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(Communicated by J. Matkowski)

Abstract. In this paper the extension of the weighted Montgomery identity is established by us-
ing the integral formula of Pecari¢, Mati¢ and Ujevi¢. Further, by using this extended weighted
Montgomery identity for functions whose derivatives of order n — 1 are absolutely continunous
functions, new inequalities of the weighted Hermite-Hadamard type are obtained. Also, applica-
tions of these results are given for various types of weight function.

1. Introduction

If f:[a,b] — R is absolutely continuous on [a,b] and P, (x,t) is the Peano kernel
defined by

=< fort € [a,x],
P(x,1) = (L.1)
b fort € (x,b],
the Montgomery identity ([6]) states
1 b b ,
1) = / F(o)de + / POe,)f (1 )dr. (1.2)
—daJa a

If w: [a,b] — [0,00) is some nonnegative integrable weight function, the weighted
Montgomery identity ([7]) states

1 b b ,
f(x)zm / w(t)f (1)dt + / Po(x,0)f' (1)t (1.3)

where P, (x,t) is the weighted Peano kernel defined by

% fors € [a,x], 0

= 3F|=

Py(x,t) =

—(2))—1 forz € (x,b]

=
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and W(t) = ['w(s)ds for t € [a,b], W(t) =0, for t < a and W(t) = W(b), for t >
b. For the uniform weight function w(t) = -, t € [a,b] the weighted Montgomery
idenity reduces to the Montgomery identity.

Let g : [a,b] — R be some function and x € [a,b]. Let w: [a,b] — R be some
integrable function. The approximation of the integral fubw(t)g(t)dt will involve the
values of the higher order derivatives of g in the node x. We consider subdivision
0 = {xp < x; <x} of the interval [a,b], where xy = a, x; =x and x, = b. Further,
let {wg;}j—0.1,.,» be w—harmonic sequences on each subinterval [x;_i,x¢], k= 1,2,
such that wyj(a) = 0 and wy;(b) =0, for j=1,...,n.

In [4] the following theorem has been proved.

THEOREM 1. Let w: [a,b] — R be an integrable function and x € [a,b]. Further,
let us suppose {wy;}j—1..,n are w—harmonic sequences of functions on [xy_1,xt|, for
k=1,2 and some n € N, defined by the following relations:

1 ! .
wij(t) = W/ (t —s)""w(s)ds, t€a,x]
D'/,
1 g i—1
Wy (1) = W/b (t— )~ w(s)ds, 1€ (x,b],
for j=1,....n. If g:[a,b] — R is such that g("’l) is absolutely continuous function,

then we have

[ w00 = 3450807009+ (1)" [ Wnle, 208 0,

(1.5)

b .
Aj(x) = — / (x—s) " tw(s)ds (1.6)
and
win(t) = ﬁf;(t — )" Yw(s)ds fort € [a,x],

W (t,x) = (1.7)
' won(t) = ﬁfé(t — )" Yw(s)ds fort € (x,b].

REMARK 1. The identity (1.5) was also obtained in [5] and we call it an integral
formula of Mati¢, Pecari¢ and Ujevic.

In [8] and [9] the weighted Hermite-Hadamard inequality for convex functions is
given.

THEOREM 2. Let p: [a,b] — R be a nonnegative function. If f is a convex func-
tion given on an interval 1, then we have

:if(a>+ e (1.8)

b
1)< 55 [ P < G e
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or

W< [ psman<ro)|7a @+ 5=0rw| s

where

1) = /atp(x)dx and A= % /abxp(x)dx. (1.10)

THEOREM 3. (The Fejér inequalities) Let p : [a,b] — R be nonnegative, inte-
grable and symmetric about # If f i [a,b] — R is a convex function, then

("+b)/p dx</p dx<[ a)+ f }/p dv. (111

If fis a concave function, then the inequalities in (1.11) are reversed.

Some recent results on Hermite-Hadamard and Fejér inequalities can be found in
[2] and [3]. The aim of this paper is to give the extension of the weighted Montgomery
identity and to obtain certain Hermite-Hadamard type and Fejér type inequalities. Fur-
ther, some applications for special cases of weight functions are given.

2. Main result

For integrable function w : [a,b] — R we put Wy = f w(t)dt and A = ¢ fftw(t)dt.

For n > 2 we put
n
= ZAJ (x)g(j_l
j=2

Let g: [a,b] — R be such that g(”’l) is absolutely continuous function, then the identity
(1.5) states:

b X
g(X)=WLO/u W(t)g(t)dt—%é)— T /antx) W (1)de, x€la,b]. (2.1)

REMARK 2. If we put n =1 in (2.1), then we obtain the weighted Montgomery
identity (1.3).

REMARK 3. If we put n =2 in (2.1), then we get the following identiy:

o) = [ wos(ar G~ / Want0)g (dr. 22)

THEOREM 4. Let g: [a,b] — R be such that g("’l) is absolutely continuous func-
tion, for n € N, and let w : [a,b] — [0,0) be an integrable function. Then we have the
following identity:

o [ st —g2) =

Tn,W()L) (_1)n b (n)
e / W, 2)e™ (O)dr. (2.3)



274 S. KOVAC, J. PECARIC AND M. RIBICIC PENAVA

Proof. We apply x=A in (2.1). O
Now, let us consider the special case for n =2.
COROLLARY 1. Let g: [a,b] — R be such that g’ is absolutely continuous func-

tion and let w : [a,b] — [0,00) be an integrable function. Then we have the following
identity:

1 b 1 b
o [ w0sdi— () = o [ W ag' 0 4
W() a WO a
If. additionally, g is convex function and g" exists on (a,b), then the following in-
equality holds
L d L d 5
— t)g(t)atr — — tw(t)dt | >0 2.
e [ wsoar—g (o [“woar) @)

and the identity in (2.5) holds if g is linear function.

Proof. We apply Theorem 4 for n=2. Then we have T ,,(A) = 0, so the identity
(2.4) follows.

If g is convex function and g’ (x) exists, then g”(x) >0 on [a,b] (see [9]). Since
w is nonnegative function on [a,b], then it is easy to show that W,,,(,4) > 0, so the
inequality (2.5) is valid.

If g is linear function, then g(x) = kx+1 for some k,l € R. Now we have

o [t —g (- [ )

_ WLO/ubw(t)(sz)dt— (k-WLOLbzw(z)dt+z)

k b I [b k [b

= — [ tw(t)dt + — t)dt — — tw(t)dt —1
WO/u w() +W0/aw() Wo/a W()
l

=— W—-Il=I[-1=0 01
Wo 0
REMARK 4. The inequality (2.5) is the special case of the lefthand side of the
weighted Hermite-Hadamard inequality for the case where g is convex function whose
the first derivative is absolutely continuous function and the second derivative exists.

THEOREM 5. Let g: [a,b] — R be such that g("’l) is absolutely continuous func-
tion, for n € N, and let w : [a,b] — [0,0) be an integrable function. Then we have the
following identity:

_ _ b
T (o) + 5 a6) — g [ sty
(b= A)Tww(@) + (A = a)Tnw(b)
Wo(b—a)

(=1)" [P (b= A—a "
e /a(b_anw(La)—f-mWn,w(I,b)>g (t)dt. (2.6)
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Proof. We apply x =a and x = b in (2.1) and multiply it by I,’;ﬁ and % re-

spectively, and add those two identities. [J

COROLLARY 2. Let g: [a,b] — R be such that g’ is absolutely continuous func-
tion and let w : [a,b] — [0,00) be an integrable function. Then we have the following
identity

) A—a - 1 b
bt 8B~ [ wsa = s [vog a2
where

W) = (2 —a)/at(b—)L—t+s)w(s)ds+(b—)t)/tb()t —a—s+1)w(s)ds,

fort € la,b].
If, additionally, g is convex function and g exists on (a,b), then we have
1 /b b—A A—a
— 1)g(t)dt < b 2.8
b | s < T2 (@ + 5250 8)

and the identity in (2.8) holds if g is linear function.

Proof. We apply Theorem 5 for n = 2. Then we have

_ (b_l)TZW(a)_F()‘ _a)T27W(b) — (b—)ﬁ,)(}t _a) (g/(b) _g/(a))

Wo(b—a) b—a
and
_WLO / ’ (%Wz,w(t,a) + %W;w(hb)) g"(t)dr (2.9)
- _m / ' [(b—)t) /h (1= spwls)ds+ (A —a) / t(t—s)w(s)ds] g"(1)di
_ _m / ’ [(b—)t) /, b(s—t)w(s)ds+(/l—a) / t(t—s)w(s)ds} g"(t)dr.

Now, we add last two identities to obtain

b—-MDw(a)+ (A —a)Tr,,(b)

W()(b—a)
l ’ b_k —A’_a "
_Wo/u (b—aW“(t’“H b_aW2,w(t7b))g (1)t

~ o | Y0e 0 210
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so the identity (2.7) holds.
If g is convex function and g”(x) exists, then g”(x) > 0 on [a,b] (see [9]). Now,
we have to prove that y(r) > 0 for 7 € [a,b]. After some calculation, we get

The first derivative y’ equals:

1

V()= (b—2) / " w(s)ds— (A —a) / w(s)ds

1 a

and the second derivative y”(¢) equals

V() = =(b—a)w(t).

Since y'(a) > 0 and y'(b) < 0 and the function y is concave on [a,b], we conclude that
¥(t) =0, forevery t € [a,b].

If g is linear function, then there exists k,/ € R such that g(x) = kx+ 1. Then
the lefthand side and the righthand side of (2.8) equals to g(4), so the identity in (2.8)
holds. [

REMARK 5. The inequality (2.8) is the special case of the righthand side of the
weighted Hermite-Hadamard inequality for the case where g is convex function whose
the first derivative is absolutely continuous function and the second derivative exists.

Let us consider the case for symmetric function w.

THEOREM 6. Let g : [a,b] — R be such that g""~Y) is absolutely continuous
function, for n € N, and let w: [a,b] — [0,00) be an integrable function such that
w(a+b—1t)=w(t) for every t € [a,b]. Then we have the following identities:

i bw(r)g(z)dt—g(";b )

() (et
= /aWn,w<z,7)g (1)d @11
and
gla)+gb) 1 P
T / w(t)g(t)dr
L@+ Tuw(d) (=D b
=~ W _ZWo(n—l)!/a z(1)g"™ (r)dt, (2.12)
where
f: ‘l_s\n_lw(s)d& for n even
(1) = (2.13)

[ =" w(s)ds — [P |t —s|" ' w(s)ds, for n odd.
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Proof. If w is symmetric function on [a,b], then is easy to show that

a+b
Wo=2- /

and

Lo L 1 1P
= — tw(t)dt = — tw(t)dt + — tw(t)dt
e [ odi= g [ owte) +WO/%,,w(>
ath ath
:L/ ’ tw(t)dt—i—i/ ’ (a+b—s)w(s)ds
W() a WO a
1 4 at+b 3 1 4t
E— tw(t)dt + / wsds——/ sw(s)ds
i [ @ G2 [ s o [ i
_a+tb
=—

The first identity follows from (2.3) and the second identity follows from (2.6) by ap-

plyingxz)tz“zib. O

Then for n = 2 we get the Fejér inequalities:

COROLLARY 3. Let g: [a,b] — R be such that g’ is absolutely continuous func-
tion and let w : [a,b] — [0,%0) be an integrable function such that w(a+b—1t) = w(t)
forevery t € [a,b]. Then the following identities hold:

1 b atb\ 1 qb atb\ ,
| w(z)g(r)dz—g( : ) | W2w<,T>g Wdr @14)

g(a)+g(b)_W0/ £)di — /y " (2.15)

2
o [ i—sint
2W0

If g is convex function and g" exists, then the following inequalities hold:

o(457) < [ vt < EO7EC) (210

and

where

y(t) =

2 Wo Ja 2

If g is concave function and g' exists, then the inequalities in (2.16) are reversed.

Proof. First, since w is symmetric function, by applying n = 2 to the identity
(2.11) we get T, (“%b) =0, so the identity (2.14) is valid. Further, we apply n =2 to
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the righthand side of the identity (2.12) and get:

a w b "
_%WOTMZ’) - ﬁ | z0g"0ar

:_Wob%“ (>2W:V0b o' (b) 2WO/ (/ It — 5| w( ) "(t)dt
:l]“;a(g’(b)—g’(a ZWO/ (/ |t —s|w( ) "(r)dt
= et [ ([ e-stw ) (o)

b /p— 1 b
:/a ( 4a_2—Wo/a t—sw(s)ds) g’ (t)at (2.17)

so the identity (2.15) holds.
The inequalities (2.16) holds from the inequalities (2.5) and (2.8) with A = ’”b ([l

3. Examples

Using general identities (2.3), (2.6), (2.11) and (2.12) obtained in the previous
section we shall give some special cases for various types of weight functions. Fur-
ther, we obtain the Hermite-Hadamard type and Fejér type inequalities for these weight
functions, as special cases of Corollary 1, 2 and 3.

EXAMPLE 1. w(t) =1, for 7 € [a,b].
Since w is symmetric function, we can apply Theorem 6 to get identities:

- a/g )t — <a+b>

a+b _1\n a
L () o
and
HOE0) L[y
2 b—a a
a - 1\ b
- _TW(z()zytZ) o 2(59 —lz)z)n!/u ((t=b)"+(t—a)") g™ (1)dt,
her
where an(ﬂ> _ i '(b—a)j g(j_l) (a_—l—b) (3.2)
’ 2 = 201G —1)! 2 ’
Jj odd
Tn,w(a)+Tn,w(b> o < (_l)jil(b_a)jil Jj— Jj—
T —gz 27 (97 V@) +2U b))
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and

_ (=a)" a+b
b win(t) = == fort € [a, —] ,
mwoﬁ}): | ’ (33)

won(t) = (t_nl!’)n fort € (432,0].

Specially, for n =2 we get the identities from the Corollary 3

1 a+b 1 b a+b
d - w " .
b Cl/;l g(t) ! g( 2 ) b—a/u = (t, 2 )g (t)dt (3 4)

and
g(a);g(b) ~ bia/ahg(t)dt:/ahy(t)g”(f)dh (3.5)
where b
i = C N,

It is easy to check that W, (¢, “er—b) >0 and y(¢t) > 0, for every ¢ € [a,b]. Therefore, if
g is a convex function and g’ exists, then the following inequalities hold:

g<a+b>< ! /ahg(t)dzégi(a)w(b)

2 ) “b-a 2
which are the classical Hermite-Hadamard inequalities.

EXAMPLE 2. w(t) = \/% for t € (—1,1).
—t

Since w is symmetric function, we can apply Theorem 6 to get identities:

! / b g(O):Tn’W(O)—i—% [ 11Wn,w(t70)g<">(z)dt (3.6)

T 71\/@ T
and
g(=D+g(l) 1 1 )
> _Elmﬂiﬁm
_ 1\ 1
—— 1;: Tl zn((nl_) ol [ 20 @y,
where .
Tow(x) = X A;(x)gV V() (3.7)
j=2
and

—1—x)/1 .
w1-7(1_.]7%71’J%)7 x#_la




280 S. KOVAC, J. PECARIC AND M. RIBICIC PENAVA

and
i sL ~d for n even
2(t) = o (3.8)
I |’\/‘|_d — ! "\/I‘_ ds, forn odd.

Here B is Beta function

B(p,q):/oltp_l(l—t)q_ldt, Re(p), Re(q) >0

and F is hypergeometric function

1 1
F(a,b,c;x) = ———— PN = — ) e
(a,b,c;x) B(b7c—b)/o (1-1) (1 —xt)~“dt,
forc>b>0.
Specially, for n =2 we get the identities from the Corollary 3:
Lt gt 1!
g )= 1 [ Wa0.080) (3.9)
and | | -
)10 "
2 1 \/1 —12
where | L |
r—s
D=5—5- [ ———ds.
=351 — s

It is easy to check that W, ,,(¢,0) >0 and y(¢) > 0, for every t € (—1,1). Soif g isa
convex function and g” exists, then the following inequalities hold:

g(0)<l/1 8(t) . 8=D+g(l)

Srn)avi—g2 o 2 ’

which are the Fejér inequalities for special weight function w(z) = —-
—t

EXAMPLE 3. w(t) =V 1—1¢2,forr e [—1,1].
Since w is symmetric function, we can apply Theorem 6 to get identities:
2 gl
E/ gtV 1 —12dt —
~1

2T, w(0)
o T

n 1
2/ Wi (2,0)8™ () dt (3.11)
—1
and

g(—1)2+g(1) B %[11g(t)mdt

B T

T nn—1)!J-1
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where .
T (%) = X, A;(x)V D (), (3.12)
Jj=2
4(—1—x)i~!
((}71;, B(3,3)F(1—j.3,3:%), x#—1,
Aj(x)_ 2Jt1 3 .,.1
(j_l)lB(§7J+§>7 x=-1
and
f11|t s|" Y1 =s2ds, for n even
zZ(t) = (3.13)

[ le=s" VT =s2ds — [ e —s|" ' V1= s2ds, forn odd.

Specially, for n = 2 get the identities from the Corollary 3:

%[llg(t)Mdt—g(O) = %[11 Wa,(2,0)g" (¢)dt (3.14)
and

w - %/llg(f)mdf = /lly(t)g”(t)dh (3.15)
where

1 1 /!
y(I)ZE_E/ [t —s|- /1 —s2ds.
-1

Since w(r) is nonnegative function on [—1,1], it is easy to check that W ,,(r,0) >
0 and y(¢) > 0, so if g is a convex function and g" exists, then the following inequali-

ties hold: !
g(0) < / OV1—r2dr < & 2 g(=D+s(l)
which are the Fejér inequalities for special weight function w(z) = V1 —¢2.

EXAMPLE 4. w(t) =/, for t € [0,1].
First we apply Theorem 4 to get identity:

gfolg(t)\/t_dt—g (%)

3T,.w(3/5 —1)"-3 i 3
_ 33/ )+( ) /an 1,2 ) g™ (t)dr (3.16)
2 2 o 5
and after applying Theorem 5 we get:
2
5g(0)+ / g(t)Vidt
6an(0)+9TnW

3
10 2/ ( n,w t 0 5 n,w(tal))g (t)dta
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where
E:ltll/;B(n,%) fort € [O,X],
Wn,w(tvx) - n
S F(—L n+ 151 1) forr € (x,1],
Ton() = ZAj(x)g(j—l)(x) (3.17)
j=2
and
(_x)jB(l i)F(l— i35 1
— ) J 3 7x)7 x7é0
) = G 1)| 2 2:2

= 1) B(1,j+3), x=0.

Specially, for n = 2 we get the identities from the Corollaries 1 and 2:

2/g (1)Vtdt — () 2/ 2W<7—> '(t)dt (3.18)
§8(0)+ /g (t)Vtdt = /Oly(t)g”(t)dt

/<>w/<>f

Since w(t) > 0 on [0, 1], we conclude after the Corollaries 1 and 2 that W, ,,.(z, %) >
0 and y(r) > 0. So if g is a convex function and g" exists, then the following inequal-

ities hold:
() 2 [ gtyian < 8030,

which are the Fejér inequalities for special weight function w(t) = /.

and

where

EXAMPLE 5. w(t) =4/ 1+,,forte (—1,1].
First we apply Theorem 4 to get identity:

] o)
_ n,w(—1/2)+(—1)" /inw (t,—%) g™ (1)dr (3.19)

T T

and after applying Theorem 5 we get:

380+ 38—+ [ g

o 3Tn,w(—1)+Tn7W(1) 1 /173 1 .
= 47'[ ﬂ:/fl 4Wn,w(t7 1)+4an(l"1) g (t)dt,
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where
1o
2 nF(—1 4 emtsl)  forre[-1,4],
Wi w(t,x) 1 N
n2 2(1-0)""2
(—1) ((7{))! B(%,H)F(%,%,%—i-n 17) forz € (x,1],
Topw(x) = Y, Aj(x)gV " (x) (3.20)
=
and

2(—1—x)/ ! .
(0_71))!B(%7%)F(1_]7%727%)7 )C?é—l

2/ 3 . 1 _
(j_l)!B(§7]_§)7 x=—1

Specially, for n = 2 we get the identities from the Corollaries 1 and 2:

%/_1 g(t)\/gd g( ;) :%/_llww (t,—%) g (t)dt (3.21)
%g(_l)JF%g(l) - %/llg(l)\/gdf = %/jly(t)g”(t)d t
-4 vl (1) [

Since w(t) >0 on [0, 1], we conclude after the Corollaries 1 and 2 that W5,,,(1,—3) >0
and y(z) > 0. Soif g is a convex function and g” exists, then the following inequalities

hold:
1 1! =7, 3g(—1)+g(1)
-z <= t dr < ;
g( z) ﬂ/_lg()v 141 4

which are the Fejér inequalities for special weight function w(z) =

and

where

EXAMPLE 6. w(t) = % for 1 € (0,1].
First we apply Theorem 4 to get identity:

1 lg(r) 1 Tow(1/3) (=1 1 1
S8 (1) = W [ 1,= ) g™ (1)d 3.22
2/; \/E =8 3 2 + 2 /0 ) ta3 8 (t) t ( )
and after applying Theorem 5 we get:
2 0) 1 / 8(t)
3g 38

_ (°>6+ w(1) %01(%Wn,w(t,o)+%Wn,w(t,1>>g<">(t)dt,
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where
f=B(n,3) fort € [0.4],
Wow(t,x) = ;
([;!1) F(3,Ln+1;1—1) fort € (x,1],
Tow(x) = Y, Aj(x)g" ) (x) (3.23)
j=2
and
X F(1-4,4.3.0), x#0
(j—D! ]’2’2’x ’
Ajx)=1¢ " )
oo *= 0

Specially, for n =2 we get the identities from the Corollaries 1 and 2:

%/01 %‘”‘g (%) = %/OIWZW (%) g ()t (3.24)
and
2 1 Loflg() , 1t o,
gg(0)+§g(1)—§/0 Wdtz 5/0 y(0)g" (t)dt,
where

1 /2 1 2 /1 1
1=~ z—t —ds+ = = — s+t ) =ds.
y(?) 3/0<3 +s>ss+3/t<3 s+)ss
Since w(z) >0 on [0,1], we conclude after the Corollaries 2 and 1 that W,,,(f,%) >0
and y(z) > 0. Soif g is a convex function and g” exists, then the following inequalities

hold: <£)<l/1@dt<w
8\3)S2 i 3 7

which are the Fejér inequalities for special weight function w(z) =

o
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