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L? BOUNDS FOR SINGULAR INTEGRAL
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(Communicated by L. Liu)

Abstract. This paper concerns the study singular integrals along twisted surfaces of the form
{(@(v)u, ¥ (lul)v) : (u,v) € R" xR}

We prove L? bounds for the corresponding operators when the surfaces are defined by map-
pings more general than polynomials and convex functions, provided that the kernels are in
L(logL)*(S"~1 x §m—1).

1. Introduction and statement of results

For d > 2, let R? (d = nord=m) be the d-dimensional Euclidean space and

S?=1 be the unit sphere in R? equipped with normalized Lebsgue measure do. For
Y

non-zero point y € R" (y # 0), we let y/ = o eSS Let Qe LI(S" 1 x ") be
y
such that
O, Jdo() = / Q()do(v) =0, (1.1)
Sn— S§m—
and
Q(tx,sy) = Q(x,y), Vi, s > 0. (1.2)

The classical singular integral operator on product domains associated to the function
Q is defined by

Falf)en) = [ ey T dudv 13

"R Ju|"[v ]
The study of the operator .%o began by Fefferman-Stein in [11] and Fefferman [10]. In
[11], Fefferman and Stein showed that . is bounded on LP(R"*™) for (1 < p < o)
if Q satisfies certain Lipschitz conditions. Subsequently, several authors have studied
the LP boundedness of the operator .o under various conditions on Q. For further

results and background information, we refer the readers to consult [2], [8], [9], [11],
among others. In particular, in [8], Duoandikoetxea proved that .%q is bounded on L
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when Q € L9(S""! x §"!) with ¢ > 1. Subsequently, Fan-Guo-Pan in [9] obtained
the same L? boundedness result but under the condition that Q lies in certain Block

1
spaces By’(S""! x §”~1) introduced by Jiang and Lu in [12]. For -+~ =1, a
q9 4
function Q lies in the space By (S"~! x §"~1) if Q = Yi_i cuby where {cy} is a
sequence of complex numbers, b, is a measurable function satisfying the properties
that supp(by) =1y, ||bullre <| Iu |-1/4, and

MOO({ew}) = 3 leal (1 +log™ (1)) < o=
u=1

Here, I, is an interval on S"™1x §"™=1 It is well known that Block spaces enjoy the
following properties:

Lq(SYHI X Sm71> QBS’O(SrHI X Smfl)’ Bg’O(Sn71 % Sm71> {q U Lq(SVHI X Smfl)’
g>1

and
BS’ZO(SWI % gmfl) c 32’10(8"71 X 8’”*1) whenever 1 <q1 <q.

For detailed information about Block spaces, we refer the readers to [12].
In [7], Al-Salman, Al-Qassem, and Pan investigated the L” boundedness of the
operator .%o under the natural condition Q € L(logL)?(S"~! x §"71), i.e.,

/SH o1 120) 102+ ()] do(w) do(y) < (1.4)

They proved that .% is bounded on L? (1 < p < o) provided that Q € L(logL)*(S"~! x
S™=1). Moreover, they showed that the L” boundedness of .%o may fail if the con-
dition Q € L(logL)*(S"~! x ") is replaced by Q € L(logL)>~*(S"~! x §”"~1) for
any given ¢ > 0. It should be remarked here that the following inclusions hold:

Llog" L)’ (S" ! xS™ 1 ¢ L(log"L)"(S" ! x s™1) whenever r<s
and
LIS xS™ ) S Llog" L) (S ' x s S LIS xs" ) (1.5)

whenever g > 1 and r > 1.

In his investigation of the L” mapping properties of Marcinkiewicz functions,
Al-Salman [3] introduced the following class of mappings that are more general than
polynomials and convex functions:

DEFINITION 1.1. ([3]). A function y : [0,00) — R is said to belong to the class
D€, (d) if there exist a polynomial P belongs to the class &, of all real valued
polynomials with degree at most d and a mapping ¢ € C¢+! [0,°0) such that

(M) y(t)=P@t)+10()
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(i) P(0)=0and ¢)(0)=0for0<j<d
(iii) @) is positive non-decreasing on (0,00) for0< j<d+1.

For convenience, the polynomial P satisfying the conditions (i) and (ii) above
will be denoted by Py, . It was pointed out in [3] that the class Uyo(2?% 5 (d)) contains
the class of polynomials &2, as well as the class of convex increasing functions. Re-
cently, Al-Azriyah and Al-Salman studied singular integrals on product domains along
surfaces determined by mapping that lie in the class &% (d). In fact, Al-Azriyah and
Al-Salman proved the following result:

THEOREM 1.1. ([1]). Let Q € L(logL)*(S"~' x §"~1) satisfying (1.1)~(1.2) and
(14). If ® € Z€,(d),Y € PCu(b) for some d,b >0 and A, o € R, then the
operator

Q' vV
Towa(Hwy) =pv [ fl=(uu'y = ¥(o])v) |u(nvm) dudv  (L6)

nwRm

is bounded on LP(R" x R™) for 1 < p < eo with LP bounds independent of A,o. € R
and the coefficients of the particular polynomials involved in the standard representa-
tions of ® and ¥ given in Definition 1.1.

The aim of this paper is to investigate the L” boundedness of a class of singular
integral operators on product domains along twisted surfaces determined by mappings
that lie in certain 2%, (d). Let h: [0,00) x [0,°0) — R be a measurable function. For
suitable mapping A : R” x R™ — R" x R" of the form

Au,v) = (©(|v])u, ¥ (|ul)v), (1.7)

where @ : (0,00) — R and ¥ : (0,0) — R, we consider the singular integral operator
on product domains defined by

Q' V)

Jul™ [y

Fanas) = [ () = Awy) h(lul. M) dudv. — (18)

It is clear that, when ®(r) = ¥(r) = c-constant and 7 = 1, then “ A is the clas-
sical operator .#. In [6], Al-Salman proved the L” boundedness of .#qja for
Q € L(logL)*(S"! x§"1) and h € L=([0,%0) x [0,%)) provided that the functions

@ and ¥ belong to the class .# of smooth functions ¢ : (0, o) — R which satisfy
©(0) = 0 and the following growth conditions:

el <’ and |g" ()] > Car?2 (1.9)

for some d # 0 and 7 € (0, o), where C; and C, are positive constants independent of
t. It was pointed out in [6] that the operator ¥ 5 o may fail to be bounded on L? (1<
p <o) when ®(r) =t or W(r) =¢. In fact, it is shown in [6] that |-Lg A (f)(x,y)| =
o if ®(t) = ¥(r) =t for certain choice of f. Furthermore, as a consequence of
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the L? boundedness of certain maximal functions, Al-Salman in [5] deduced the L?
boundedness of .7, A When the functions ® and ¥ satisfy some growth conditions
similar to (1.9), the function Q isin L(logL)(S"~! x S"~1), and that / is a measurable
function that satisfies

1

2

2 1 —
il ety = | [ [ ) Prts aras | <1,
00

In the same paper, Al-Salman obtained the same result for Q € B, (%0)(S"~! x §m~1)

(g>1).
We remark here that the classes .# and Uy>o(2?%, (d)) are different. In particu-

lar, the function (p(t):tze’% for ¢ >0 and ¢(¢)=0 for <0 lies in Uy>o (L€, (d))\.Z .
On the other hand, the power function @(¢) = v/# lies in .7\ Ug>o (2%, (d)). There-
fore, it is natural to ask if the operators .7 5 o in (1.8) are bounded on some L? if the
functions ® and ¥ are in Uy>0(2% ) (d)). Motivate by the work in [4], we introduce
the following class of functions:

DEFINITION 1.2. For b,d > 0 and A, € R, we let 57 (d,b, A, ) be the class
of all pairs (®,®) of functions ® and ¥ with ® € P% (d) and ¥ € P «(b) such
that the corresponding polynomials Pg and Py satisfy one of the following conditions:

(i) Po(0) =Py(0) =0 and

lim Pq)—(t) = lim BP—(I)

t—0 t—0 1

(ii) deg(Pp)+deg(Py) = 1;

(i) deg(Pp)deg(Py) =0 and deg(Pp)+ deg(Py) > 1;

(iv) deg(Po) = deg(Py) = 1, Pp(0) £0 and Py (0) #0;

(V) Pp(t) =t and deg(Py) > 1 with }E%(R}l(l) —Py(0))/t =0 or Py(r) =1t and
deg(Pp) > 1 with th—{% (Pp(t) — Pp(0))/t =0.

Our main result is the following:

THEOREM 1.2. Suppose that Q € L(logL)*(S"~! x S"~1) and satisfying (1.1)—
(1.2). If Au,v) = (P(v]) u, ¥ (|u])v), with (®,¥) € S(d,b,A, ) for d,b >0, then
the operator g j A in (1.8) is bounded on LP(R" xR™) for 1 < p < eo with LP bounds
independent of A,a € R and the coefficients of the particular polynomials involved in
the standard representations of ® and .
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In order to prove the above theorem, we consider a special family of maximal
functions along twisted surfaces. For (z1,22) € $"~! x §"~! and suitable functions
D, ¥ :[0,00) = R, we let

it gkt
Lo drd
e = [ [ e@ray vt e ao
/ 2/ 2k

It is worth mentioning that dealing with maximal functions involving twisted surfaces
is more complex than dealing with the classical maximal functions. As far as we know,
very little is known about the boundedness of 1)(“722 in (1.10). Recently, Al-Salman

[4] proved the L” boundedness of U(Z"ZZ) when © and ¥ are polynomials that satisfy

one of the conditions (i) — (v) in the Deﬁnition 1.2. Besides that, the same author in [0]

obtained that U(Z"ZZ) is bounded on L? for all p € (1,e0), provided that ®, ¥ €.% . In
this paper, we shall prove the following result:

THEOREM 1.3. Suppose that A(u,v) = (®(|v|)u,¥(|u|)v), where ®Y €
H(d,b,A,a) for d,b>0 and A,a € R. Let 1)(Zl 2) pe given by (1.10). Then U(ZI\PZZ)

is bounded on LP forall 1 < p < e with LP bounds independent of A,a € R and the

coefficients of the particular polynomials involved in the standard representations of ®
and P

As a consequence of Theorem 1.3, we have the following result:

THEOREM 1.4. Suppose that Q € L' (S"! x §"~1) satisfying (1.1)~(1.2) and
oY
€ A (d,b,A,a), for d,b > 0. Let Vo py., be the maximal function

Qu',v
Va Agy (f)(¥,y) = sup / F((xy) = Adw,v)) (n m)d dv (1.11)
k.jez I
2K <y <2kt
27 <|u|<2/*!

Then, there exists a constant C, > 0 such that

V@A (F)llLr e xrmy < Cpll Q|1 (gn-1gm1) ||| Lo (e xrm)

forall 1 < p < oo with LP bounds independent of A, € R and the coefficients of the
particular polynomials involved in the standard representations of ® and Y.

Historically, Al-Salman in [5] obtained the L” boundedness of VQ Agy where ®
and YW satisfy (1.9). In [4], the same author proved that Vg A, is bounded on L”
(1 < p < o) provided that ® and ¥ are polynomials satisfying one of the conditions
(i)—(v) in Definition 1.2. We remark here that, in light of the relations (1.5) and the
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definition of the class % (d,b,A, ), Theorem 1.2, and Theorem 1.4 are fundamental
generalizations of Theorem 4.3 and Corollary 4.4 in [5] respectively. Furthermore,
Theorem 1.2, Theorem 1.3, and Theorem 1.4 generalize the corresponding results in
[4], [6], and [5].

This paper is organized as follows. In Section 2, we present some preliminary
lemmas. In Section 3, we will develop and prove some maximal function results. The
proofs of Theorem 1.3 and Theorem 1.4 will be presented in Section 4. Finally, the
proof of Theorem 1.2 will be presented in Section 5.

Throughout this paper, the letter C will stand for a constant that may vary at each
occurrence but it is independent of the essential variables.

2. Preliminary tools

This section is devoted to recall some known lemmas. We start by recalling the
following lemma in [1] (see also [3]):

LEMMA 2.1. ([1]). If @ € C9T1[0,%0) and satisfies the conditions (i)—(iii) in
Definition 1.1, then

(i) o(ar)<oo(r) Jor 0<a<1 and r>0
(ii) o(or) = ao(r) for a>1 and r>0.
(iii) @@tV (r) = r4o(r) for r>0.
The following Proposition will play a key role in this paper:

PROPOSITION 2.2. ([6]). Let L :R" — R" and H : R" — R™ be linear trans-
formations. Let {0y : k,j € Z} be a sequence of Borel measures on R" x R™. Let
1,02 € R and let € and €& be defined by

1, pi=z—1
& = i=1,2.
_17 .Oi<_17

Suppose that for some a > 1, o, 3,C >0, and B > 1, the following hold for k, j € Z,
(E.m) € R X R
() 18;4(&.1)| < CB(a™TB abtPHBIL(E)|) =5 (a1 kB a®202i5|H (1)) =5,

(ii) || sup (llogel* 1) llg < CB* [ fllg: Vqe(l,e0).
Js

Then for 1 < p < o, there exists a positive constant C,, such that

< CoB?(| |l 1o (o ey 2.1)
LP (R R™)

D Ok f

kjEZ
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and

1/2
( Y loja *f|2> < CpB? || f I (rrcemy (2.2)
jkEZ

: LP(Rn xRM)

hold for all f in LP(R" x R™). The constant C,, is independent of B and the linear
transformations L and H .

Finally, the following lemma was proved by Al-Salman in [4]:

LEMMA 2.3. ([4]). Let L:R" — R" and H : R™ — R™ be linear transformations.
Let p1,p2 > —1 be such that pyp, # 1. For (i,j) € {(1,1),(1,0),(0,1),(0,0)}, let

olbd) = {G,ﬁi’j) 1,5 € R} be a family of measures on R" x R™. Suppose that for some
o, B and C > 0, the following hold for t,s € R, (£,n) e R" x R™ :

() 1657 &, m) <1

(i) 163 (E,m)] < C (2120 |L(E) )~ (2277 |H (m)]) P

Gii) | (4% Em)| < C2VILE)) (220 H ()]}

1) CA)',\ (
(iv) | (815 =65 ) (6 < C@ 27 |LE))* (222 |H (m) )P

v (817857 =817 +80") (& < c@ 2 IL(E))* (22 H ()P
i) (857 =887 @ m)l <c@ L))

i) (85" =80 ) (&, ml < c (@202 H(m)])P
(viii) For(i,j) € {(1,0),(0,1),(0,0)}, the maximal function
(08" (£)(x.9) = sup([| 05" |« £1(6,))

satisfies N

1) (llg < ClIfllq (2.3)
forany 1 < q < eo. Then for 1 < p < oo there exists positive constant C, such that the
maximal function

(@) (1)) = sup(lloi |+ 11 )) @4

satisfies
1) (Dl <CplIflp (2.5)

forall f e LP(R"xR"). The constant C,, is independent of the linear transformations
L and H.

Here, we remark that 2’ in the above lemma can be replaced by ¢(27) where @ is
convex increasing. Similarly for 2°.



150 B. AL-AZRI AND A. AL-SALMAN

3. Introductory maximal inequalities

This section is devoted to establish some necessary maximal inequalities. We start
by establishing the following lemma:

LEMMA 3.1. Let z; € R" and zp € R™. For N,M > 0, suppose that (O, Py) €
M .
J(N,M,A,0) are such that ®(t) = Pp(t) + A@(t) and Py(t) = Y, bit' where M =
i=2
deg(Py) = 2. Then the maximal function

2t+1gs+1

o (Do) = sup [ [ 17 @@ rary—Petr) G2 o
RIS 5 b

(3.1)

is bounded on LP (R" x R™) for all 1 < p < eo. The LP bounds of Uqf;;\iz may depend
on the degrees of the polynomials Py and Py, but they are independent of A € R, the

coefficients of the polynomials Py, Py and the points z1 and 2.

Proof of Lemma 3.1. The proof of above lemma is based on an induction argument
on the deg(Py) =M > 2. First, for M = 2, we argue in three cases as follow:

Case 1. Assume that Pp and Py satisfy the assumption (i) in Definition 1.2. Let

N
w(t) =Y aitt  and  Py(t) =bot’.
=2

Thus, by using the Riesz representation theorem, we define the family of measures
{vt :1,5 € R} by setting, for any f € 65°(R" x R™),

2t+l 23+1
drd
/RnXRmf(x y)d'l)[\ )C y 2/ / f rZ17 b2l" )€Z2) rCC 3.2)

s

Then
Vg (F)0y) = sup | (07« ) y) (3.3)
Notice that
1 st
2@ (e, ) = //ei(ém)-(‘l’(é)rZh(hzrz)CZz)%
2 2 (3.4)

2
//e (E20)@(@ D)2r+(na)by @r222g 4rdE
rg

2
1

—
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(Pp,1) (Pp.2)

Also, we define the measures {v,(f’ ) (s € RY, {ug
t,s € R} via the Fourier transform by

1,5 € R}, and {vu,

2 2
oA m = [ [elGmmEozromney 22?4}‘1;‘25 (3.5)
11
Uts (é TI)—U“ (é 0) (3.6)
and ~(Pop.1) _ 5(Fp2)
vt,.\' (57 Tl) - Ut,s (570) (37)

In addition, corresponding to the measures {1),7_X } {U,P‘Dl }, and {U,Efd”z)}, we
define the maximal functions (v(®1))*, (v(Pe:))* “and (vPe2))* by

D) (£)(x3) = sup| (05 )(x.5)]. (3:8)
(U(Pq),l))*(f)(x’y) = sup (U[({)d: 1) f)(X,,V) , 3.9)
and
(02" ()(x.3) = sup | (05?5 ) (x,9)|. (3.10)
1,8
Now, notice that
ot+19s+1
dld
(‘U(d)vl))*( —sup/ /|f er7 )%
2t 28
25+l [ @(g)2rtl (3.11)
du | d
<sup / |f(x—1421,)’)|7u ?C
" \e@

<C(My +M_) f(x,y),

where M, and M_;, are the directional Hardy-Littlewood maximal functions in the
direction of z; and —z; respectively (acting on the x-variable) and C is a positive
constant. Therefore,

I DY ()llp <Cplifll (3.12)
forall 1 < p < eo. Similarly, we get
1P (A)llp < Cp 111 (3.13)

for all 1 < p <eo. On the other hand, by Theorem 1.2 in [4], we have

[ PeD) (), <Cpll £l (3.14)

for all 1 < p < eo with constant C}, independent of z;,z; and the coefficients of the
polynomials Pp and Py .
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Now, it is easy to show that

~(D,2 ~ (Pp,1) (Py,
B2 (Em+ 1555 (& m)|+ 55  & m) -+ 15 €, m) < €
Furthermore, we have

dN+l

JowTl(€ )@@ 827t (1-2) (02 (27)) 2]

= |(2’r)/12(N+”590(N“( 2°8)(E )
> 2222 )N o (20)(E -z)
> A2 0(2)(E z1)l-

Thus, by Van der Corput lemma in [13], we get
2| 2
@D (& )| < / / (622 82 r+ (1) (b2 (2021 46 | 47
1,8 ) / J C r
1
SCA29(2)(E )| 7D

On the other hand, we have

2
57[(5'Zl)q)(z‘YC)z’VJr(n'Zz)(bz(zt 1) 2°¢)| = 2b2(2°8)2% (- 22)|
> 0227 2°(n - 22)|.

Similarly, by Van der Corput lemma in [13], we obtain

21 2

522 ()| < / / (E2)0(28 )2 r(m22) b2 (27) 2?41‘1: dg
1

1
<Clp2% 2 (n-2)| 2.

Also, we have
5(®:1) g Nl+1
[V (8, < CIA2'9(2°) (& -z1)| ™D,

SeE )| <Clha2¥ 2 (n-z)[t

By interpolation between the estimates (3.17) and (3.19), we get

v,

—~ __ 1
B0 (&) < CIA2 @(2)(&-2)| WD (5,27 2%(n-2)| 7.
Then, by (3.17), (3.19), (3.20), and (3.21), we get

B (&)~ o' E ) < BT E )]+ 1oV E )
<CIA2 @(2%)(E-z1)[ T,

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Similarly

l\JI'—
—~
o
[\
NN
~

552 (&,m) - 5P (& )| <C|pa2¥ 25 (n-2)|

In contrast, we can obtain that

2t+123‘+l
5(®2) (E)O(0)r (Glitna) bar?)g) ) 4rdS
B Em-oEmi=| [ [e (e )T
2t 28
<C |b22%2°(n - 22)]
(3.25)
By combining (3.25) and the trivial estimate
B2 Em) -0V (E )| <
we get
1
B P& - o Em) | <C[p2¥ 25 (n 2)| (3.26)
By the same procedure as in (3.25)-(3.26), we get
1
B2 (E )~ 0P (E ) <C A2 @) (& )] (327)

Thus, by (3.23)—(3.24) and (3.26)~(3.27), we obtain

_ 1 1
02 (Em) — T EMISC A2 @(2)(E - 21)| 2 [522%2 (- 2)|*
(3.28)
1 _ 1
.02 (Em) — 0P (E m) < ClA2 o) (E-2)| [p227 2 (n-22)| 7. (3.29)
Also, we can show that

1502 (&, m) -0 & m) -5\ (& m) + 51 (g )

pt+1 s+l

/ / (GO0 EaRa(0)r) (na) 2ty )d__C
¢
yoods (3.30)
2t+12r+1
drdC
i(Ez)Ao()r _ (n-22) (b271?)
< [ Jleermerf|ferenion| S
<c;/12f 25 (& -an)| 6227 2° (- 22)| -
By combining the estimate (3.30) and the trivial estimate
052 (& m) =0l m) = o (€ m) + 0V € )| <
we get
B2 m) — 0P (Em) - 0PV E ) + B (E ) .

<C A2 (2t (& -z |4 |b22%25(n - zz)l%
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The following two estimates are straight-forward

=

o — gt E ) <Cclr ot (& -0)|F, (332)

o) _g5Pe e ) <C b2 2 (-2 l4 (3.33)

Thus, by (3.12)—-(3.14), (3.22), (3.28), (3.29), (3.31)—(3.33), and Lemma 2.3 and the
remark that follows its statement, we obtain the L7 boundedness of the inequality (3.3)
with LP bounds independent of A € R, the coefficients of the polynomials Py, Py and
the points z; and z. The proof is complete under assumption (7). Now, we move to
the proof under condition (iif).

Case 2. Assume that Pp and Py satisfy the Condition (iii) in Definition 1.2. Let
Po(t) = c-constant and Py(t) = byt*>. We define the same families of measures as in

N .

(3.2)—(3.10) in the Case 1. But here we replace Py (1) = Y, b;it' by Py(t) = c-constant.
i=2

Thus, as in (3.11), we can prove that

@Dy (Al <Cplifllp (3.34)

forall 1 < p <eo. Similarly, we get

[P (A, < CpllfIlp (3.35)

forall 1 < p <. Also, we have

2t+123+1
dcdr
(0Po2))%(£)( _sup/ /\f x—crz,y—(bar)* {2 g
2t+1 29s+1
(bar) du \ dr (3.36)
< sup [fr—crz,y—uzn)l— | —

1,
P\ (e

<M o (M +MC))f(x,),

where Mz(l1 ) is the directional Hardy-Littlewood maximal functions in the direction of
71 (acting on the x-variable) and M,, and M_;, are as in (3.11). Hence,

12 ()l < ColIf 1y (3.37)

for all 1 < p < eo with constant C}, independent of z;,z, and the coefficients of the
polynomials Pp and Py.
On the other hand, we can show that

B2 &+ 1050 )+ [l & )|+ [ E ) <C,  (338)

—

B0D(E ) <CR2 2 (E )77 [122% 2 (n-2)[ 5, (3.39)
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BV Em -3V E I <C 2 0@)E )| F 22 ra)|t, G40

e - B el <22 0@ ) E-a)| 2 2 (n-2) L G

1552 & m) = oD g m) =o' E ) + 0N &) 3.42)
<CA2 @) (E-2)|* 22222 (n-2)| 1,

B -5 E ) <C a2 0@ ()| (3.43)

55 (g )| <€ 1222 (-2 (.44

Thus, by (3.34)—(3.37), (3.38)—(3.44), and Lemma 2.3, we obtain the L” boundedness
of the inequality (3.3) with L” bounds independent of A € R, the coefficients of the
polynomials Py, Py and the points z; and z; . This completes the proof of Case 2.

Case 3. Assume that Pp and Py satisfy the Condition (v) in Definition 1.2. Let
Po(t) =t and Py(t) = bot>. We define the similar families of measures as in (3.2)—
(3.10) in the Case 1, with Pp(t) =¢. Asin (3.11), we have

1Y (Al <Cpllflp (3.45)
forall 1 < p <eoo. Similarly, we get

[P ()l <CplI£llp (3.46)
forall 1 < p <eo. Now, by Lemma 3.2 in [4], we get

I®*2)* ()]l <CplIf 1l (3.47)

for all 1 < p < eo with constant C,, independent of z1,z> and the coefficients of the
polynomials Pp and Py. Also, we can prove that

B2 &)+ 1050 m) |+ [N & )|+ [ g m) < C,  (3.48)

1502(E M| <CIA2 @2°)(E-2)| 4 2% 2 (- 22)| 4, (3.49)
1

B0 (&)~ o VE M <CLA2 92)(E-2)| F 22272 (n-2)| . (3.50)
522(E,m) - 0 (E,m) <C A2 @) (E-2)| [122% 2 (n-22)| T, B.SD)

1002 (&,m) - o2 & m) — o' & m) + ol (g )
(3.52)

<Cl/12t(p(25+1)(5-zl)|z ]b222r2S(n-ZQ)lZ,

5D 5N ) <C A2 p@ ) (E 2] ) (3.53)
|1),P¢2) P<1>1 (5 n |<C’b222t25(n Zz)’% (3.54)
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Then, we can follow the same procedure as in previous cases. We omit details. This
concludes the third case.

Next, assume that the L boundedness of vg,
Py with degree less than orequal M —1 > 1. Let

(21,22)

in (3.1) holds for all polynomials

M
=Y bt and P (1) = > bit.

In light of the conditions on Py, we shall prove the L” boundedness of 1)(21’Z2 in (3.1)
under the assumption (i), (iii), and (v) in Definition 1.2. We start by assumlng that
Py and Py satisfy the Condition (i) in Definition 1.2. Let

N .
=Y at'.
=2

We define the family of measures {U,?M) v,(iDM b v,(fd”M) U,(I\)‘D M0 s e R} via

the Fourier transform by

22
oM (& ) = / / AEDOE 2tz Ry 2y 4rdE (3.55)
11 ¢
P ) drd
t M) (5t os
6[%?7M71)(§,n)://e[(5 2) @(2°§) 2 r+(n-z2) Py (2'7)2 g:—CC’ (3.56)
11
2 2 drd
oM (g ) = / / Al(E2) Po(250) 2 r+(n-22) Py (2'1) 26 474G (:, (3.57)
11 ré
and
2 2
B (g ) = [ [elEamEorina iz qdrde (3.58)
7 11 K3
Then, the maximal function “g,lzi?) is given by
v (1) (x.9) = sup| (" )x.y)|. (3.59)

Now, let (0(@M-D)* - (p(PoM=1y* and (p(Pe:M))* pe the maximal functions given
by

(M) (£)(x,y) = sup| (0 sV % ) (xy) | (3.60)
(uFM)* (£)(x,9) = sup| (02 5 ) (x,9)], (3.61)

1,
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and
(oM (1) x,y) = sup | (0w ) ()]

1,

By induction assumption, we observe that

@Y= (Al < Cp 1111y

forall 1 < p < eo.
Furthermore, by Theorem 1.2 in [4], we obtain that

1®)* (£)ll, < Cpllf -

Similarly, we get
IM=0) ()l < Cp LIl

157

(3.62)

(3.63)

(3.64)

(3.65)

forall 1 < p < eo with constant C,, independent of the points z; and z, and the coeffi-

cients of the polynomials Py and Py .

Also, it is easy to see that for all (/,r) € {(D®,M),(P,M — 1), (Pp,M),(Pp,M —

1)}, we have
~(l,r
o &)l <c.
Now, by the properties of ¢ in Lemma 2.1, we can obtain that

‘ dN+1

On the other hand, we have

'%[(é 2D )2+ (0 22) Pe(27) 2-":1' > Clby M12° 2V ()|

By (3.67), (3.68), and Van der Corput lemma in [13], we get

M (&, m)| <CIA2 @(2°)(&-21)| 7T,

1

55 (&) < Clow M1 2 2 (- 20) [,

and
_ | 1
Iv,(ibM D(E,m)| < CIA2 @(2)(E - 2)| 7,

—

M(E )| < Clow M1 22 2M (- 22)| 71,
By (3.66), (3.69), and (3.70), we have

o
155 (& )| < CIA2 @(2°) (& 20)| T [y M1 20 2 (- 2)| "7,

CNH[(& 21)®(2 C)Ztr+(n-22)f"v(2’r)2sﬁ‘>C|/12t<l)(2s)(§-21)|~

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)
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Also, we have

155 &, m) - oMV,

ot+l 2.r+1

_ / / HENDE) )Py (O (gl T ) drdg (3.74)
r g
2/ 2S
<C by 2Y2° (n-22)|.
By interpolation between (3.74) and the trivial estimate
B0 Em) = oM E ) <
we obtain that
1
oM Em - ot E < bu 22 )T 379
Similarly, we can get that
;
oM Em - E < C P2 e E )T (3.76)
By (3.69)—(3.72) and (3.75)—(3.76), we obtain
~( ~(D
oM g m = oMl E )
L n (3.77)
< CM 2t(p(2s)(5 -z1)| 2D |bM oMt ps (n .Z2)’2M ,
and (®,M) (Pgp,M)
‘Ut,s’ (&,n)— Utscp (5 n)l
. (3.78)
< CIA2 Q)& - 20) | TF |y MY 2°2M (1 -2,)| 70
By the same procedure as in (3.31), we get
~(®,M ~(D,M—1) (Pp,M—1)
o & m) = oM & m) = oM E m) + oY (6 m)|
. (3.79)
<C (A2 @2 (& z1)| ™ W |y 2125 (0 - 22)| 2
Also, we have
1
O E ) = oM E ) < C A2 o) (E )T, (3.80)
€
oM e - E < C w2 2 ()| (381
Finally, by (3.63)—(3.65), (3.73), (3.77)—(3.81), and Lemma 2.3 and the remark
that follows its statement, we establish the L” boundedness for U(Z"ZZ) The proof un-

der Assumption (i) is complete. The proof under the assumptions (m) and (v) follow
by similar argument with minor modification. We omit the details. This completes the
proof. [J
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4. Proofs of Theorems 1.3 and 1.4

In this section, we shall present the proofs of Theorems 1.3 and 1.4. We will carry
out the proof of Theorem 1.3 by a double induction argument along with Lemma 2.3.

Proof of Theorem 1.3. To prove Theorem 1.3, we start by using double induction
on the degrees d = deg(Pp) and b = deg(Py). First, for d =2 and b arbitrary, the

L? boundedness of U(ZI’ZZ) is satisfied by Lemma 3.1. Similarly, for » =2 and d

arbitrary. Next, we assume that the LP bounds (1 < p < o) for U(Z“ZZ) holds for all ®
with degree of Py less than d + 1 and Py of any degree. Furthermore we assume the
L? boundedness also holds for all ¥ with degree of Py less than b+ 1 and ® of any
degree. Thus , we assume that deg(®) =d + 1 and deg(¥) =b+1. Let

D(t) =Po(t) + A1 (1) and Y(r)=Pyp(t)+ o (1) 4.1)
where
d+1 b+l
t)= 2 ait'  and  Py(t) = 2 cit'. 4.2)

For 7,5 € R, we define the famlly ofmeasures {l)thrl P s e R}, {vtd+1b) RS
R}, {vtde) t,s € R}, and {v\%") :1,s € R} by

2t+12s+1
drd
[ enas Ve = [ ] @@ v g e @
2t 28
2t+123+1
drd
J [ enads e = [ @i tE @y
2f é
2t+123+1
drd
J [ Fle)anfs ) !/fﬂp SR UL )
and
2t+123+1

[ ena e = [ [ fea@ra g e @o
;

28

Now, let

(0)" () (x,y) = sup %% )|, 4.7)
where i=d,d+1,r=>b,b+ 1. Then
ogk (£)(xy) = sup | (04w ) (48)
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For (i,r) € {(d+ 1,b),(d,b+1),(d,b)}, induction assumption implies that

1) (Alp < Cpllfllp

(4.9)

for all 1 < p <. Now, we move to obtain the Fourier estimates of the measures

oD e zy, (ol s e RY, {047 1 s € RY, and {0P”
Notlcethat

2 2
55 e = [ | ei[(£'z1><1><z-rc>2’r+(n'z2w<2fr>2xc]%,
11

2 2
5B (g ) //e [(E21) @2 £)2r+(1:20) Py(27) 2 c1di‘€’§
11

2 2
5D (& ) = / / (&) B2 )2+ (n122) W(2'r) 27 d; ZC ’
11

and

2 2
040 (E ) = / / Sl o2 D)2 (n-22) Py(2)2°C] d: ZIC'
11

We can easily show that

(d+1,b+1) (d.b+1) | | d+1b

DY) gl 4 I+ 154 < c.

By similar argument as that led to (3.67), we get

dd+l

Eﬁnﬂaam@%ﬂW+m1ﬁwww?d>CM%w@Wémm

and

db+1
ST lE 0@ 02t (12 YN 2L > Clo? ) -

Hence, by similar procedure as in the proof of Lemma 3.1, we can obtain

v E )|

t,s

N 1
SCIA2 @i(2) (8 -21)| > [a27a(2)(n-22)] P71,

BT () — BT & )
1

<CA2 @u(2)(E-20)| T o2 ga(241) (- 22) | 0T,

tseR}

(4.10)

.11

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)



L? BOUNDS FOR SINGULAR INTEGRAL OPERATORS ALONG TWISTED SURFACES

“““@n)w@“@nn
<SCIA2 @ (2 (E - 20)| T 02 ga(2)(n - 22)] 05T
B (& ) — wﬁ“@n>tﬁ“%ém+w5@nﬂ

<CIAZ @127 )(E - 20) [T 02 ga(2'41) (1 -22) |57,

1

B () — 5P (E M) < CIA2 @i (2 (E 2| T,

X 1
B (& m) = B4 (E,m) < Cla2 g (2 (0 -22) [T
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(4.19)

(4.20)

4.21)

(4.22)

Finally, by (4.9), (4.14), (4.17)—(4.22) and Lemma 2.3 along with the remark that fol-

lows its statement, the proof is complete. [l

Proof of Theorem 1.4. The proof of Theorem 1.4 based on Minkowski’s inequality

and Theorem 1.3 with z; and z; are replaced by u’ and V' respectively. Notice

VO Ag (f)(x,y)

2t+1gs+1

< sup/ /\szu Y |/ /|f m’,\y(r)cv’nd:”écda(u’)da(v’)

sn—1gm—1
Thus,
190 A5 (Nl <R 055" |
QA w Dy < L Vg " lILP
< Cp HQHLI Hf”L”
forall 1 < p <o and C, > 0. This ends the proof of Theorem 1.4. [

5. Proof of Theorem 1.2

This section is devoted to present the proof of Theorem 1.2.

Proof of Theorem 1.2. For d,b > 0, assume that Q, ®, ¥ are as in the statement
of Theorem 1.2. We decompose the function Q as in [7]. Let {6, : 1 € NU{0}} be a
sequence of numbers and {Q, : 1 € NU{0}} be a sequence of functions on §"~! x §"~!

such that

Qu( / Q.(.V)do(v') =0,
sn—1
Ql(tx7sy):Ql('xay)7 Vt,s>0,
191 <4, |Qull2 <4(m)?,

=Y 6:9,(x)
1=0

(5.1)

(5.2)
(5.3)

(5.4)
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=

2(1"‘ 1)2 9[ < HQHL(IOgL)Z(SnflXSm*l)7 (55)
1=0

where 6y =1 and w, = 2'T!. By (5.4), we get

Toa(f) =Y, 6 To, a(f)(x,Y), (5.6)
1=0
where O (i
Tonf= [ Fle— (il sy— () 2 gy,
RY xR || v

Thus, by (5.5) and (5.6), we only need to prove that

1T aflp < Cp(t+ 121l (5.7

For ®,%¥ € s (d,b,A,a), let Py, Py be two polynomials satisfying one of the condi-
tions (i) — (iv) in Definition 1.2 such that

D(t) = Pp(t) + A1 (1) and Y(r)=Pyp(t)+ ap(r) (5.8)
where
w() =Y ait' and  Py(r)= Y cif'. (5.9)
i=2 i=2

For2<l<dand 2 <s<b,let
l . S .
= a;t’ and  Py(t) =) ait'. (5.10)
i=2 i=2

Notice that, we are the convinced that

Py (t) = PRy(r) = 0.

For 1 e NU{0} and j,k € Z, let {Gl‘ﬁl b J,k € Z} be the family of measures
defined by
Q
[ renas® = [ @ e ) 2
R xR™ I Jul" v
w <|V|<wjJrl
wh<|u|<wh+
(5.11)
Also, we define the family of measures {0'1 gk 1<1<d, 1<s<b} by
[ rtemaofleey) = [[ b P ) 2 g
- |uaf" [v]
wi <|v|<wjJrl
W< Ju| <kt

(5.12)
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By (5.11) and (5.12), we have

To,n(f)(xy) = X o3 Vs fx,y). (5.13)
JKkEL
The maximal function corresponding the measures 0_1(3;1,1”1) is given by
* (d+1,b+1
(ol (f) (y) = sup)lal ) (5.14)

Thus, by Theorem 1.3 and the first inequality in (5.3), we get
(a2 ED) ()l < Cp (112 £ (5.15)

forall 1 < p <o with constant C}, independent of t.
Now, notice that

A(d+1,b+l radr Q,(u'v)
A // SDul ¥ (lul)v )Wdudv, (5.16)
w<|v|<wl+l
wh<|u|<wht
and that
! )
< // (&) (BL (vl P (|ul) v L(”"’)dudv, (5.17)
%L Jual™ [v[™
w<|v|<wjJrl
wh < Ju| <t
for 1 <I<d and 1 <s <b. Notice that
~(d+1,1) _ ~(Lb+1)
Lk =00k =0.
It is clear that
~(d+1,b+1 (d+1,b) (d,p+1)
B+ 181 sl < c (5.18)
Next
(d+1,p+1)
G )|
Wi Wy
</ 1.3 V)] //ei[(é-u’>¢( W Owdrrn el P48 | o0,
Snflxgmfl rC

11

By similar argument as that led to (4.17) with z; and z, replaced by ' and V' respec-
tively, and Holder’s inequality, we get

s e m)|

<C+ 1)) le

- (/ (.91 04) (& )| T | B, ga(w]) (1) T do(u)do ()
sn—1ygm—1
(5.19)
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where @7, = A w{ and %), = aw’{. Hence, by (5.3) with ¢’ = 2, we obtain

i)

<C(1+1)*4(w)?

1
1 2
X (/S - |27y oy (W) (E i) T @D |@b%(wl)(n V| B dO'(u/)do(v’)>
n— X m—
_ . _ 1
<O 124000 Gy | Ay 01 (WA 70D | By o (w7050
- P
SC(1+1)24(we)* [y o1 (W))E| XD | By ga(wi)n| 705D,
(5.20)
where
| | 5
Gup = (/ l&’-u’l_m |T)/'v/’_md0'(u/)d0'(v’))
sn—1ysgm—1
1 2 1 2
= sup (/ |§’-u’}d“d0'(u’)> sup (/ }n’-v’}”“dc(v’))
Eresn-1 St n/esm-1 Sm—1
< oo,
On the other hand, it can be shown that
G5 E | <car ARl <c 1), (5.21)
where the last inequality obtained by (5.3). Notice that
1
(4(w)) 7T <C. (5.22)
1
Finally, by interpolation between (5.20) and (5.21) with 0 < € = D) <1, we get
Gld+1b+1)
&)
Tui (5.23)

. o 1 . _ 1
<O+ 12 Aw] @1 (W) E[ T ferwk gp () | T,

Next,

s Em -~ E )
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. i i+1 .. .
Then, by Fubini’s Theorem, the fact that wl << w{Jr ,and @ is increasing , we get

~(d+1,b+1 (d,b+1)
G e gy ¢ n>\

S’/lw{“ whH 5’/5.1 1/ /Sm 1 /Q ' V) e OV gy )dr dg do (i)

<In(wy) (A w! T oy (whH) o Q@ V)| ZLe(n ) do (W) do(v),
Sll Sm
(5.24)
where
W_[/'+l
/ () L(nv) 4T
Zjy(n)y) = e -
wl
Therefore, by (4.16) and Van der Corput lemma in [13], we get
1
ZLjw () < Jawk ga(w]) (n )| 7. (5.25)
Also, £, ;y satisfies
Zje(n,y) < C+1). (5.26)
1
By interpolation between (5.25) and (5.26) with 0 < € = ? <1, we get
1
L jw(nV) <Cu+1)|owk e2(wh) (n V)| 70 (5.27)
Thus, by (5.24), (5.27), Holder’s inequality and the fact that
1 4
sup (/ |n" V|71 dc(v’))q < oo, (5.28)
n/ESmfl Smfl
we obtain
(d+1,b+1) (d,b+1)
AR AR R )]
o (5.29)
<O+ D2l [ 2wl @105 E| ek ol m| 7050,
On the other hand, we have
~(d+1,b+1 (d,b+1)
s e m—sgi )| <car @l 530
Finally, by (5.3), (5.22), and interpolation between (5.29) and (5.30), we get
~(d+1,b+1 ~(d,b+1
I ) — 5 ’(ém)\
(5.31)

<C(e+1)2 [l o) €| T ok o (wl) | s
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Similarly, we obtain that

A(d+1,b+1)(5 n)— 8_(d+1.,b)(5 TI)’

1,j.k 1,j,k
. (5.32)
<Clt1)2 ek a1 T (2] 1 () €| ST
By similar steps as in (3.30)—(3.31), we can obtain that
~(d+1,b+1 ~(dp+1 ~(d+1,b ~(d.b
g E ) -85 e m -8 e m+ 8 & m)|
(5.33)

1
(Hrl) 4(1+1)

<1 [l o) [ Jant* vl

In addition, we have

G e m -850 &)

W{H wllc+1

< [ ] i ey 4 ds Joydo ().
sn—1ysgm—1 r C
w{ W’f

k+1

By the properties of ¢ and w¥ < { < wk!, we get

G e - | eIl awl T e e (5.3

Also, we have

s Em -8 E | <cur 1. (535)

Finally, by (5.3) and interpolation between (5.34) and (5.35), we get

G e =Y Em] <C a1 Al o ETTL (5.36)

Similarly, we have

el Em -8l Em| < ar Pl gl . (537)

Now, by similar argument as that led to (5.17) we can prove the following:
~(L,s) <C 1 2 kl‘ BI(1+1) l+1 k S/ | 8s ll+1) 5.38
15,3 (&I < C A+ 1)y wiwik 11 €| [eowhwy/ st (5.38)

S — ; __ 1
8 m)= 8 E ) < (1) arwd Tl D €T gk st R
(5.39)
(i 1
vk} T
(5.40)

; _ 1
| ) (5 n-— lljxkl (E,m)|<C(+1)?|a wwkg| 510D
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s e -6l e -8h e +8E )

1 lk+1 —1 ¢(j+1 —1 (5.41)
SC(H—I) lay wi Wl >5|4z(1+1> les Wit Wi U+ D | 707D
. 15— 1
gl ) s e < cut 1) fawiTt Wi E D g, (5.42)
_ . 1
60— E ) <Ot 1 ek U g s, (5.43)
1

Now, we choose and fix a function ¢(¢r) € C5(R) such that ¢(r) =1 for |t| < =
and ¢(r) =0 for || > 1. For jk€Z, let (§1))(&) = (#)(jwlwika &) and
(qz(‘k))(n) = (@)W Wi cyn[?). Thus, for 1 <I<d+1and 1 <s<b+1, we
define the family of measures { 191(11813 1 j, k€ Z} by

Bl = a5En 0 @hieh 1 @i

<r<d+ <b
(1-1, ~ ~
l,kwé m T @IED T @Il
—l<r<d+ <m<b+1 5.44)
~(l,s—1) ~(s) ( .
Gl n) il ( DIED @i
<r<d+ —l<m<b+1
l l,s— l ~ (s
+67 n) 0 (") e (951
[—1<r<d+1 s—1<m<b+1
where we use the convention [] A; = 1. By the definition of @, ;x, we can show that
ic0
ol < (+1)? (5.45)
and
~ 1
1B (E M) < C+ 1P A L&) T By Hy(n) [0, (5.46)
where
A€, I=d+1
Ll(g): )
alif, l#d—f'l
an, s=b+1
Hs(n): n )
CsM, s#b+1
o wigi(wh),  1=d+1
b Cwlwl, l#d+1
and

L‘P2(WL') I=b+1
Bl,S_ koS
Cwy wil| [#b+1.



168 B. AL-AZRI AND A. AL-SALMAN

Also, we can observe that

d+1b+1
ZZ = a5 .

Thus,
dilbil
To, A(f)(x,¥) DAY
JkeZ 1=1 s=1
d+1b+1 ) (5.47)
= 2 ﬂl.j,k *f .
I=1 s=1 \jkeZ
Therefore, we have
d+1b+1
ITa,a(Dllp < X D NTSA Sl (5.48)
=1 s=1

where

Toaf(y) = 3 0530+,

jkeZ
On the other hand, let

l.s l.s
()" (1) = sup| 052+ )(x.y)]
s
Thus, by Theorem 1.4 and (5.3), we have

1B ()l <T@+ D2 £, (5.49)

forall 1 < p <o with a constant C}, independent of 1.
Hence, by (5.46), (5.49), and Proposition 2.2 with p; =1, pp =s,and g, =& =1,
we obtain

<Cp (L 121 fllp- (5.50)

Y 0,5y

JKET

[, =

P
Therefore, by (5.13), (5.47), (5.48), and (5.50), we get

<Cp(t+ 121 £1lp- (5.51)
P

1 To.afll, =

(d+1,b41)
2 O-1,j,k *f
Z

Jrke

where C, > 0 is a constant independent of 1. Finally, by (5.5), (5.48), and (5.51), the
proof of Theorem 1.2 is complete. [
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