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Abstract. The main aim of this paper is to prove several majorization type inequalities using
Green and 4-convex functions. First of all, we drive generalized majorization inequality for
arbitrary n -tuples and real weights. Further, we explore the inequality for majorized tuples,
weighted majorization theorems given by Fuchs, Dragomir and Maligranda et al. For deriving
another generalized majorization inequality, we use a simple form of Jensen’s inequality, and
by similar fashion we apply classical earlier majorization theorems for further elaborations of
generalized inequality. Several applications of information theory are discussed at the end of the
article.

1. Introduction and preliminaries

Mathematical inequalities play an excellent role in almost every field of science.
Nowadays, several mathematicians are taking a keen interest in introducing new in-
equalities or refining the earlier inequalities and giving their applications. In the litera-
ture, several inequalities have been proved for the important class of convex functions
such as Jensen’s inequality, the Jensen-Steffensen inequality, majorization and Slater’s
inequalities etc. Among these, one of the generalized and applicable inequalities for the
convex function is the majorization inequality. Initially, this inequality has been proved
for majorized tuples. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two n -tuples
such that n ∈ N and n � 2, then y is said to be majorized by x (in symbol y ≺ x or
x � y ) if the sum of q largest entries of y are not greater than the sum of q largest
entries of x for q = 1, 2, . . . , n−1 and

n


j=1

x j =
n


j=1

y j. (1.1)

In [14], the majorization inequality

n


j=1

H(y j) �
n


j=1

H(x j) (1.2)
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has been proved that: if H : [d1, d2]→ R is a convex function and y ≺ x with x j, y j ∈
[d1, d2] for j = 1, 2, . . . , n. In 1947, Fuchs [13] proved the following weighted version
of majorization inequality:

n


j=1

wj H(y j) �
n


j=1

wj H(x j) (1.3)

if H : [d1, d2] → R is a convex function, wj ∈ R, x j, y j ∈ [d1, d2] and x, y are de-
creasing n -tuples, and the following conditions hold:

q


j=1

wj y j �
q


j=1

wj x j, for q = 1, 2, . . . , n−1 (1.4)

and
n


j=1

wj y j =
n


j=1

wj x j. (1.5)

Maligranda et al. [18] proved (1.3) by using the relaxed condition that only one tuple
should be monotonic while using the strict condition on weights that wj � 0 ∀ j =
1, 2, . . . ,n.

In 2004, Dragomir [11] proved the weighted majorization inequality by utilizing
a more strict condition of monotonicity of y and x−y with positive weights but with-
out using condition (1.4). He also discussed the case of increasing convex function,

but using the relaxed condition
n

j=1

wj y j �
n

j=1

wj x j instead of (1.5). In the proof of

Dragomir’s result, he applied Chebyshev’s inequality. Later on, in 2007 Neizgoda [21]
introduced the concept of separable sequences and presented a generalized Chebyshev’s
inequality for these sequences. Neizgoda [21] proved majorization inequality for sepa-
rable sequences. Further, he also gave several applications for particular bases [20].

In the literature, several generalizations, extensions and refinements have been
presented for majorization inequality. In [5] Khan et al. used Taylor formula, the
Green convex function, n -convex functions and obtained several generalizations of ma-
jorization inequality. In particular, they obtained exponential and log-convexity for pa-
rameterized functionals associated with generalized inequalities. Similarly, some other
identities such as the Lidstone, Fink and Montogonmy identities have been used and ob-
tained several related results for majorization inequalities [2]. For more results related
to majorization and its applications see [1, 3, 6–10, 15–17, 19, 22, 23].

We use the following Green functions defined on [d1, d2]× [d1, d2] to obtain our
main results [4].

G1(x,s) =
{

d1− s, d1 � s � x,
d1− x, x � s � d2.

(1.6)

G2(x,s) =
{

x−d2, d1 � s � x,
s−d2, x � s � d2.

(1.7)

G3(x,s) =
{

x−d1, d1 � s � x,
s−d1, x � s � d2.

(1.8)
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G4(x,s) =
{

d2− s, d1 � s � x,
d2− x, x � s � d2.

(1.9)

With respect to both the variables s and x, these Green functions are convex and
continuous.

The following lemma is also useful for obtaining our main results.

LEMMA 1.1. ( [4]) Let H ∈C2[d1, d2]. Then the following identities hold.

H(x) = H(d1)+ (x−d1)H ′(d2)+
∫ d2

d1

G1(x, s)H ′′(s)ds, (1.10)

H(x) = H(d2)+ (x−d2)H ′(d1)+
∫ d2

d1

G2(x, s)H ′′(s)ds, (1.11)

H(x) = H(d2)+ (x−d1)H ′(d1)− (d2−d1)H ′(d2)+
∫ d2

d1

G3(x, s)H ′′(s)ds, (1.12)

H(x) = H(d1)+ (d2−d1)H ′(d1)− (d2− x)H ′(d2)+
∫ d2

d1

G4(x, s)H ′′(s)ds, (1.13)

where Gi (i = 1,2,3,4) are given in (1.6)–(1.9) .

In the main results, we use 4-convex function, therefore we include definition of
4-convex function in the following part.

DEFINITION 1.2. ( [5]) Consider, the arbitrary function H : [d1,d2] → R and let
0,1, · · · ,m be any distinct points from [d1,d2]. Then the mth ordered divided differ-
ence of H at the selected points is defined recursively as:

[i]H = H(i), i = 1,2, . . . ,m,

[0,1, . . . ,m]H =
[1, . . . ,m]H− [0, . . . ,m−1]H

m − 0
.

The following theorem provides a criteria for a function to be 4-convex.

THEOREM 1.3. ( [2]) Let H : [d1,d2]→ R be any function such that H(m) exists.
Then H is m-convex if and only if H(m) � 0 on [d1,d2].

In our second main result, the following simple form of Jensen’s inequality will
be used.

LEMMA 1.4. Let H : [d1,d2] → R be a convex function and h∗3(s) be a weight

function such that h∗3(s) � 0 and
∫ d2
d1

h∗3(s)ds > 0. Then

H

(∫ d2
d1

sh∗3(s)ds∫ d2
d1

h∗3(s)ds

)
� 1∫ d2

d1
h∗3(s)ds

∫ d2

d1

H(s)h∗3(s)ds. (1.14)
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2. Main results

We begin to present our first main result.

THEOREM 2.1. Let H ∈C2[d1,d2] be a 4 -convex function and x = (x1,x2, . . . ,xn) ,
y = (y1,y2, . . . ,yn) be n-tuples such that x j,y j ∈ [d1,d2] , for j = 1,2, . . . ,n. Also, let
wj ∈ R for j = 1,2, . . . ,n and Gi (i = 1,2,3,4) be Green functions as defined in
(1.6)–(1.9) . If

n


j=1

wjGi(x j,s)−
n


j=1

wjGi (y j,s) � 0 for i ∈ {1,2,3,4}, s ∈ [d1,d2], (2.15)

then

n


j=1

wjH(x j)−
n


j=1

wjH(y j)

�
(

H ′(dk)− H ′′(d2)
d2−d1

(
d2

k

2
−d1dk

)
− H ′′(d1)

d2−d1

(
dkd2− d2

k

2

))
w0

+
H ′′(d2)−H ′′(d1)

6(d2−d1)
w2 +

d2H ′′(d1)−d1H ′′(d2)
2(d2−d1)

w1, for k = 1,2. (2.16)

Where

w0 =
n


j=1

wj (x j − y j), (2.17)

w1 =
n


j=1

wj
(
x2

j − y2
j

)
, (2.18)

w2 =
n


j=1

wj (x3
j − y3

j). (2.19)

If the inequality in (2.15) holds in the opposite direction, then the inequality in (2.16)
holds in the opposite direction.

If H is a 4 -concave function, then (2.16) holds in the opposite direction.

Proof. Using (1.10) and (1.13) in
n

j=1

wj H(x j)−
n

j=1

wjH(y j) , we get

n


j=1

wjH(x j)−
n


j=1

wjH(y j)

= H ′(d2)
n


j=1

wj(x j − y j)

+
∫ d2

d1

(
n


j=1

wj Gi(x j,s)−
n


j=1

wj Gi (y j,s)

)
H ′′(s)ds. (2.20)
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Since H is a 4-convex function, so H ′′ is convex. Using definition of convexity,
we have

H ′′(s) �
(

s−d1

d2−d1

)
H ′′(d2)+

d2− s
d2−d1

H ′′(d1). (2.21)

Therefore, using (2.15) and (2.21) in the right-hand side of (2.20), we get

∫ d2

d1

(
n


j=1

wj Gi(x j,s)−
n


j=1

wjGi (y j,s)

)
H ′′(s)ds

� H ′′(d1)
d2−d1

∫ d2

d1

(
n


j=1

wjGi (x j,s)−
n


j=1

wjGi (y j,s)

)
(d2− s)ds

+
H ′′(d2)
d2−d1

∫ d2

d1

(
n


j=1

wjGi (x j,s)−
n


j=1

wj Gi (y j,s)

)
(s−d1)ds. (2.22)

If H(s) = s2d2
2 − s3

6 , then H ′(s) = sd2− s2
2 , H ′′(s) = d2− s and using these func-

tions in (2.20), we obtain

∫ d2

d1

(
n


j=1

wj Gi (x j,s)−
n


j=1

wjGi (y j,s)

)
(d2 − s)ds

=
n


j=1

wj

(
x2

j d2

2
− x3

j

6

)
−

n


j=1

wj

(
y2

jd2

2
− y3

j

6

)
− d2

2

2

n


j=1

wj (x j − y j). (2.23)

Similarly, if H(s) = s3
6 − s2d1

2 , then H ′(s) = s2
2 − sd1, H ′′(s) = s−d1 and using

these functions in (2.20), we obtain

∫ d2

d1

(
n


j=1

wjGi (x j,s)−
n


j=1

wjGi (y j,s)

)
(s−d1)ds

=
n


j=1

wj

(
x3

j

6
−x2

j d1

2

)
−

n


j=1

wj

(
y3

j

6
−y2

jd1

2

)
−
(

d2
2

2
−d1d2

) n


j=1

wj(x j−y j). (2.24)

Now using (2.23) and (2.24) in (2.22), we get

∫ d2

d1

(
n


j=1

wjGi(x j,s)−
n


j=1

wjGi (y j,s)

)
H ′′(s)ds

� H ′′(d1)
d2−d1

(
n


j=1

wj

(
x2

j d2

2
− x3

j

6

)
−

n


j=1

wj

(
y2

j d2

2
− y3

j

6

))

+
H ′′(d2)
d2−d1

(
n


j=1

wj

(
x3

j

6
− x2

j d1

2

)
−

n


j=1

wj

(
y3

j

6
− y2

j d1

2

))

−d2
2

2
H ′′(d1)
d2−d1

n


j=1

wj (x j − y j)− H ′′(d2)
d2−d1

(
d2

2

2
−d1d2

) n


j=1

wj (x j − y j). (2.25)
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Using (2.25) in (2.20), we obtain
n


j=1

wjH(x j)−
n


j=1

wjH(y j)

� H ′(d2)
n


j=1

wj(x j − y j)

+
H ′′(d1)
d2−d1

(
n


j=1

wj

(
x2

j d2

2
− x3

j

6

)
−

n


j=1

wj

(
y2

j d2

2
− y3

j

6

))

+
H ′′(d2)
d2−d1

(
n


j=1

wj

(
x3

j

6
− x2

j d1

2

)
−

n


j=1

wj

(
y3

j

6
− y2

jd1

2

))

− H ′′(d2)
(d2−d1)

(
d2

2

2
−d1d2

) n


j=1

wj (x j − y j)

−d2
2

2
H ′′(d1)

(d2−d1)

n


j=1

wj (x j − y j), (2.26)

which is equivalent to (2.16), for k = 2.
Similarly, the required inequality for k = 1, can be obtained using the identities

(1.11) and (1.12). �
The following theorem is the integral version of the above theorem.

THEOREM 2.2. Let H ∈C2[d1,d2] be a 4 -convex function, let h1,h2 : [b1,b2] →
[d1,d2] , g : [b1,b2] → R be three integrable functions, let Gi (i = 1,2,3,4,) be Green
functions as defined in (1.6)–(1.9) and∫ b2

b1

g(y)Gi(h1,s)dy−
∫ b2

b1

g(y)Gi(h2,s)dy � 0 for i ∈ {1,2,3,4}. (2.27)

Then the following inequality holds:∫ b2

b1

g(y)H(h1(y))dy−
∫ b2

b1

g(y)H(h2(y))dy

�
(

H ′(dk)− H ′′(d2)
d2−d1

(
d2

k

2
−d1dk

)
− H ′′(d1)

d2−d1

(
dkd2− d2

k

2

))
w̃0

+
H ′′(d2)−H ′′(d1)

6(d2−d1)
w̃2 +

d2H ′′(d1)−d1H ′′(d2)
2(d2−d1)

w̃1, for k = 1,2. (2.28)

Where

w̃0 =
∫ b2

b1

g(y)(h1(y)−h2(y))y, (2.29)

w̃1 =
∫ b2

b1

g(y)(h2
1(y)−h2

2(y))dy, (2.30)

w̃2 =
∫ b2

b1

g(y)(h2
1(y)−h2

2(y))dy. (2.31)
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If the inequality (2.27) holds in the reverse direction, then the inequality (2.28)
holds in the opposite direction.

The inequality in (2.28) holds in the reverse direction if H is a 4 -concave function.

We use majorized tuples in the following result to construct bounds for the differ-
ence obtained from majorization inequality.

COROLLARY 2.3. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn)
and y = (y1,y2, . . . ,yn) be two n-tuples such that x � y and x j,y j ∈ [d1,d2], for
j = 1,2,3, . . . ,n. Then

n


j=1

H(x j)−
n


j=1

H(y j) � H ′′(d2)−H ′′(d1)
6(d2−d1)

n


j=1

(x3
j − y3

j)

+
d2H ′′(d1)−d1H ′′(d2)

2(d2−d1)

n


j=1

(
x2

j − y2
j

)
. (2.32)

Proof. Since x � y and Gi is convex for each i ∈ {1,2,3,4} , so by majorization
theorem [15], we have

n


j=1

Gi(x j,s)−
n


j=1

Gi (y j,s) � 0.

Therefore, for wj = 1, the inequality (2.15) holds. Also, by majorization condition
(1.5), the equality

H ′(dk)
n


j=1

wj (x j − y j) = 0

holds, for k = 1,2. Hence using Theorem 2.1, we obtain (2.32). �
In the following result, we use Fuchs majorization inequality for the derivation of

majorization type inequality for the 4-convex function.

COROLLARY 2.4. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn) ,
y = (y1,y2, . . . ,yn) be two decreasing n-tuples such that x j, y j ∈ [d1,d2], for j =
1,2,3, . . . ,n. Also, let wj ∈ R for j = 1,2, . . . ,n with

q


j=1

wjy j �
q


j=1

wj x j for q = 1,2, . . . ,n−1,

n


j=1

wjy j =
n


j=1

wjx j.

Then the following inequality holds:

n


j=1

wjH(x j)−
n


j=1

wjH(y j) � H ′′(d2)−H ′′(d1)
6(d2−d1)

w2 +
d2H ′′(d1)−d1H ′′(d2)

2(d2−d1)
w1,

(2.33)
where w1 and w2 are defined in (2.18) and (2.19) respectively.
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Proof. The idea of the proof is similar to the proof of Corollary 2.3 but instead of
majorization theorem, using Fuchs majorization theorem [13]. �

The following corollary is the integral version of the preceding corollary.

COROLLARY 2.5. Let H ∈C2[d1,d2] be a 4 -convex function, let h1,h2 : [b1,b2]→
[d1,d2] be two decreasing functions, g : [b1,b2] → R be any integrable function and

∫ 

b1

h2(y)g(y)dy �
∫ 

b1

g(y)h1(y)dy, for  ∈ [b1,b2],

∫ b2

b1

g(y)h2(y)dy =
∫ b2

b1

g(y)h1(y)dy.

Then the following inequality holds:

∫ b2

b1

g(y)H(h1(y))dy−
∫ b2

b1

g(y)H(h2(y))dy

� H ′′(d2)−H ′′(d1)
6(d2−d1)

w̃2 +
d2H ′′(d1)−d1H ′′(d2)

2(d2−d1)
w̃1, (2.34)

where w̃1 and w̃2 are defined in (2.30) and (2.31) respectively.

The following generalized majorization inequality has been obtained by applica-
tions of the Dragomir majorization result.

COROLLARY 2.6. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn) ,
y = (y1,y2, . . . ,yn) be two real n-tuples such that x j,y j ∈ [d1,d2], for j = 1,2,3, . . . ,n.

Also, let w = (w1,w2, . . . ,wn) be non-negative real n-tuple with W =
n

j=1

wj > 0 . If

x− y and y are monotonic in the same sense and
n

j=1

wjx j =
n

j=1

wjy j, then the in-

equality in (2.33) holds.

Proof. The proof follows the same steps as the proof of Corollary 2.3, but use the
Dragomir majorization theorem [11] rather than the majorization theorem. �

The integral form of the preceding corollary is given below.

COROLLARY 2.7. Let H ∈C2[d1,d2] be a 4 -convex function and h1,h2 : [b1,b2]→
[d1,d2] be two integrable functions, g : [b1,b2] → R be a non-negative integrable func-
tion with

∫ b2
b1

g(y)dy > 0 . If h2 and h1 − h2 are monotonic in the same sense and∫ b2
b1

h1(y)g(y)dy =
∫ b2
b1

h2(y)g(y)dy, then the inequality in (2.34) holds.

The following generalized discrete version of majorization inequality has been
obtained by application of the result of Maligranda et al. given in [18].
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COROLLARY 2.8. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn) ,
y = (y1,y2, . . . ,yn) be two n-tuples such that x j,y j ∈ [d1,d2] and wj � 0 for j =
1,2, . . . ,n.

(i) If y1 � y2 � . . . � yn , then the inequality in (2.33) holds.

(ii) If x1 � x2 � . . . � xn , then the inequality in (2.33) holds in opposite direction.

Proof. The proof of this corollary is similar to the proof of Corollary 2.3. �
The integral version of the above corollary is as follows.

COROLLARY 2.9. Let H ∈ C2[d1,d2] be a 4 -convex function, h1,h2 : [b1,b2] →
[d1,d2] be two integrable functions and g : [b1,b2] → R be a non-negative integrable
function.

(i) If h1 is an increasing function, then the inequality in (2.34) holds.

(ii) If h2 is a decreasing function, then inequality in (2.34) holds in opposite direc-
tion.

Now, we are going to give our second main theorem.

THEOREM 2.10. Let H ∈C2[d1,d2] be a 4 -convex function and x j,y j ∈ [d1,d2] ,
w j ∈ R for j = 1,2, . . . ,n. Also, let Gi (i = 1,2,3,4) be Green functions as defined in
(1.6)–(1.9) and (2.15) holds. Then

n


j=1

H(x j)wj−
n


j=1

H(y j)wj � H ′(dk)w0+
(

w1

2
−dkw0

)
H ′′
⎛
⎝ w2

6 − d
2
k w0
2

w1
2 −dkw0

⎞
⎠ , for k = 1,2.

(2.35)
Where w0 , w1 and w2 are defined in (2.17) , (2.18) and (2.19) respectively.

If (2.15) holds in the opposite direction, then (2.35) holds in the opposite direc-
tion.

If H is a 4 -concave function, then (2.35) holds in the opposite direction.

Proof. Using (1.14) with h∗3(s) replaced by Fi(s)=
n

j=1

wjGi(x j,s)−
n

j=1

wjGi(y j,s)

and H replaced by H
′′
, we get

∫ d2

d1

Fi(s)dsH
′′
(

1∫ d2
d1

Fi(s)ds

∫ d2

d1

sFi(s)ds

)
�
∫ d2

d1

Fi(s)H
′′
(s)ds. (2.36)

Using (2.20) in (2.36), we get

∫ d2

d1

Fi(s)dsH
′′
(

1∫ d2
d1

Fi(s)ds

∫ d2

d1

sFi(s)ds

)

�
n


j=1

H(x j)wj −
n


j=1

H(y j)wj −H ′(d2)
n


j=1

(x j − y j)wj. (2.37)



60 A. BASIR, M. A. KHAN AND J. PEČARIĆ

Now, if H(s) = s2
2 , then H

′
(s) = s and H

′′
(s) = 1 and using these functions in

(2.20), we get

∫ d2

d1

Fi(s)ds =
1
2

(
n


j=1

wjx
2
j −

n


j=1

wj y
2
j

)
−d2

n


j=1

wj (x j − y j). (2.38)

Now, if H(s) = s3
6 , then H ′(s) = s

2

2 and H
′′
(s) = s and using these functions in

(2.20), we get

∫ d2

d1

sFi(s)ds =
1
6

(
n


j=1

wjx
3
j −

n


j=1

wjy
3
j

)
− d

2

2

2

n


j=1

wj (x j − y j). (2.39)

Using (2.39) and (2.38) in (2.37), we get

(
1
2
w1−d2

n


j=1

wj (x j − y j)

)
H

′′

⎛
⎜⎜⎜⎝

1
6w2− d

2
2
2

n

j=1

wj(x j − y j)

1
2w1 −d2

n

j=1

wj(x j − y j)

⎞
⎟⎟⎟⎠

�
n


j=1

H(x j)wj −
n


j=1

H(y j)wj −H ′(d2)
n


j=1

wj (x j − y j), (2.40)

which is equivalent to (2.35) for k = 2. Similarly we can prove for the case k = 1. �

The following is an integral form of the aforementioned theorem:

THEOREM 2.11. Let H ∈C2[d1,d2] be a 4 -convex function, let h1,h2 : [b1,b2]→
[d1,d2] , g : [b1,b2] → R be three integrable functions, let Gi (i = 1,2,3,4,) be Green
functions as defined in (1.6)–(1.9) and (2.27) holds. Then the following inequality
holds:

∫ b2

b1

H(h1(y))g(y)dy−
∫ b2

b1

H(h2(y))g(y)dy

� H ′(dk)w̃0 +
(

w̃1

2
−dkw̃0

)
H ′′
⎛
⎝ w̃2

6 − d
2
k w̃0
2

w̃1
2 −dkw̃0

⎞
⎠ , for k = 1,2. (2.41)

Where w̃0 , w̃1 and w̃2 are defined in (2.17) , (2.18) and (2.19) respectively.
If the inequality (2.27) holds in the opposite way, then the inequality (2.41) holds

in the opposite direction.
The inequality in (2.41) holds in the opposite direction if H is a 4 -concave func-

tion.

In the following result, we use majorized tuples and derive bounds for the differ-
ence obtained from majorization inequality.
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COROLLARY 2.12. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn),
y = (y1,y2, . . . , yn) be two n-tuples such that x � y and x j,y j ∈ [d1,d2], for j =
1,2,3, . . . , n. Then the following inequality holds:

n


j=1

H(x j)−
n


j=1

H(y j) � 1
2

(
n


j=1

x2
j −

n


j=1

y2
j

)
H

′′

⎛
⎜⎜⎜⎜⎝

n

j=1

x3
j −

n

j=1

y3
j

3

(
n

j=1

x2
j −

n

j=1

y2
j

)
⎞
⎟⎟⎟⎟⎠ . (2.42)

Proof. Since x � y and Gi is convex for each i ∈ {1,2,3,4} , so by majorization
theorem [15], we have

n


j=1

Gi(x j,s)−
n


j=1

Gi (y j,s) � 0.

Therefore, for wj = 1, the inequality (2.15) holds. Also, by majorization condition
(1.1), the equality

n


j=1

(x j − y j) = 0

holds. Hence applying Theorem 2.10, we obtain (2.42). �
The following generalized majorization inequality for 4-convex function has been

obtained by applying of Fuchs majorization result [13].

COROLLARY 2.13. Let H∈C2[d1,d2] be a 4 -convex function and y=(y1,y2, . . .,yn),
x = (x1,x2, . . . ,xn) be two decreasing n-tuples such that x j,y j ∈ [d1,d2] , for j =
1,2,3, . . . ,n. Also, let wj ∈ R for j = 1,2, . . . ,n and

q


j=1

wjx j �
q


j=1

wjy j for q = 1,2,3, . . . ,n−1,

n


j=1

wjx j =
n


j=1

wjy j.

Then the following inequality holds:

n


j=1

wjH(x j)−
n


j=1

wjH(y j) � w1

2
H

′′
(

w2

3w1

)
, (2.43)

where w1 and w2 are defined in (2.18) and (2.19) respectively.

Proof. The proof is analogous to the proof of Corollary 2.12 but use Fuchs ma-
jorization theorem instead of the classical majorization theorem. �

The integral version of the preceding corollary is as follows.
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COROLLARY 2.14. Let H ∈C2[d1,d2] be a 4 -convex function, let h1,h2 : [b1,b2]
→ [d1,d2] be two decreasing functions, g : [b1,b2]→ R be any integrable function and

∫ 

b1

h1(y)g(y)dy �
∫ 

b1

g(y)h2(y)dy for  ∈ [b1,b2],

∫ b2

b1

g(y)h1(y)dy =
∫ b2

b1

g(y)h2(y)dy.

Then the following inequality holds:

∫ b2

b1

g(y)H(h1(y))dy−
∫ b2

b1

g(y)H(h2(y))dy � w̃1

2
H

′′
(

w̃2

3w̃1

)
, (2.44)

where w̃1 and w̃2 are defined in (2.18) and (2.19) respectively.

The following generalized majorization inequality has been obtained by applying
Dragomir’s majorization result.

COROLLARY 2.15. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn) ,
y = (y1,y2, . . . ,yn) be two real n-tuples such that x j,y j ∈ [d1, d2], for j = 1,2,3, . . . ,n.

Also, let w = (w1,w2, . . . ,wn) be non-negative real n-tuple such that W =
n

j=1

wj > 0.

If x− y and y are monotonic in the same sense and
n

j=1

wjx j =
n

j=1

wjy j, then the

inequality in (2.43) holds.

Proof. The proof is similar to the proof of Corollary 2.6. �

The following corollary is the integral version of the above corollary.

COROLLARY 2.16. Let H ∈C2[d1,d2] be a 4 -convex function and h1,h2 : [b1,b2]
→ [d1,d2] be two integrable functions, g : [b1, b2] → R be a non-negative integrable
function with

∫ b2
b1

g(y)dy > 0 . If h2 and h1−h2 are monotonic in the same sense and∫ b2
b1

h1(y)g(y)dy =
∫ b2
b1

h2(y)g(y)dy, then the inequality in (2.44) holds.

The following generalized discrete version of majorization inequality has been
obtained by applications of Maligranda majorization result [18].

COROLLARY 2.17. Let H∈C2[d1,d2] be a 4 -convex function and x=(x1,x2, . . .,xn) ,
y = (y1,y2, . . . ,yn) be n-tuples such that x j,y j ∈ [d1,d2] and wj > 0 for j = 1,2, . . . ,n.

(i) If y1 � y2 � . . . � yn , then the inequality in (2.43) holds.

(ii) If x1 � x2 � . . . � xn , then the inequality in (2.43) holds in the opposite direction.
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Proof. The proof of this corollary is identical to that of the proof of Corollary
2.12. �

The integral form of the preceding corollary is given below.

COROLLARY 2.18. Let H ∈C2[d1,d2] be a 4 -convex function, h1,h2 : [b1,b2]→
[d1,d2] be two integrable functions and g : [b1,b2] → R be a non-negative integrable
function.

(i) If h1 is an increasing function, then the inequality in (2.44) holds.

(ii) If h2 is a decreasing function, then the inequality in (2.44) is reversed.

3. Applications in information theory

DEFINITION 3.1. ( [4]) (Csiszár divergence) Let g : [d1,d2] → R be a function,
u=(u1,u2, . . .,un) ∈ R

n and w=(w1,w2, . . .,wn)∈R
n
+ with

u j
w j
∈[d1,d2] ( j=1,2, . . .,n) .

Then the Csiszár divergence is defined as

Dc(u, w) =
n


j=1

wjg

(
u j

wj

)
.

THEOREM 3.2. Let g ∈ C2[d1,d2] be a 4 -convex function and r= (r1,r2, . . . ,rn) ,
u = (u1,u2, . . . ,un) ∈ R

n . Also, let w = (w1,w2, . . . ,wn) ∈ R
n
+ such that

u j
w j

,
r j
w j

∈
[d1,d2] for j = 1,2, . . . ,n and Gi (i = 1,2,3,4) be Green functions as defined in
(1.6)–(1.9) . If

n


j=1

wjGi

(
r j

w j
,s

)
−

n


j=1

wjGi

(
u j

wj
,s

)
� 0 for i ∈ {1,2,3,4}, (3.45)

then

Dc(r,w)−Dc(u,w)

� g′(dk)
n


j=1

(
r j −u j

)
+

g′′(d2)−g′′(d1)
6(d2−d1)

(
n


j=1

( r3
j

w2
j

− u3
j

w2
j

))

− g′′(d2)
(d2−d1)

(
d2

k

2
−d1dk

) n


j=1

(r j −u j)

+
d2g′′(d1)−d1g′′(d2)

2(d2−d1)

(
n


j=1

( r2
j

w j
− u2

j

w j

))

− g′′(d1)
d2−d1

(
dkd2− d2

k

2

) n


j=1

(r j −u j), for k = 1,2. (3.46)

Proof. Using (2.16) for H = g , x j = r j
w j

, y j = u j
w j

, we get (3.46). �
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THEOREM 3.3. Let g∈C2[d1,d2] be a 4 -convex function and u = (u1,u2, . . . ,un) ,
r = (r1,r2,r3, . . . ,rn) ∈ R

n and w = (w1,w2,w3, . . . ,wn) ∈ R
n
+ such that

u j
w j

,
r j
w j

∈
[d1,d2] for j = 1,2, . . . ,n. If (3.45) holds, then

Dc(r,w)−Dc(u,w)

� g′(dk)
n


j=1

(
r j −u j

)
+

(
ŵ1

2
−dk

n


j=1

(r j −u j)

)
g
′′

⎛
⎜⎜⎝

ŵ2
6 −

d
2
k

n

j=1

(r j−u j)

2

ŵ1
2 −dk

n

j=1

(r j −u j)

⎞
⎟⎟⎠ ,

for k = 1,2. (3.47)

Where

ŵ1 =
n


j=1

r2
j

w j
−

n


j=1

u2
j

w j
and ŵ2 =

n


j=1

r3
j

w2
j

−
n


j=1

u3
j

w2
j

.

Proof. Using (2.35) for H = g , x j = r j
w j

and y j = u j
w j

, we get (3.47). �

DEFINITION 3.4. ( [4]) (Kullback-Leibler divergence) Let u = (u1,u2, . . . ,un)
and w = (w1,w2, . . . ,wn) be two positive probability distributions, then the Kullback-
Leibler divergence is defined as

Dkl(u,w) =
n


j=1

u j log
u j

wj
.

COROLLARY 3.5. Let [d1,d2]⊆R
+ and r = (r1,r2, . . . ,rn), u = (u1,u2, . . . ,un),

and w = (w1,w2, . . . ,wn) be positive probability distributions such that
r j
w j

,
u j
w j

∈ [d1,d2]
for j = 1,2, . . . ,n. Also, let Gi (i = 1,2,3,4) be Green functions as defined in (1.6)–
(1.9) . If (3.45) holds, then

Dkl(r,w)−Dkl(u,w)

�
(

logdk +1+
d2

k −2dk(d1 +d2)
2d1d2

) n


j=1

(
r j −u j

)

+
d1 +d2

2d1d2

(
n


j=1

(
r2

j

w j
− u2

j

w j

))
− 1

6d1d2

(
n


j=1

(
r3

j

w2
j

− u3
j

w2
j

))
, for k = 1,2.

(3.48)

Proof. Let H(y) = y logy , ∀y∈ [d1,d2]. Then H is a 4-convex because H
′′′′

(y) =
2
y3 > 0, therefore using (2.16) for H(y)= y logy and x j =

r j
w j

,y j =
u j
w j

, we get (3.48). �
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COROLLARY 3.6. Let [d1,d2]⊆R
+ and r = (r1,r2, . . . ,rn), u = (u1,u2, . . . ,un),

and w = (w1,w2, . . . ,wn) be positive probability distributions such that
r j
w j

,
u j
w j

∈ [d1,d2]
for j = 1,2, . . . ,n. If (3.45) holds, then

Dkl(r,w)−Dkl(u,w)

� (1+ logdk)
n


j=1

(
r j −u j

)

+

(
1
2

w̌1 −dk

n


j=1

(r j −u j)

)
g
′′

⎛
⎜⎜⎜⎝

1
6 w̌2 − d

2
k
2

n

j=1

(r j −u j)

1
2 w̌1 −dk

n

j=1

(r j −u j)

⎞
⎟⎟⎟⎠ , for k = 1,2.

(3.49)

Where

w̌1 =
n


j=1

r2
j

w j
−

n


j=1

u2
j

w j
and w̌2 =

n


j=1

r3
j

w2
j

−
n


j=1

u3
j

w2
j

.

Proof. Using (2.35) for H(y) = y logy,∀y ∈ [d1,d2], x j =
r j
w j

and y j =
u j
w j

, we get
(3.49). �

DEFINITION 3.7. ( [4, 12]) (Shannon-entropy) Let u = (u1,u2, . . . ,un) be a pos-
itive probability distribution. Then the Shannon-entropy is defined by

Es(u) = −
n


j=1

u j logu j.

COROLLARY 3.8. Let [d1,d2]⊆R
+ and r=(r1,r2, . . .,rn) and u=(u1,u2, . . .,un)

be positive probability distributions such that u j,r j ∈ [d1,d2] for j = 1,2, . . . ,n. Also,
let Gi (i = 1,2,3,4) be Green functions as defined in (1.6)–(1.9) .

If
n


j=1

Gi(r j, s)−
n


j=1

Gi (u j,s) � 0 for i ∈ {1,2,3,4}, (3.50)

then the following inequality holds:

Es(r)−Es(u) � d1 +d2

2d1d2

n


j=1

(
u2

j − r2
j

)− 1
6d1d2

n


j=1

(u3
j − r3

j ). (3.51)

Proof. Let H(u) = u logu, u∈ [d1,d2]. Then H ′′′′(u) = 2
u3 > 0, which shows that

H is a 4-convex. Since u and r are positive probability distributions, therefore the
equality

n


j=1

(u j − r j) = 0 (3.52)
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holds. So using (2.16) for H(u) = u logu and wj = 1 for j = 1,2,3, . . . ,n, we get
(3.51). �

COROLLARY 3.9. Let [d1,d2]⊆R
+ and r=(r1,r2, . . .,rn) and u=(u1,u2, . . .,un)

be positive probability distributions such that u j, r j ∈ [d1,d2] for j = 1,2, . . . ,n and
(3.50) holds. Then the following inequality holds:

Es(r)−Es(u) �
(

1
2

n


j=1

u2
j −

n


j=1

r2
j

)
H

′′

⎛
⎜⎜⎝

n

j=1

u3
j −6

n

j=1

r3
j

3
( n

j=1

u2
j −2

n

j=1

r2
j

)
⎞
⎟⎟⎠ . (3.53)

Proof. Since u and r are positive probability distributions, therefore the equality
(3.52) holds. So using (2.35) for H(u) = u logu and wj = 1 for j = 1,2,3, . . . ,n, we
get (3.53). �
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