(di +d j) =
√

(di +dk −2)(di +dk) ,

that is
(d j −dk)(2di +d j +dk−2) = 0 ,

holds if and only if d j = dk , which implies that equality in (3.16) holds if and only if
G is either regular or semiregular bipartite graph. �

REMARK 3.5. The Platt index, proposed in [40] for predicting paraffin properties,
belongs to the oldest degree based topological indices. It is defined as

Pl(G) = ∑
i∼ j

(di +d j −2) .

Since
Pl(G) = M1(G)−2m ,

the inequality (3.16) can be written as

ABS(G) �
√

Pl(G)H(G)
2

.

The inverse degree index, ID(G) , is a vertex–degree-based index defined in [17]
as

ID(G) =
n

∑
i=1

1
di

.
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The following relation between the first Zagreb index and inverse degree index was
established in [32]

M1(G) � 2m(Δ +2δ )+ Δδ 2ID(G)−nδ (2Δ + δ ) . (3.19)

Based on (3.19) and (3.16), we get the following corollary of Theorem 3.4.

COROLLARY 3.15. Let G be a graph of order n � 2 and size m without isolated
vertices. Then we have

ABS(G) �
√

(2m(Δ +2δ −1)+ Δδ 2ID(G)−nδ (2Δ + δ ))H(G)
2

. (3.20)

Equality holds if and only if Δ = d1 = · · · = dt � dt+1 = · · · = dn = δ , for some t ,
1 � t � n−1 .

From (3.8) and (3.16) we get the following corollary of Theorem 3.4.

COROLLARY 3.16. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABS(G) �
√

(2m(Δ + δ −1)−nΔδ )H(G)
2

. (3.21)

Equality holds if and only if G is regular or semiregular bipartite graph.

REMARK 3.6. Since (see [32])

2m+ Δδ ID(G) � n(Δ + δ ) ,

the following inequality is valid

M1(G) � 2m((Δ +2δ )+ Δδ 2ID(G)−nδ (2Δ + δ ) � 2m(Δ + δ )−nδΔ ,

which means that inequality (3.20) is stronger than (3.21).

When G has a tree structure, G = T , the following inequality is valid [32]

M1(T ) � 2(n−1)+ (n−2)Δ .

From the above and inequality (3.16), we get the following result.

COROLLARY 3.17. Let T be a tree with n � 3 vertices. Then

ABS(T) �
√

(n−2)ΔH(T)
2

.

Equality holds if and only if Δ = d1 = · · · = dt � dt+1 = · · · = dn = δ = 1 , for some t ,
1 � t � n−1 .
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In [35] it was proven that

M1(G)+
Δeδe

2
H(G) � m(Δe + δe) .

From the above inequality and (3.16) we obtain the following result.

COROLLARY 3.18. Let G be a graph of size m � 1 without isolated vertices.
Then

ABS(G) �
√

(2m(Δe + δe−2)−ΔeδeH(G))H(G)
4

.

Equality holds if and only if Δ = d1 = · · · = dt � dt+1 = · · · = dn = δ , for some t ,
1 � t � n−1 .

Denote with ω(G)+1 the number of vertices of the complete graph which cannot
be an induced subgraph of G . In [52] it was proven that

M1(G) � ω(G)−1
ω(G)

2mn .

From the above inequality and (3.16) we get the following result.

COROLLARY 3.19. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABS(G) �
√

m((n−1)ω(G)−n)H(G)
ω(G)

.

In the next theorem we establish an upper bound for M1(G) in terms of m , Δ , δ
and the second Zagreb index, M2(G) .

LEMMA 3.2. Let G be a graph with m � 1 vertices. Then

M1(G) � min

{
1
Δ

(M2(G)+mΔ2) ,
1
δ

(M2(G)+mδ 2)
}

. (3.22)

Equality holds if and only if G is such a graph that either each vertex is adjacent to the
vertex with degree Δ , or each vertex is adjacent to the vertex with degree δ .

Proof. For any pair of vertices vi and v j in G , holds that

(Δ−di)(Δ−d j) � 0 and (di − δ )(d j − δ ) � 0 .

From the above we obtain that

Δ(di +d j) � did j + Δ2 and δ (di +d j) � did j + δ 2 .

After summation of the above inequalities over all adjacent vertices vi and v j in G , we
obtain

Δ ∑
i∼ j

(di +d j) � ∑
i∼ j

did j + ∑
i∼ j

Δ2 (3.23)
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and

δ ∑
i∼ j

(di +d j) � ∑
i∼ j

did j + ∑
i∼ j

δ 2 , (3.24)

that is

M1(G) � 1
Δ

(M2(G)+mΔ2) ,

and

M1(G) � 1
δ

(M2(G)+mδ 2) .

The inequality (3.22) directly follows from the above inequalities.
Equality in (3.23) holds if and only if each vertex of G is adjacent to the vertex

with degree Δ . Equality in (3.24) holds if and only if each vertex of G is adjacent to
the vertex with degree δ . This implies that equality in (3.22) holds if and only if either
each vertex of G is adjacent to the vertex with degree Δ , or each vertex of G is adjacent
to the vertex with degree δ . �

From the inequalities (3.16) and (3.22) we have the following result.

COROLLARY 3.20. Let G be a graph of order n � 2 and size m without isolated
vertices. Then

ABS(G) �

√(
min

{
1
Δ (M2(G)+mΔ2) , 1

δ (M2(G)+mδ 2)
}−2m

)
H(G)

2
.

The modified Platt index, mPl(G) , is defined as

mPl(G) = ∑
i∼ j

1
di +d j −2

.

Let L(G) be a line graph of graph G . Since

mPl(G) = ∑
i∼ j

1
di +d j −2

=
m

∑
i=1

1
d(ei)

= ID(L(G)) ,

in essence, mPl(G) is not a new topological index.
In the next theorem we establish a relationship between ABS(G) and mPl(G) .

THEOREM 3.5. Let G be a connected graph of size m. Then we have

ABS(G) � m3/2√
m+2mPl(G)

. (3.25)

Equality holds if and only if G is regular or semiregular bipartite graph.
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Proof. By the arithmetic–geometricmean (AM-HM) inequality (see e.g. [36]), we
have that

∑
i∼ j

√
di +d j

di +d j −2 ∑
i∼ j

√
di +d j −2

di +d j
� m2 ,

that is

ABS(G)∑
i∼ j

√
di +d j

di +d j −2
� m2 . (3.26)

Also, the following identity is valid

∑
i∼ j

di +d j

di +d j −2
= ∑

i∼ j

(
1+

2
di +d j −2

)
= m+2mPl(G) . (3.27)

On the other hand, for r = 1, xi := di+d j
di+d j−2 , ai := 1, with summation performed over

all adjacent vertices vi and v j in G , the inequality (3.1) becomes

∑
i∼ j

di +d j

di +d j −2
�

(
∑i∼ j

√
di+d j

di+d j−2

)2

∑i∼ j 1
=

(
∑i∼ j

√
di+d j

di+d j−2

)2

m
. (3.28)

From the above inequality and identity (3.27) we obtain

∑
i∼ j

√
di +d j

di +d j −2
�
√

m(m+2mPl(G) .

From the above and inequality (3.26) we arrive at (3.25).

Equalities in (3.26) and (3.28) hold if and only if
di+d j

di+d j−2 is constant for every two

adjacent vertices vi and v j in G ; that is, if and only if di +d j is constant for every two
adjacent vertices vi and v j in G . This implies that equality in (3.25) holds if and only
if G is a regular or semiregular bipartite graph. �
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Croat. Chem. Acta 76 (2) (2003) 113–124.

[39] S. NOUREEN, A. ALI, Maximum atom-bond sum-connectivity index of n -order trees with fixed num-
ber of leaves, Discrete Math. Lett. 12 (2023) 26–28.

[40] J. R. PLATT, Influence of neighbors bonds on additive bond properties in paraffins, J. Chem. Phys. 15
(1947) 419–420.
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